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6.5. Prove the following results.

a. ;f h1 and h; are functions of m random variables U iy ..., Un, and if each function
1S monotone in each argument, then

covihi(Uy, ..., Un), ho(1 — Uy, ..., 1 — Un)} <0.

b. Let 2;(X) estimate a quantity of interest, «, and let 2,(Y) be constructed from
realizations Y, ..., Y, chosen to be antithetic to Xj, ..., X,. Assume that both
estimators are unbiased for u and are negatively correlated. Find a control variate
for (11, say Z, with mean zero, for which the control variate estimator fdcy =
(1(X) + AZ corresponds to the antithetic estimator based on {; and 4, when the
optimal A is used. Include your derivation of the optimal A.

w(X): E(u (X)) = w, Var(u, (X)) = o B
u; (Y): E (ul V) =p, Var(ull(X)) = 0122 Cov(py, Hz) = 0102p

e.g. X-Normal and Y = —X, Z = p1(X) — up(Y)

1w (X), u(¥Y) = (=X) then: g, =0, =0 E(Z) =0 3
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e Uur=uy +AZ (assume)o; =0y, =0

o Var(uy) =Var(uy) + 22Cov(uy, A Z) + A*Var(Z)
- Var(u,) = o?
- Var(Z) = 6% — 2po? + 0% = 20%(1 — p)
- Cov(uy,Z) = 0 —0*p = 0*(1 - p)

COU(‘U.l,Z) . 1

Var(Z) 2

1 1
= pc= 1 — 5 (1 — p2) = 5 (a + pt2)
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Exercise 33 (Importance resampling)

We shall in this exercise test the importance resampling algorithm on the same example as
in Exercise 22. The objective is now sampling of random variables rather than approximate
calculation of expectations. The simulated, importance resampling (SIR) algorithm, due
to Rubin, is in general form as follows. Suppose we want a sample from some awkward
distribution with density f. We assume that f can be computed up to a constant. Choose

a more convenient distribution with density g. Draw a sample X, ..., Xy from g. This is
the first step. The second start by computing
X
w; = fl:}f‘)‘ t=1,2. ... M,
g(Xs) M = total number of samples from g
and m = number of resampled
T
i — ! 5 ?::1.2.....}'...{.
q ¥, eees

Let ¥ be a random wvariable, defined conditionally of X, ..., X3y with distribution
P(Y = Xi| X1, ..., X)) = @, 1=1,2,.... M.

Draw m samples of Y. It can then be proved that as M — ~o, a sample of m independent
rariables from f appears in the limit.

Suppose f(zr) = ¢(x — a), where ¢(r) = (27) ' Zexp(—z?/2) is the standard normal
density. We shall test the efficiency of the SIR algorithm when sampling from g(z) = ¢(x).
Use m = 1010
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(a). First let a = 1. Vary M from 1000 and upwards. Tryv to find out how large M must
be. You must compare the mean and the variance of the final sample to their known
alues. ()-() plotting might be a good idea, and vou must also worry about how large
M must be in order to make the final sample an independent one. Try to think of a

way to measure dependence.

f(x) = o(x —a)  g(z) = ¢(x)

(b). Repeat (a) for a = 2,3, 4.
(¢). Formulate general conclusions.

(d). Why can we do without the normalization constant in f7
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Ex 33 importance sampling
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« The effective number of samples goes down
« The qq plot does not match the line

« The mean is too low
 The std is too low

d)

« The weigths are normalized prior to re-
sampling
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Dependency

Let ¥ be a random variable, defined conditionally of X, ..., Xy with distribution
PlY = Xi| X4, ... Xu) = g, = 1.2, ..., M.

Draw m samples of Y. It can then be proved that as M — oo, a sample of m independent
variables from f appears in the limit.

and vou must also worrv about how large
M must be in order to make the final sample an independent one. Try to think of a

wav to measure [li‘l}i‘llfl{‘lli'{‘.
 How would you know that the samples are not directly from ?
— Repeated values
* Number of repeats in a sample of size m: multinomial

m!

— ni npm
p(nl) rnM) — Nl q]_ qM

* Number of repeats of sample k (among m samples): binomial

Q< (1 — qp )™

m!

p(ng ) =

nk!(m—ny)!
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Exercise 35 (Sampling by Metropolis-Hastings)
Assume we are interested in simulating from the bivariate Gaussian distribution Ny (g, 32)
where

() =

This is of course a simple distribution for which we could perform simulation directly, but
we will use it to illustrate the Metropolis-Hastings method.

(a). Implement a random walk Metropolis-Hastings algorithm were one component is

changed at a time and the proposal distribution is Gaussian centered at the current
value.

(b). Run the algorithm 1000 iterations for a = 0. Use simulations from the standard
Gaussian distribution as starting points. Tune the standard deviations in the pro-
posal distributions so that the acceptance rate become approximately 0.3.

Estimate g and ¥ from your simulations. Use traceplots to see how many of the first
samples you should discard.

Make a plot of your simulations in the two-dimensional space, drawing a line between
each iteration.

Comment on the results.
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Ex 35
 Random Walk RXX) = 5000 x) — 00

« Use library mvtnorm
 B) We need more than 1000 I

but we are in the ball park 3 - sample(1:2,1)

y = x[i-1,] ) i
« C) We are not even close Y T end s 2. prop
with the 1000 samples. e
1.l =Y

samples to get good estimates, |forti in2:n
\XR = dmvnorm(y,mu,sigma)/dmvnorm(x[i-1,],mu,sigma)
We are trapped in the valley. ace = acc +1

if (runif(1)=Rr)
else

x[1,] = x[1-1,]

10
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Correlation = 0 in target distribution

1000

g00

600

400

200

-1 a

> show({colMeans (X))
[1] ©0.9082993 1.8454524

> show(var (x))

[.2]

-0.02540639

[,1]

1.22264549

[2,] -0.02540639 1.17549567

> par (mfrow=c(1,1))

1.]

c(-1,50)

c(-2,4),yTim=

Akl

> cat("Acceptance rate

> plot(X,type="1"

\n")

"yacc/(N-1),"

Acceptance rate= 0.3063063

11

X[ 1]
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Correlation = 0.99 in target distribution

1 L
"

3.5
|

15

05

0 200 400 600 800 1000

- show(colMeans (X))
[1] 1.404351 2.420031
> show{var (X))

[.1] [.2] o
[1,] 0.214458 0.1920640
[2,] D.192064 0.2116643
= par (mfrow=c(1,1)) - 1
= plot (%, type="1",xTim=c(-2,4) ,vTim=c({-1,5))
= cat("Acceptance rate=",acc/(N-1),"\n")
Acceptance rate= 0.3073073 ]
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Correlation = 0.99 In target distribution

1 - ﬁ“

}|| .y I+
Py b £ s
¥ oy

1*{. ..E |‘I

! 4

0 2000 4000 6000 8000 10000

= show({colMmeans (X))
[1] 1.404351 2.420031
= show(var (X))

[.1] [.2] "
[1,] 0.214458 0.1920640
[2,] 0.192084 0.2116643
= par {mfrow=c(1,1))
= plot{x,type="1",xTim=c(-2,4) ,y1im=c(-1,5))
- cat{"acceptance rate=",acc/(N-1),""n")
Acceptance rate= 0.3073073
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Exercise 36 (Sampling random variables by Metropolis)

Let X be a random variable with density f(x) = ch(z), where h is a computable expression.
We shall in this exercise discuss sampling of X through the Metropolis algorithm. The
aim is to demonstrate how the algorithm works, not to produce the most efficient sampling
scheme conceivable.

Let 21, £9, .. be a sequence of independently and identically distributed random variables.
You may choose any distribution symmetrical about the origin. Suggested choice: The
uniform over (—a.a), where a > () has to be adapted for each application. In addition, let
U, Us. ... be a sequence of uniforms over (0, 1). Consider the recursion

Xiy1 = Xy + 54y

where

hl:Xg + Ej,)

= 1. 1 <
fg 1_ lf Uf, e h{,X”}

and = () otherwise.

(a). Show that this recursion is a special case of the Metropolis algorithm. Explain, in
particular, the relevance of demanding =; to be a symmetric distribution.

14
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(). Show that this recursion is a special case of the Metropolis algorithm. Explain, in
particular, the relevance of demanding £; to be a symmetric distribution.

Solution to exercise 36. (a). We have that the proposal is X; = X, +=;. Since the proposal
distribution is symmetric, the Metropolis-Hastings ratio becomes
R — h(X7)  h(Xi+ &)
SRR T R T

If we generate U; ~ Uniform[0, 1], then we can accept if U; < min{l, R;} which is
equivalent to accept if U, < R,. This means that

X ifU; <R
)(1.4.1 ={ ¢ 1 t Rz

X; otherwise

=‘¥l + It-:—f

given the definition of /.

Making the distribution of £, to symmetric simplifies the MH-ratio in that the pro-
posal densities disappear.

15
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(b).

(e)-

().

- v ] = B

Suppose f is the standard normal density. Show that the ratio defining [; becomes
expl|—Xiss —D.ﬁEf]. 1; is more likely to become 1 if the signs of X; and =; are alternate.
Explain the meaning of this.

Will vou need all U; to run the algorithm?

In this case

_ exp(—0.5(X, +5)7)

R - — X5 — 0.557
: exp(—0.5X7) exp(—Xeee t)

Since we have a distribution centered at zero, we would like to mostly move towards
zero, which means making =; negative if X; is positive and vice verse.

. No. if R; > 1, vou do not need to generate [.

16



Ui0O s Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

(d). Implement m parallel runs of the algorithm when f is the standard normal. Use,
for example, m = 100. [Hint: Using the above description of the algorithm, you can
implement this in vectorized form in R.]

(e). Discuss ways of finding out how long you have to let the recursion last. Here are
some possibilities: Plot the m parallel runs in a joint plot against the iteration
number. Compute means and variances for the m simulations at iteration t. You
may plot against 7. You may also compare against the known mean and variance of
the standard normal.

traceplot
a4 = 3
o
acc = 0 =
for(i in 2:M) \
- eps = runifim,-a,a) o Wy
R = dnorm(x[i-1,]+eps) /dnorm(x[i-1,]) A,
I = as.numeric{runif(m)=R) \'VN\““
X[1,] = x[i-1,]+I"eps AONTNT S ST
acc = acc + sum(I) o g
} )
w
' I I I I I I
JUSt dO |t 0 2000 4000 8000 8000 10000

17
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(f). Discuss strategies for starting the iteration. Possibilities are start at a fixed point
and random start.

f) use multiple start points, (extreme values or random)

(g). Run your program. Start at some fixed points . Experiment with the choice of a.
Find out when you can stop the iteration. Is there an optimal region for a?

(h). Repeat (g) for various values of the starting point. Find out whether good choices for
a changes with the starting point. (The experiment is highly relevant. In complicated
situations it may be unknown where to start. ).

g,h) Do it

(7). It there scope for changing a during the iteration? Does that invalidate the algorithm?

1) Changing a you do not have detailed balance, since the reverse
probability is different This must be accounted for



	Slide 2: STK-4051/9051  Computational Statistics  Spring 2024 Comments to exercise 9 
	Slide 3
	Slide 4:   
	Slide 5
	Slide 6
	Slide 7: Ex 33 importance sampling
	Slide 8: Dependency
	Slide 9
	Slide 10: Ex 35
	Slide 11: Correlation = 0 in target distribution
	Slide 12: Correlation = 0.99 in target distribution
	Slide 13: Correlation = 0.99 in target distribution
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

