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Exercise 26 (Sequential importance sampling)
In population ecology, variations of the population sizes for a specific animal is measured
through time-series observations on the number of animals caught in traps. Assume y; is # 2 6
the nmumber of animals caught at time ¢ (the time-scale is typically in years).
A simple model in this case (defining =, to be the logarithm of the population size) is

21 ~N (1, 0?/(1 = a?))
xy ~N(p + alze—q — ;1],.72]
s ~Poisson(exp{z;})

The following data (which is also given on the web-page under the name sim_animal_trap. tzt)
are data simulated from the model above using g = 2, a = 0.9, = 0.5. The first row cor-

responds to the first 18 time-points and so on.

2 7T 8 4 7T 7T T 8 11 10 8 4 8 9 19 12 35 39
4 5 6 5 6 1 0 2 1 3 6 4 1 0 2 3 1 2
o 1 3 0 3 9 4 13 23 15 7 9 10 6 3 12 16 29
' 8 13 6 & 14 25 14 17 11 19 39 55 71 83 61 60 44
¢ T 20 53 65 68 56 48 26 23 20 1T 2 30 24 52

8
T 2 24 4
To20 13 13 18 19 5 4 10 9

| S ]

(a). Show that x; ~ N(u, o*/(1 — a?)) for all £. Discuss this property.

Solution to exercise 26. (a). Assume z;_; ~ N(u,o?/(1 — a”)). Then
Ty =+ alre—1 — p) + 5., 5~ N(D, {rz}

were £ is independent of x;_;. Then x; is a lineary combination of Gaussian variables,
making itself Ganssian. Further

Elr|=p+alE[zr;_, —p)+ Elg] = p

Var[z,] =¢12Vﬂf[ﬂ?t—1] + Var[e] = ﬂzéf +ot= %f 3
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(b). Write down the posterior (or conditional) distribution for .+ = (x1,....,77) given
vir = (y1, ... yr) (up to a proportionality constant)

23333

(b). We have

plerr)plyr|er)
plyrr)
.
xcp(x)p(un 1) [ ol )p(yelx:)

t=2

IJ{*Il:'r' yl:'f'} —

were each of the densities involved are specified through the given model.
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(e). Consider first a case where x,.4 is sampled from the prior, that is

t

g(x14) = qlz1) H galTs|Tai)

s=2

with g1(z1) = N(p,e*/(1 —a?)) and gs(xs|Ts_1) = N(p + a(xs_1 — p). o). Calculate
the importance weight in this case and show that it can be written recursively as

wel®e) = wer(Tre—1)ue(ye, 74

for properly defined functions wy (1) and ey, 7). (Here &1y = (11, ..., 1))

(). We have then that g(=x,,) = p(x,,) so that

@ .
“-"t{ml:t] = % o 3?[y1.:|$1:t] = F{Fl::—l|$1.:-1]P{?J:|-r:) x ?L':-l{ml::—ljﬁ{?ﬁh-':]
. 1:¢

We only need the weights up to a proportionality constant (since we will normalize
them anyway), showing the result with u(y1, z¢) = plye|ze).
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(d).

Implement a Sequential Monte Carlo algorithm based on the previously results and
tryv it out on the data given above. Use N = 10000 and resampling at each time-
point.

For each t, estimate #,; = E|r¢|g.| and also estimate the (0.025 and 0.975 gquantiles
in the distribution p(z;|y,;). Plot these estimates and quantiles in the same plot.

Also caleulate the effective sample size just before vou do resampling. Plot this as a
function of time.

Hint: Modify one of the R-scripts with Sequential Monte Carlo from the web-page.

. Assume our interest now is on Fyr = E[r:|y1.r]. that is the state estimates based on

all data. Explain how these estimates can be obtained from your Sequential Monte
Carlo algorithm. Plot these estimates (together with 0.025 and 0.975 quantiles in the
distribution p(z;|y,.r) on top on those you plotted in (d). Discuss similarities and
differences.

Also look at the number of unique values that the approximation of #y7 = E|z¢|yh.7]
is based on as a function of time.

Filtering

Smoothing

(). The importance weights we calculate is based on the whole sequence x,,. Therefore
the samples (x},, w}) are properly weighted with respect to p(z,.,|y,.(). When t = T,

we then obtain properly weighted samples from p(zi.7|y7).

When we perform resampling in the algorithm, note that we then need to resample

the whole sequence &, ;.

A problem when looking at these "smoothed” estimates is that for ¢ small, the num-
ber of unique samples is very low. Imn this case, were T is not too large and the
number of samples N is large enough, we do however still get reasonable estmates

and uncertainty measures even for x;.
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for{(i in 2:nT)

x[1,] = rnorm{N,mu+a* (x[i-1,]-mu),sigma)

w = widpois(y[i],exp(x[i,]))

w = w/sum{w)

N.eff[i] = N/sum{w~2)

#Resample

ind = sample(1l:N,N,replace=T,prob=w)

X[1:1,] = x[1:1,ind] # NB resample entire path
w= rep(1l/N,N)

x.hat[i,1] = mean(x[i,]) Filtering:
x.hat[1,2:3] = quantile(x[i,],c(0.025,0.975)) Computed
! on the fly
<

0 20 40 60 80 100
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X.5mo = matrix{nrow=nT,ncol=3)
N.unique = rep(NA,NT)
for(i in 1:nT)|

 x.smo[i,1] = mean(x[i,]) :}_
X.smol[1,2:3] = quaﬂt'i'le":{['l ],c(0.025,0.975)) SmOOthlng

cat ("unique”, i, length(unique( :{[1 ],,, WA Computed
N.uniquel[i] = 'Ierlgth (unique(x[i,])) after |OOp
" s finished
Z2 7 o
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EX 26

a) See solution, it is nice to know that the distribution is
stationary.

b) Solution is a bit brief, but see also 27a) to get the expression
for the likelihood

c) Too ease the understanding of the derivation, think of this as
a proof by induction, the lines here is the general step from t-1
tot. Use also the expression in 26b to derive the result

d) See code,

The comment in the solution, is good.
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Exercise 27 (Improvements of SIS)

We will in this exercise consider the same problem as the one in exercise 26, but now see if
we are able to imrpove the algorithm described there by using better proposal distributions.
The main idea is that the simple proposal used in exercise 206 do not take the data into
account at all, and that using the data should help us in simulating more reasonable r’s.

(a). Consider first a simple situation where r ~ N(u, %) and y ~ Poisson(exp{z}).

Write down the posterior distribution for x given y, p(x|y) (up to a proportionality
constant).

Solution to exercise 27. (a). We have

plz|y) oxcp(x)p(y|x)

xexp(— gz -

x exp(—gor(x? — 2px) + yr — exp(x))

.H) ) 2y exp(r]¥ E'-'*-l'-"f— exp{z))

10
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(b). Consider the logarithm of p(x|y), and assume we want to approximate this by a func-
tion of the form Const — -1; (= — ji)2. What kind of distribution does this correspond

PF 2
to?

Argue why a reasonable approximation for e is E}.'_]'H: #:r{ - 2}1:]":] + YT — E:{]'.il: jljl

et + e (x — p) + 1et(x — p)?

in this case. Use this approximation to derive i and &°.

(b). We have that this approximation corresponds to a Gaussian approximation to p(z|y).

From the prior we have that x should not be too far from p. The approximation of
exp(z) corresponds to a Taylor approximation for exp(u) around p. We then get

1

log p(z|y) =~Const — 25 (x* — 2ux) + yx — e — e(x — p) — 3e(x — p)?

252
=Const — (57 + 3€")2° + (-E»r +y — e + pet')x
L+ y— e+ pet
W o T T 2
=Const — (57 + z€"')|[z — £ 1 5o ]
1 _\2
=Const — F(J‘ - j1)*
with
2 1 o’
o = ,,
Srt+et 14 o2t
. H4y—e'+pet  p+o?(y— e + pet)
= =

L " o 2 .
< +e 1+ 0% 1
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(¢). Consider now the setting of exercise 26. Use the approximation above to suggest a
proposal distribution for x; that is approximately p(z:|ze_1, ).

Modify yvour algorithm to consider this proposal and run it on the given data.

(d). Use some measures to evaluate the performance of this modification compared to the
simpler algorithm used in exercise 26. Which algorithm do you prefer?

Make a proposal from a normal distribution using the approximation

.2 1 B a’

M T

Bty —e+pet  p+ai(y— e+ pet)
i = r:}_l b gt - 1 4 olem

12
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ExX 26 & 27 compare

: N.eff ex27
B _ L ':; ; e : g _fl.l Croh o fﬂ"-_ A . I"fl.'l ’ | ,fl. ! :'ﬁ’i‘I _-f.
By y .;l :I |I II ; . I|,I ol ; Vol II e I|I b .-I. |I . :-I | Ill: I I.I oy i I|
- Yot N, . ! 1 Y = i ; 1 i : :I ! II|.
+ — ! " u ¥ ! Lo AN [
@ it ] d / ) I )l y L
© | ! . W v 'I | ¢ | !. : N ¥ ,I/\/
o | I ‘..;! :I: I '.; Y
T - X \ '
2 [ I | [ I
0 20 40 60 80 100
L N.eff ex26
Example of approximation o
) The approximation
. (ex 27) is not
s allways better
f ) The main problem is the
: — \ approximation in the left tail.
— True distribution In this region Gauss approx. is
—— Gaussian approx too low which gives large weights

— Prior
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EXx 27 comments

a) Since y Is fixed, we can get rid of y!

b) Lots of computations here. In principle it Is
just a taylor expansion. The detalls are a bit
messy....

c) Itis allways a challenge to program complex
expressions, check the implementation
twice (or more).

d) The upside Is the effective number of
samples increases with more than 50% on
average

14
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Ex 29

Hammersley and Handscomb (1964) use the integration of ¢(x) = (e =1)/(e=1) on (0, 1)
as a test problem of variance reduction techniques. Achieve as large a variance reduction
as vou can compared to the naive Monte Carlo integration based on uniform sampling on
(0,1). (Hammersley and Handscomb achieved 4 million).

Exercise 29 (Variance reduction)

« This is for you to get a feeling with the different methods. So
not much to say here except that you should try it out.

* Note on the lambda for control variates:
«  We can compute this ratio o
using the input variables: e =N'ST h(X)
« That is compute the i=1
variance and covariance of:
h(X;) and c(Y;)
e 1= —cov(h(X),c(Y))/var(c(Y))

* Remember that this number was quite cov[ime. fuc]
robust towards small deviations = —

L)
|'_'.i|||_.|-,-_-_ _N : E I:l["lr.]

Li 1

var[fuc]

15



Exercise 32 (The effect of model selection)

The following example is adapted from Hjorth (1994). Consider the time series data given
in the table.

r o -5.00 -4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00 5.00
y 105 320 1.60 3.05 245 290 200 220 4.60 4.00 3.50

When vou plot them (do it), it will become clear that there is considerable uncertainty as
to whether there is an underlying consistent growth or not. Yet this issue is of crucial
importance for forecasting. If there is evidence of such a trend, we mav take the view that
it is likely to continue. Consider two competing models:

My: w=m+c, t=-n-n+1,..-101 ..n
M,: w=08+5t+s, t=-n-n+1..-101,..n

where the =z,;'s are independent errors. In a situation like this you might like to select one
of the models from the empirical evidence available and use it to forecast. The problem
addressed in this exercise is to what extent the model selection influence the bias and
variability of the forecast. The traditional way in statistics is to ignore the issue completely
and proceed with standard theory as if no data-driven selection had taken place at all. How
wrong is this exactly”

10 15 20 25 30 35 40 45

16
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As an example, consider a selection rule based on statistical significance. Let .5’1 be
the least squares estimate of 5. and s, its standard error. Proclaim M, if the hypothesis
H : 4y = 0 is rejected. This means that the procedure for predicting # = E(y,) is

— .o |8
é _ gi, ) if ':_‘:—: < tﬂ,l,n'g
Ho + Ghty, it "':+ = tasa
Here % is the mean of the observations, {.:';?n, ;’1] is the least squares estimates under M, s
is the estimated standard error of 3, and ¢, is the o percentile of the t-distribution with
2n — 1 degrees of freedom.

(a). For t = 5, estimate Ef and .fmf{é] as a function of 7; by running the following
simulation experiment. Let n = 5, £, Gaussian distributed with ¢® = var(s,) = 1,
make vour own choice of Gy and let 3, vary from, say —1.0 to 1.0 at step (.05
(or according to another scheme if you so prefer). Let o = 0.05. For each set
of parameters, simulate data, compute 6 and repeat the number of times you find
necessary. Register for each choice of 3; in how manyv of the simulations model 1 was
chosen.

(b). Plot a density plot of # for 5, = 0.0,0.2,0.3, 0.6.

(c). Repeat (a) for t; = 8.

(d). Compare results in (a) and (b) with those found by standard theory that ignores the
data-dependent model selection that took place.

17
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Ex 32 This task is just an example of how you can use simulations to
check the method you are using. In this case for model selection.
See code in R-file for implementation

| p(theta)
N & — beta=00
— — beta=02
4 — beta=03 to = 5
Bl T T T T o | T beta=0.6
1.0 0.5 0.0 0.5 1.0 - ©
mean theta g .
< |
© o
— Simulated
< - —— Constant N
—— Linear o
oo e T T T T T
o 0 2 4 6 8
o tO = 5 N=1000 Bandwidth = 0.06997
q‘ —
T T T T T p(theta)
-1.0 05 0.0 05 1.0
o — =
std theta -1 _ EZEZ:%S — 8
o - — beta=0.3 t() -
= 7] — simulated w | — beta=08
@ —— Constant = o
< 7| —— Linear % -
o | oo
~ |
o —
o | o
o [e]
— I I I 1 1
= | tO - 5 0 2 4 6 8

10 05 00 05 10 N=1000 Bandwidth = 0.06851

beta
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Comments

* The standard approach does not properly
take the uncertainty into account when it is
used for model selection.

« The true model is actually bi-modal.

p(theta)

1.2

08

04

00

N =1000 Bandwidth =0.06997

19
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6= change point
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Ex 6.4
« See the code for all three examples.

— Note that frequently we are in the situation that
we have many products of numbers. And then vi
divide by a product of some other numbers. In
these cases. It is always recommended to
working on the log-scale as this is more stable

i=2 f (Xilxi—1) exp {Z log(f (%;1x;—1)) — log(g(%;|x;—1))
i=2

7iﬂl=2 g(xi|x;—1) -

Often give Better
numerical problems
e.g. (0/0) or Nan/Nan

22
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#EXEercise 6.4

coal = read.table("v: /PROMAX,/PROMAX-0Odd,/16_UI0,/STK4051-9051/Lectures_odd/Ex8/coal.dat”, header=

coalinum = 1:112
par (mfrow=c(3,4))
set.seed(43534)

N = 100000

theta = sample(1:111,N,replace=T)
al = rgamma(N,shape=10,rate=10)
Tambdal = rgamma(N,shape=3,rate=al)
a2 = rgamma(N,shape=10,rate=10)
Tambda2 = rgamma(MN,shape=3,rate=a2)

W = rep(NA,N) Given theta

¥1 = coalidisasters[coal inum==thetal[i]]
%2 = coalidisasters[coal inum=thetal[il]
wli] = sum{dpois(x1l,lambdal[i],log=TRUE} )+ #Working on log-scale is more stable
sum(dpois(x2,Tambdaz[i], Tog=TRUE]}
w = exp(w-max(w))|
w o= w/sumiw)
neffa=1,/sum{w"2

This sets the level of the weights
such that the largest value before
normalization is 1

for(i in 1:N) . .
¢ / all variables are independent

23
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Ex 6.4
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In the posterior of aand b

— The marginal distributions
are similar

— Joint distribution of lambda
1 and 2 are different

The estimates are robust
towards the formulation of
prior distribution

In c. The method is a failure,
we need many more
samples to get this right

A too wide prior is
sometimes not helpful

EX 6'4 [1] "prior from (a)"

Estimate of theta 39.78553

credibility interval for theta: 36 46

Estimate of lambdal 3.105188

credibility interval for lambdal: 2.566814 3.742627
Estimate of lambda2 0.9649861

credibility interval for lambda2: 0.7483087 1.186242
[1] "Prior from {(b)"

Estimate of theta 40.08188

credibility interval for theta: 36 46

Estimate of Tambdal 3.106418

credibility interval for lambdal: 2.605762 3.703612
Estimate of lambda2 0.9308218

credibility interval for lambda2: 0.7120824 1.167468
[1] "prior from {c)"

Estimate of theta 38.99738

credibility interval for theta: 39 39

Estimate of Tambdal 2.677348

credibility interval for lambdal: 2.662579 2.662579
Estimate of lambda2 0.7272437

credibility interval for lambda2: 0.7268339 0.7268339

Effective number of sambples .

B6.77606 b: 191.9267 | C:

1.021563W

Important to know when
the method has failed!

25
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