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UNIVERSITY OF OSLO 

Faculty of mathematics and natural sciences 

Exam in: STK4051/STK9051 –– Computational statistics  

Day of examination:  June 7th, 2024 

Examination hours: 15.00 – 19.00.  

This problem set consists of 7 pages 

Permitted aids:  None  

Note: the final sheet contains definitions useful formulas relevant in the problems. 

Problem 1 Monte Carlo integration 

In a risk evaluation we are interested in evaluating a high dimensional integral:  

                                                           𝜇ℎ = ∫ ℎ(𝑥)𝑓(𝑥) 𝑑𝑥

ℝ𝑑

                                                               (1) 

Where 𝑥 ∈  ℝ𝑑  , 𝑑 = 108.   Given {𝑥1, 𝑥2, … , 𝑥100} being 100 independent samples from 

𝑓(𝑥). We find:   

                             𝑚 =
1

100
∑ ℎ(𝑥𝑖)

100

𝑖=1

, and     𝑣 =
1

99 
∑(ℎ(𝑥𝑖) − 𝑚)2

100

𝑖=1

.                             (2) 

a) In terms of 𝑚 and 𝑣, what is the common approximation of 𝜇ℎ, and how large is the 

estimate of the uncertainty associated with this approximation?  State assumption(s) 

needed for the approximation and the uncertainty estimate to be valid?   How does the 

dimension of 𝑥 influence the results? Discuss how to determine whether the set of 100 

samples is sufficient. 

 

Problem 2 EM algorithm 

A soft sensor is used for continuously monitoring a process. In a period where the process is 

stationary, we collect the data, 𝑥1, 𝑥2, … , 𝑥𝑇, and want to investigate the statistical properties 

of these data. However the system is occasionally disturbed by external forces, which create 

erroneous readings. To analyze the situation for the soft sensor data we consider a 

contamination model, where the density for one data is given as: 
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                                                         𝑓(𝑥) = (1 − 𝑝)𝜙(𝑥|𝜇, 𝜎2) + 𝑝𝑓𝑐(𝑥)                                        (3)  

Where 𝑝 is the probability for contamination, 𝑓𝑐(𝑥) is the distribution of a contaminated signal, 

and the distribution of the uncontaminated signal is assumed to follow a normal distribution 

with parameters 𝜇, 𝜎2 denoted 𝜙(𝑥|𝜇, 𝜎2).  We will assume that the data collected are 

independent and identically distributed according to 𝑓(𝑥). Also define the unobserved 

quantities, 𝐶1, 𝐶2, … , 𝐶𝑇, as:  

                                   𝐶𝑖 = {
 1 𝑥𝑖  is contaminated
 0 otherwise

   ,                                                        (4) 

  Consider the case where 𝑓𝑐(𝑥) is known.  The unknown parameters are 𝜃 = (𝜇, 𝜎2, 𝑝) 

a) Give an expression for the likelihood of the data 𝑥1, 𝑥2, … , 𝑥𝑇, and argue that the 

likelihood of the complete data, i.e.  (𝑥𝑖, 𝐶𝑖), 𝑖 = 1, … , 𝑇 is given by: 

𝑙(𝑥, 𝐶|𝜃) =                                                                                                                                                   (5) 

∑ 𝐼(𝐶𝑖 = 0) ⋅
1

2
(2 ln(1 − 𝑝) − ln 2𝜋 − ln 𝜎2 −

(𝑥𝑖 − 𝜇)2

𝜎2 )

𝑇

𝑖=1

+ 𝐼(𝐶𝑖 = 1)(ln 𝑝 + ln 𝑓𝑐(𝑥𝑖))  

b) In the context of the EM algorithm what is the interpretation of 𝑄(𝜃|𝜃(𝑡)) function? 

Identify 𝑄(𝜃|𝜃(𝑡)) for the problem above and derive expressions which updates the parameter 

estimates in the EM algorithm. 

c) We want to quantify how much information is lost due to contamination. Specifically, 

we want to compare the uncertainty in the estimate of 𝜇 and 𝜎2 from contaminated and 

clean data. How can you use a parametric bootstrap to quantify this difference?    

  

Problem 3 

The stochastic gradient decent (SGD) is used to minimize a function 𝑔(𝑥).  The standard 

updating scheme has the form:  

                                                                    𝑥𝑡+1 = 𝑥𝑡 − 𝛼𝑡 ⋅ 𝑧𝑡.                                                          (6)   

Where 𝛼𝑡is the learning rate and 𝑧𝑡, is related to the gradient of 𝑔(𝑥).  We will analyze a 

simplified situation with a constant learning rate: 𝛼𝑡 = 𝛼,  𝑔(𝑥) =
1

2
(𝑥 − 𝑏)2, 𝑧𝑡 = ∇𝑔(𝑥𝑡) +

𝜀𝑡, with 𝜀𝑡 ∼ 𝑁(0,1). The figure below shows a convergence of SGD using two different 

learning rates, in both these runs a constant learning rate has been used. 
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a) Comment on the use of constant learning rate in SGD and how this influence 

convergence, relate your answer to Figure 1. Analyze the simplified setting above to 

quantify the impact of the constant learning rate in the example above, starting 

iterations in 𝑥0.  Hint: show first that: 

                             (𝑥𝑡+1 − 𝑏) = (1 − 𝛼)2(𝑥𝑡−1 − 𝑏) −   𝛼 ⋅ 𝜀′
𝑡, where                  (7) 

𝜀′
𝑡 = (1 − 𝛼)𝜀𝑡−1  +  𝜀𝑡,        

and generalize this to show the impact of  𝑥0 and 𝛼 on the convergence. 

Figure 1: Convergence of SGD. The figure shows the path 𝑥𝑡 , for 𝑡 = 1, … ,10000, for two 

SGD runs with different learning rates.  

 

Problem 4 Slice sampler 

We will in this exercise sample from the standard normal distribution by sampling from the 

uniform distribution corresponding to the area under the density ϕ(𝑥), this area is shown in 

gray in the Figure 1 and is defined 𝑎𝑠    𝐴 = {(𝑥, 𝑢)|𝑢 < 𝜙(𝑥) and 𝑢 > 0}. We introduce the 

additional random variable U which gives the vertical distance.  To sample from this 

distribution, we will use a MCMC approach.  

Figure 2: The area 𝐴. The area under the standard normal distribution is colored in in gray,   
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a)  State the principles of Gibbs sampling. Argue why the pseudocode below, will give 

     samples which are uniform in Area 𝐴. 

1) Set 𝑥 = 0 

2) Sample 𝑈 ~ Uniform(0, 𝑓(𝑥))   

3) Sample 𝑋 ∼  Uniform(−𝐿, 𝐿) with 𝐿 = √−2 ln 𝑢√2𝜋 

4) Repeat from 2 until 𝑁 iterations have been completed 

 

b) For functions which are more complex than the standard normal distribution, step 3 in 

the algorithm might be hard to generalize, an alternative is to replace step 3 with a 

Metropolis-Hastings update of 𝑋. Describe the Metropolis-Hastings algorithm. Give 

details for the update of 𝑥 if the proposal distribution is: Uniform(𝑥 − 𝑟, 𝑥 + 𝑟) with 

𝑟 being the reach of the proposal distribution, and 𝑥 being the current state of the chain.  

 

c) Which criteria need to be fulfilled for a MCMC algorithm to converge to a target 

distribution 𝑓(𝑥)?  Comment on the different criteria in relation to the sampling 

algorithm from b).   

 

d) Table 1 shows the acceptance rate, the effective sample size and the Gelman Rubin 

statistics for runs using different values of 𝑟. Figure 3 shows the sample path of  the 𝑥 

chain, and the cumsum diagnostics for the corresponding runs. Comment on the plots 

and the output, which run would you recommend, and which runs are acceptable? Give 

arguments for your choices. Is there any additional plots and summary statistics that 

you would suggest, that could increase the confidence in the results? 
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Table 1: Summary statistics for five cases. Case number, reach of the proposal distribution, 

effective sample size and Gelman-Rubin statistics.  

Case # 𝑟 𝑝acc 𝑁eff GR 

1 0.1 0.976 14.39 1.145 

2 0.2 0.962 37.75 1.018 

3 1 0.799 564.77 1.006 

4 10 0.165 1326.19 1.001 

5 100 0.016 90.77 1.009 

 

 

 

Figure 3: Trace plots and cumsum diagnostics. Each row corresponds to different values of 

the reach parameter in the proposal distribution.  In each row the left panel shows a sample 

trace of  𝑥, the right panel shows the corresponding cumsum diagnostics.  
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Problem 5  Simulated Annealing 
A person who wants to learn about Simulated annealing for discrete optimization, asks a 

large language model (LLM) the following question: “In the context of discrete optimization 

what role does the neighborhood play when using simulated annealing.” 

The replay is: “Certainly! In the context of discrete optimization using Simulated Annealing 

(SA), the neighborhood plays a crucial role. Let’s explore how: 

1. Objective Function and Solution Space: 

a) Discrete optimization deals with a finite set of possible solutions. 

b) The objective function evaluates the quality of a solution (e.g., minimizing tour length 

in the Traveling Salesman Problem). 

c) The solution space consists of all valid solutions. 

2. Local Search and Neighborhoods: 

a) SA iteratively explores neighboring solutions. 

b) The neighborhood defines which solutions are adjacent to the current one. 

c) For discrete problems, the neighborhood typically involves small changes (e.g., 

swapping elements in a permutation). 

3. Escape from Local Optima: 

a) Local optima are suboptimal solutions better than their immediate neighbors. 

b) By restricting the neighborhood, SA avoids getting stuck in local optima. 

c) SA occasionally accepts worse solutions (with a probability) to escape local traps. 

4. Exploration and Exploitation: 

a) The neighborhood size balances exploration and exploitation. 

b) A small neighborhood intensifies the search (exploitation). 

c) A larger neighborhood encourages exploration of distant solution regions. 

5. Computational Efficiency: 

a) Discrete optimization problems have large solution spaces. 

b) Limiting the neighborhood ensures computational efficiency. 

c) SA explores a subset of solutions. 

6. Choosing the Neighborhood: 

a) Problem-dependent choice. 

b) Common neighborhoods include 2-opt (swapping edges) for TSP or changing vertex 

colors in graph coloring. 

In summary, the neighborhood guides SA, allowing it to escape local optima while 

maintaining efficiency. By defining the neighborhood wisely, SA effectively explores the 

solution space.” 

a) Comment on this answer. What is correct (if anything)? What is misleading/wrong (if 

anything)?  What is missing (if anything)?  Give further details about how to use 

simulated annealing for discrete optimization. (give details about the full algorithm not 

only the neighborhood)  
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Useful formulas: 

Density of Gaussian/Normal distribution: 

𝜙(𝑥|𝜇, 𝜎2) =
1 

√2𝜋𝜎2
exp (−

1

2
(

𝑥 − 𝜇 

𝜎
)

2

) , 𝑥 ∈ ℝ    

 

Metropolis hastings ratio:  

𝑅(𝑥𝑝|𝑥) =
𝑓(𝑥𝑝)𝑔(𝑥|𝑥𝑝)

𝑓(𝑥)𝑔(𝑥𝑝|𝑥)
 

𝑓(𝑥) − target distribution. 

𝑔(𝑥𝑝|𝑥) − proposal distribution (for proposing 𝑥𝑝 when the current value is 𝑥). 

 


