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Compulsory exercise for STK4051/9051 - Computational statistics 
 

Spring 2024 

 

Part 2 (of 2) 

This is the second part of the compulsory exercise for STK4051/9051, spring semester 2024. 

The deadline for the complete compulsory exercise (including part 1 and 2) is May 2nd . Note 

that even if you have delivered parts of the exercise for feedback earlier, you need to include 

both parts in the May 2nd delivery. The exercise has to be delivered within the Canvas system. 

Reports may be written in Norwegian or English, and should be text processed (LaTeX, Word).  

Write concisely. Relevant figures need to be included in the report. Copies of relevant parts of 

machine programs used (in R, python, or similar) are also to be included, perhaps as an 

appendix to the report. Within these exercises there are some choices you need to make when 

designing algorithms. Part of the evaluation will be on your choices, but more importantly are 

your arguments on why you have made the specific choices!  

This second part contains three exercises and comprises five pages (including this front page). 

Some R-code is available from the course web-page. You are free to use other software but 

would then need to translate or write your own code for that part included in the R-script. Data 

sets to be used are available on the course web-page, in a standard R save file. Read the 

corresponding .txt file to understand the structure of data.  

TGsim.dat Exercise 2 

gambia.dat   Exercise 3 

 

There will be a Q and A, with respect to the compulsory exercise on the course webpage. The 

page is updated when questions arise. 

In addition, write a short note about how much time you have spent on the exercise and how 

hard/difficult you consider the exercise to be. Comment as detailed as you like. Are there parts 

that you do not think has been covered sufficiently well in class? Include both part 1 and 2 in 

your evaluation. 
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Exercise 1 (Simulation from 1D distribution) We will start this exercise by investigating some 

methods for sampling a univariate distribution. We will assume that we easily obtain samples 

from a uniform distribution, i.e. 𝑈 ∼  Unif[0, 1].  

a) Describe the standard transformation rule to sample from a univariate distribution, and 

derive the expression for sampling from an exponential distribution.  

When the negative log density is convex we can use adaptive rejection sampling to build an 

approximation to the density. We will now use this to sample from a standard normal 

distribution. We shall use the sub-gradient of the convex function, i.e. for a continuously 

differentiable convex function 𝑘(𝑥) we have: 

                                               𝑘(𝑥) ≥ 𝑘(𝑥0) + 𝑘′(𝑥0)(𝑥 − 𝑥0)                                                         (1) 

b) Describe how we can use the convex property of the negative log density to find an 

upper bound on the distribution.  Use the linearization around the points   -1, 0, and 1, 

to derive a bounding function for the standard normal. Illustrate the bounding function. 

Does the bounding function integrate to 1?  Show that the probability distribution 

corresponding to the bounding function is: 

                            𝑔(𝑥) = {
          

1

3
          if    − 0.5 < 𝑥 ≤ 0.5

exp(−|𝑥|+0.5)

3
                              else

                                                (2) 

c) Algorithm 1 below uses rejection sampling to sample the standard normal distribution.  

Show the relation to the distribution in (2), compute the average acceptance rate, and 

implement the algorithm.   

 

Algorithm 1: 
While not accepted 

i. Sample  𝑈1, 𝑈2   iid from  Unif[0,1] 

ii. Sample 𝑖 ∈ {1,2,3}, with probability 𝑝0 = {
1

3
,

1

3
,

1

3
}  

iii. 𝑥𝑝 =  {

𝑈1 − 0.5,                if 𝑖 = 1 

ln(1 − 𝑈1) − 0.5 , if 𝑖 = 2

−ln(1 − 𝑈1) + 0.5, if  𝑖 = 3
   

iv. If  𝑈2 <
√2𝜋⋅𝜙(𝑥)

3⋅𝑔(𝑥)
, accept proposal and return 𝑥𝑝.  

where  𝜙(⋅ ) is the density for a standard normal variable. 

 

d) An alternative to rejection sampling is importance sampling. Implement an importance 

sampler based on 𝑔(𝑥). Give arguments for choices you make when setting up the 

importance sampler.  

 

e) Discuss the differences between rejection sampling and importance sampling.  

Compare the two approaches in a numerical study where you quantify the Monte Carlo 
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variance in the results. For each rerun of the estimation should be based on 1000 

samples from 𝑔(𝑥).  In the numerical study you should estimate 𝐸(ℎ(𝑥)), where:   

                                                     

                                                     ℎ(𝑥) = 𝑥2𝐼(𝑥 > 0)                                                            (4)  
 

 

Exercise 2 (Sequential Monte Carlo) In spatial statistics there are many different approaches 

for modelling continuity of discrete properties in a region. One method which is popular due 

to the intuitive interpretation is the truncated Gaussian model.  In this model one generates a 

Gaussian random field in ℝ𝑑 and divide the value set into intervals to define the classes. When 

applying the model, it is challenging to get the parameters of the model right. One way to get 

the parameters correct is to estimate them from training data. In this case we have a map of 

discrete values and want to derive the properties of the underlying Gaussian random field.  This 

is the situation we will investigate below. We will however restrict focus to 1D in this exercise.   

 

The model is given as:  

𝑥1~𝑁(0,1) 

𝑥𝑡 = 𝑎𝑥𝑡−1 + 𝜆 + 𝜀𝑡, 𝑡 = 2,3, …   

                                                       𝜀𝑡 ∼ 𝑁(0, 𝜎2 ),            𝑡 = 2,3, …                                                  (5) 

     𝑦𝑡 = {

1    if                   𝑥𝑡 < −0.5
2    if − 0.5 ≤  𝑥𝑡 <    0.5
 3    if                   𝑥𝑡 ≥    0.5 

 𝑡 = 1,2,3, … 

The data 𝒚1:251, is given in the file TGsim.dat on the course webpage.  

a) Design a sequential Monte Carlo algorithm for inference about 𝑝(𝑥𝑡|𝒚1:𝑡), 𝑡 = 1, … , 𝑛, 

assuming that (𝑎, 𝜆, 𝜎2) = (0.85, 0, 0.52). Display plot of E(𝑥𝑡|𝒚1:𝑡), and Var(𝑥𝑡|𝒚1:𝑡). 

Give arguments for the choices you make in the construction. 

We will use sequential Monte Carlo to perform online learning algorithm for the parameter 𝑎.  

For simplicity we will assume that (𝜆, 𝜎2) = (0, 0.52) , is fixed and known.  

b) Consider a prior model for 𝑎 which is uniform on the interval [0, 1]. Design and 

implement a sequential Monte Carlo algorithm for inference about 𝑎, i.e. 

estimate 𝑝(𝑎|𝒚1:251).  Use a static approach, i.e. sample 𝑎 initially from the prior 

distribution, and update it by weighting/resampling throughout the simulation.  Why is 
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this approach in general not recommended? Comment on your results, are these 

acceptable? 

 

c) STK 9051 only. To overcome the weaknesses with the estimation procedure in b, we 

can utilize that there are sufficient statistics for the parameter 𝑎. Describe how this can 

be utilized and how it mitigates some of the problems with the method used in b. 

Implement this method and compare the results to those from b, you can choose your 

prior distribution for 𝑎 as it suits you, but give an argument for your choice.             z  

(Hint:You can modify the script “smc_lin_bin_parest_suff.r” available on the course  

webpage) 

 

 

Exercise 3 (McMC – in  Bayesian analysis) We will in this exercise consider a Bayesian 

generalized linear model for identifying influential factors for presence vs absence of malaria 

in blood samples taken from children in Gambia. The data set “gambia” from the geoR package 

is available on the course page. A description of the data is given in an associated file.  These 

data are often used for spatial analysis, but we will not consider that aspect here.  We will 

assume all observations to be independent and investigate a probit-link between the 

explanatory variables 𝒙 and a binary response variable 𝑦. For person 𝑖 the probit-link between 

explanatory variables and the response is defined as: 

                                               𝑃(𝑦𝑖 = 1) = Φ(𝜷T𝒙𝑖),                                                       (6) 

where  Φ is the cumulative distribution for a standard normal variable.  In the Bayesian analysis 

below we will use the improper prior 𝑝(𝜷) ∝ 1, in which case the posterior 𝑝(𝜷|𝒚) is 

proportional to the likelihood 𝐿(𝜷|𝒚).  

a) Define 𝑝𝑖 = Φ(𝜷T𝒙𝑖), and derive the likelihood function: 

                                                   𝐿(𝜷|𝒚) = ∏ 𝑝𝑖
𝑦𝑖(1 − 𝑝𝑖)

1−𝑦𝑖                                           (7) 

𝑛

𝑖=1

 

Discuss how you can implement a numerically robust evaluation of this likelihood. 

How should you handle the situation where  𝜷T𝒙𝑖  has a large absolute value?  In a 

Metropolis Hastings algorithm, you are asked to evaluate the ratio of two likelihoods, 

how is this done in a numerically stable way? 

 

b) Below you will be asked to implement a random walk using a random scan Metropolis 

Hastings algorithm to investigate the posterior distribution. From the general 

expression for the Metropolis Hastings (M-H) ratio, deduce the M-H ratio for the 

random walk.  Which criteria need to be met in order for the Markov chain to converge 

to the stationary distribution? Which of these criteria does the M-H ratio help you to 

fulfill? 

 

c) For the Gambia data: Implement a random walk algorithm with a random scan to 

sample from the posterior distribution 𝑝(𝜷|𝒚), and apply it.  Use a model containing 

the explanatory variables: age, netuse, treated, green, and phc, in addition to the 
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constant term. (Hint: 1-Remember to standardize the design matrix, 2- put some effort 

into a robust evaluation of the likelihood ratio, see a) 

 

d) Display plots which illustrate the convergence properties of the method. Comment on 

the convergence properties of your algorithm. If there are any obvious problems, 

suggest modifications and revisit c to improve convergence.    

 

A common way to sample the distribution above is to introduce a latent variable, 𝑧𝑖, which is 

defined such that  {𝑦𝑖 = 1 } ⟺ {𝑧𝑖 > 0}, and  

                                                                       𝑧𝑖~𝑁(𝜷𝑇𝒙𝑖, 12)                                                                      (8) 

 

e) Argue that the expanded posterior probability distribution: 

   𝑝(𝜷, 𝒛|𝒚) ∝ ∏[𝐼(𝑧𝑖 > 0) ⋅ 𝐼(𝑦𝑖 = 1) + 𝐼(𝑧𝑖 ≤ 0)𝐼(𝑦𝑖 = 0)]𝜙(𝑧𝑖 − 𝜷𝑇𝒙𝑖)

𝑛

𝑖=1

        (9) 

will have the prescribed marginal posterior,  𝑝(𝜷|𝒚)  from expression (7). (Hint: 

consider one data point first and integrate out the latent variable.) 

 

f) You shall now derive the conditional distributions needed for Gibbs sampling.  Show 

that: 

                        𝑝(𝑧𝑖|𝒛−𝑖, 𝜷, 𝒚 ) ∝ {
𝐼(𝑧𝑖 ≤ 0)𝜙(𝑧𝑖 − 𝜷𝑇𝒙𝑖), if  𝑦𝑖 = 0

𝐼(𝑧𝑖 > 0)𝜙(𝑧𝑖 − 𝜷𝑇𝒙𝑖), if  𝑦𝑖 = 1
                 (10) 

and 

                                        𝑝(𝜷|𝒛, 𝒚 ) ∝ exp (−0.5 ∑(𝑧𝑖 − 𝜷𝑇𝒙𝑖)
2

𝑛

𝑖=1

)                            (11) 

Use results from multi linear regression to deduce that the distribution 𝑝(𝜷|𝒛, 𝒚 ), is 

multi-normal with parameters:                                                                                                r                 

                                                𝐸(𝜷|𝒛, 𝒚 ) = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒛                                                   (12) 

and 

                                           Cov(𝜷|𝒛, 𝒚 ) = (𝑿𝑻𝑿)−𝟏                                                           (13) 

State the result from multivariate linear regression you are using and show how you use 

the connection to derive the results.  

g) Implement the Gibbs sampler, and use this to solve the inference of Gambia data. Use 

a block update to sample 𝑝(𝜷|𝒛, 𝒚 ). Make illustrations of the convergence of this chain 

as well (as done for the random walk approach in in d). (Hint: to sample from the multi-

normal distribution use code from a library, e.g.   rmvnorm from mvtnorm) 

 

h) Compare the two approaches you have implemented for evaluating the posterior. 

Compare implementation, runtime effects, and results e.g. burn in, convergence, mixing 

etc.  


