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Exercise 1
Consider first the standard Weibull distribution with density function

f()(‘l'o) = (u:{}‘ ‘e—f{)‘

and cummulative distribution function

(8]

Fo(zg) =1—¢€e"" .

(a) Explain how the inversion method can be used to generate samples
from fj.

Exercise 1 (a) The inversion method is to generate X = F, '(U) where
U ~. Uniform[0, 1]. We have

e

l1—e"F =u

)

" = —log(l — u)

—

x =[—log(1 — u)]”“
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Consider now the general Weibull distribution with density function

¥ & a—1 —(x/8)=
'b(i!f) — E (73) e (x/5)

(b) Show that if zy has a standard Weibull density then # = [z has
a general Weibull density. Discuss how this result can be used to
generate random variables from the general Weibull distribution.

(b) We have z¢ = z// giving that

f(z) =fo(z/B)/B
=a(z/B)* e~ */P)" /8

e |
_(!.1‘ (.;‘(f"/"'{)"

pe
showing the result. We can then generate x by

z = B[—log(1 — u)]'/°
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Assume now we want to generate two dependent random variables that have
marginal distributions that are of the Weibull form. Direct specification of
dependence for the Weibull distribution can be difficult, but can be greatly
simplified through transformation (this is called a copula approach in the
literature).

(¢) Let ®() be the cummulative distribution function for the standard
Normal distribution. Show that if y ~ N (0, 1), then

z=Fy ' (®(y))

has a standard Weibull distribution.

Pr(X < z) =Pr(Fy Ho(Y)) < 2)
=Pr(®(Y) < Fo(z))
=Pr(Y < & (Fy(z))
=& (@' (Fo(x))) = Fo(x)
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(d) Assume now that you are able to simulate y = (y1, y2) from a bivariate
Normal distribution N(0,X) where 11 =322 =1and X190 =391 =
p. Explain how you can use this to simulate two dependent Weibull
distributed variables.

(d) We can then put
zj = Fy ' (®(y;)).

Since (y1,y2) are dependent, so will (z,z2) be.

As transformations are monotone, the rank correlation will be preserved

Normal Uniform Weibull(1,1)
=exponential
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N=500

nl=rnorm(N,0,1)
n2=rnorm(N,0,1)

rho=0.9
x1=n1
x2=x1*rho+sqrt(1-rho”2)*n2

ul=pnorm(x1)
u2=pnorm(x2)

el =-log(ul)
e2 =-log(u2)

hist(el)
plot(x1,x2)

plot(ul,u2)
plot(el,e2)
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Exercise 2
Consider the following algorithm, which we will call Barker’s algorithm (after

Barker (1965) who suggested it):
Given the current state z(t):

e Draw y from the proposal distribution K (), y) (or transition kernel).

e Draw U ~ Uniform|0, 1] and update

L) _ Y if U < rp(z),y)
xY)  otherwise

where

e TWK(y.@)
r8(@,Y) = m(2)K(>,y) + m(y)K(y.x)

We will assume that K(=x,y) > 0 for all z, y.
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m(y)K(y. )
m(2)K(2,9)+7(y) K(y.2)

re(x,y) =

We will assume that K(x,y) > 0 for all z, y.

(a) Show that {@x;} is a Markov chain with invariant distribution 7 (x).

Exercise 2 (a) We will show that the Markov chain satisfies the detailed
balance criterion. We have for & # y

m(xz)P(z,y) =n(z)K(z,y)rp(z, y)

B ) m(y)K(y. z)
~mE) K.Y R e, v) F a2
m(z)K(z,y)

)

m(x)K(z,y) + m(y)K(y.x)

=7n(y)K(y. )

=7(y)P(y, |z).
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(b) Explain how we can used the simulations {z'"} to estimate E h =
[, h(x)m(x)de.

What kind of properties of the Markov chain will influence on the
precision of such an estimate?

(b) If we simulate {@'} according to the described Markov chain, we have
from general theory that we can estimate p = Er[h(x)| by

1 D+ L
,1=Zt_§ h(z')
=D+1

where we discard the first D samples in order to minimized the bias
due to that it can take some time until the samples are close enough
to the target distribution. We further have

1 D+ L D+L-1 D+L
Var|/i] —LZ[ Y Varh(z')]+2 Y ) Covl[h(z®),h(z")]
t=D+1 s=D+1 t=s+1
D+L-1
h [l + 2 Z (t —s)
t=D+1

showing the dependence on the correlation structure.
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Assume A, and A, are two transition-kernels for Markov chains with the

same stationary distribution 7. Let v; be the variance of the estimate on
Eh based on simulations using A; and ve the variance of the estimate of
E_ h using As.

Assume Ay (x,y) > As(ax,y) for all y # . One can then show that v; < v
(this you do not have to prove).

(c) Let

iy K(y, =) }
m(x)K(z,y))

Show that ry(x,y) = rp(x,y) for all z, y.

ry(@®,y) = min { 1,

(¢c) Assume 7(y)K(y,x) > w(x)K(z,y). Then ry(z,y) =1 > rp(z,y).
Assume now 7(y)K(y,x) < n(x)K(x,y). Then

r
Ty K(y.x) m(y)K(y, ®)
m(@)K(z,y) ~ n(z)K(z,y) +7(y)K(y, =

showing the first result.

ru(z,y) = = rv(z,y)

11
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Show that rys(x,y) = rp(ex,y) for all z, y.
Use this to argue that the Metropolis-Hastings algorithm is more effi-
cient than Barker’s algorithm.

Based on the differences between these two algorithms, do you think
this is a reasonable result?

Since we have proven that:  7a(@,y) = rp(z,y) for all z, y.

We have proven: o Py(x,y) > Pg(z,y) for all x #y

TFY The result then apply:

P*'”{a:' y) — I\‘ (ﬂ: y) r ,-U(mn y} Assume A and As are two transition-kernels for Markov chains with the
same stationary distribution 7. Let vy be the variance of the estimate on

PH(.T-. y) — I‘\.—(ﬂ:. y)’B{m y) E,r;:. based :11 simulations using A; and vy the variance of the estimate of
E_ h using As.

Assume Aj(x,y) > Az(x,y) for all y # 2. One can then show that v; < vs
(this you do not have to prove).

Both algorithms are using the same proposals and both have the same
invariant distribution. Since M-H give higher acceptance probabilities,
the changes should happen more frequent and thereby give a more
efficient algorithm.

12
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Exercise 4
Consider the following state space model:

Ty =0Ti_1 + &4 state equation

yr ~Poisson(exp{l + z;}) observation equat

where xg and £q,&9, ... are independent and standard normal distributed.
We want to estimate ¢ based on observations y;.....yr. We will do this in
a Bayesian way and assume we have a prior distribution N (0,05) on ¢.

A possible way to estimate ¢ in such situations is to extend the state model
to the following model:

Oy =041 state equation 1
Tt =QPp-1Tt-1 + €t state equation 2
yr ~Poisson(exp{l + z:}) observation equation

where ¢g ~ N(0, 03,). Non-linear filters try to compute the posterior distri-
bution for (¢¢, ;) based on ¥y, ..., y;. Since ¢ = ¢p, the posterior distribution
for (¢, 1) based on yy, ..., yr gives us the posterior distribution for ¢ given
Y1, - YT

Simulation methods for non-linear filters can therefore be used on the bi-
variate state vector (¢y, x¢).

13
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(a) Explain the general principles behind sequential importance sampling

(SIS).

Discuss why resampling in general is important in connection to SIS
algorithms.

Exercise 4 (a) The general idea is to simulate (¢, x;....,z;) by a proposal
distribution g4(¢)q1(1|¢) [T—2 ¢i(zi|xi—1, ) and then use the impor-
tance sampling technique to get importance weights

P(¢- L1y eeey xtlyl, vy yt)
q(o,x1, ..., 7¢)
0(p((,b)p(a:l, s Zt|O)P(W1, ---, Ye| 21,5 -0 Tty D)
q(d,xq, ..., ¢)
p(9)p(x1|9) [Tizs p(xi|xi-1,0) [Tic) p (il %)
q6(9)q1(x19) [Tiz2 gi(zil2i-1, ¢)
p(xe|ze—1, @)p(ye|xe)
q(z¢|z-1, 9)

wy =

XWy

showing that the weights can be calculated recursively.

Due to that the variance of the weights will increase with ¢, a degen-
eracy problem occur. This can be fixed by performing resampling at
each step (or when the efficient sample size is small).
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(b) Simulations from the posterior distribution for (¢, z;) based on y1, ..., y¢
was performed through the following SIS algorithm:
e Draw i‘{ from J\«'(g‘){_ll{_l. l)forj=1,....M
e Put ¢} =¢]_, for j=1,..,M.
e Calculate the weights uv{ = p(yslzs = i‘,’) for j =1,..., M and the

. ’
‘mali’ reichts g — J
normalized weights ¢/ = w{ /> wi .

e Draw (2}, #)), ..., (&M, M) from {(&},4)), ... (M, (,;EV)} with re-

placement and with probabilities ¢}, ..., q;" ;

2

1

psi.sim

The figure below shows simulations of ¢; for ¢ = 1,...,T based on a
SIS algorithm with resampling. Each curve corresponds to a sequence
of simulated ¢s, ¢1, ...,¢7. The different simulations ¢7,j = 1,.... M

-2 -1 0

-3

for a fixed t are (approximately) from the posterior distribution for ¢;
given yi,...,y. Here T'= 30 and M = 50.

Why do the number of different values of the simulated ¢’s decrease
with t7 What kind of problems do this make in the estimation of ¢?

(b) The resampling step will result in that fewer and fewer unique values of
¢ will occur, in the end only one. This causes problems in estimation
of ¢ due to that we then effectively only have one sample for describing
the whole distribution of ¢.

15
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(¢) A more efficient algorithm can be obtained by integrating out the
unknown ¢ when simulating the z-process.

One can show (you do not have to do this) that
p(B|Z1, .oy e, Y14 v, Ye) = N (D, 07)

where

‘2zt . 2
1402t o222 )" YT 1402%E ,a2
¢ Lai=2 11 ¢ Lsi=2"1—-1

Use this to explain how you can simulate from the distribution
P(Zt41|T1, e Tty Y1y ooes Yt)-

(¢) Assume you have a properly weighted sample {(z}, S}, w}),i = 1,..., M’}
with respect to p(zy, Silyy, ..., ;) where S} are the sufficient statistics
needed for calculating the distribution p(¢|zi,...,z}, y1,..., ). The
idea is then to update to a properly weighted sample {(z}, .S} ;. w}),i =

., M} with respect to p(xi11, Sis1|y1s o Yitr1)-

We have
Simulation from p(x;, S¢|I§_1 y Sf_l)
p(ze, St|ze—1, St—1)p(xt-1, St—1|Y1:6—1)dxe-1dS; 1

-1

P(et, Stlyre-1) = (possible proposal function)

(a) Simulate 0% ~ p(8lzi_y, Si_) = p(6]Si_1).
(b) Simulate =} ~ p(z¢|zi_,,8").

w;_ 1P 1t~5t|1t 1 S: 1)

||Mz\.

p(ze, Stlyr) ~c - Z 'wf_lp(l't, St|Ié_1s Sti_l)P(‘yd-Tt)- (c) Update sufficient statistics

=1
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Consider now the SIS algorithm (with resampling) which at time ¢
goes through the following steps:

e Draw :T:f from p(x¢|lz1,....2e1, 91, ocnyp—1) for j=1,.... M.
e Calculate the weights w? = p(y:|z: = #7) for j = 1,..., M and the
normalized weights ¢/ = w/ 2 w! .

e Draw 2}, ...,z from {&}, ..., #M} with replacement and the prob-

abilities ¢}, ..., .

o Draw ¢ ~ p(o|z], ....z], y1, ., )

The figure below shows simulations of ¢; based on this algorithm.

Which advantages does this algorithm have compared to the one given

in (b)?

psi.sim

-1 0 1 2

-3 -2

In order to estimate the posterior expectation of ¢, is it nceessary to
simulate the ¢’s at all? If not, explain how inferense on ¢ then can be

performed. What is this technique called?

12

3210

(d) By turning the simulation from the static parameter ¢ to the random
variable S;, we reduce the degeneracy problem and obtain a more
reliable description of the distribution for z; and ¢ as well.

In order to estimate ¢, we can use Rao-Blackwellization in that

M
1 ]
E(plyr, -, yt) = E[E[S|S]|y1, - 4] = MZ: E[¢|S] ]
=1

where we now have explicit solutions for the inner expectation.

17
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Exercise 5 (Weight loss programme)
Venables and Ripley [1999] contain a dataset (originally from Dr. T Davies)

describing weights (y;) of obese patients after different number of days (2;)
200 T T T T

ko
180 ¥y .
* %

160 " *r
i

*
*
-*-%K**

140 * 5 .

T * ok

120 %

e # ey |

100 | | | |
0 50 100 150 200 250

Figure 1: Weight loss from an obese patient

since start of a weight reduction programme. The data is plotted in Figure 1.
Venables and Ripley [1999] suggests the following model for this dataset:
, Y — B iid - :
yi = o + [Pre Pawi +e&5, g€~ N (O.Uz)
for 2 = 1.....n. Here 6 = (,ff?o,ﬁl,ﬁg,02) is a set of parameters that needs
to be estimated. Estimation will be based on maximum likelihood, i.e.
maximizing

1 & _
= —— |Oo 0'2 - E e — [ [ Bazi\2

18
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Here 8 = (B, 31, 32, 02) is a set of parameters that needs
to be estimated. Estimation will be based on maximum likelihood, i.e.
maximizing

oon. 1 Bozs
[(0) = —Elog(r_r ) — Y= Z yi — o — [freP2ei)?

(a) Show that maximisation with respect to 8 = (30, 31, 32) is equivalent
to minimizing

n

RSS(8) =) (yi — fo — Pre”727)2.

=1

Exercise 5 (Weight loss programme) (a) Since 3 is only involved in the last

term, we get this result directly,

When you are asked to show something use:
 Arguments

« Computations

If you are not able to do so you might get points if you
can provide insight to the problem

19
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=

[(0) = ——log

9 ?j?; — C?U — 51 e—ﬁgmi)Z

What is the optimal value for 0% given 37

We have that

ol(6 oy

Putting this to zero, we obtain

5'2 b ; Z(yz — .-BU' — IJ'S):[E_"IQQT"E)Q.
Li=1

One can also show that the second derivative becomes positive, show-
ing that it is a maximum point. This shows that for given 8 we have

an explicit solution for 62.

20
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(b) Describe Newton’s method and perform the calculations needed to
implement this algorithm.

(b) Assume one wants to minimize g(#). Newton’s method:
9t—|—1 — 0 — [Q”(Qt)]_lg’(ﬂt)_

In this case @ = B and g(B) = .7, (y; — Bo — Pre 72%:)2. We have

g'(8").

99(8) e
5 = 22 — fo — fre” ")

ag( o b oa —Paxiy —Box;
95 QZ — Bo — Pre Je

9, i o |

ggj) =9 ;;(y3 — By — 515_"323:?:)516_&”"3:1-

21
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(b) Describe Newton’s method and perform the calculations needed to
implement this algorithm.

Qt_l_l 0 — [Q”(Qt)]_lgrr(gtj*

gﬂ(gt) 89(/3] n

2
J}_g(x’?’ ) o
8}':;{]63'5][]
P9(8) %
. —9 —Bax;
8dﬂ@;j]1 ;

22
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(b) Describe Newton’s method and perform the calculations needed to

implement this algorithm.

g"(6")

52

o'tt =0 —[¢g"(6")] g (0").

ag Y —Bomiy  — Bomp
- — Pre” ) e
@»51 Z )

89(3) —9 Z(y.i — Bo — Pre %) Bre P2,
02 =

851@;31
32

8d13;j}2
9g(B)

83 2 e, IJ'E}Q

—9 Z —289x;

i=1

=2 Z — (o — 201€e” 2z )E_'ﬁgmiﬂji
i=1

T

— 2 Z(Iﬁ L ﬁ{] L ,516_'82:}:0}3}1 ?Emtﬂj _I_ Z Hjl 2323:13;2

'1:1 '1—1
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For reference, the following results where obtained using Newton's For the Fisher Scoring
method in this case. Note however that for small perturbations of .

s atarting valve P _ algorithm, we replace
these starting values, numerical problems occured. _

Iteration s A5 ¥ B¢) (02)® ) the matrix of second
90.000  95.000  0.0050000 209.386 -143.259 derivatives with their
84.339 100.551 0.0051991 0.72866  -69.670
76.350 107.131 0.0044158 1.47380 -78.827

(an)
(-

| expectation. This

)0
)0
)0
76.801 106.841 0.0045417 0.65652 -68.314 guarantees that the
81664 102.393  0.0048807  0.60634  -67.281 matrix becomes positive
81.399 102.662 0.0048866 0.56958 -66.468 _ o
81.374 102.684 0.0048844 0.56958  -66.468 (semi-)definite

81.374 102.684 0.0048844 0.56958 -66.468 Since this is the

N I G SO UR TR

(¢) A run with Fisher’s scoring algorithm with the same starting values variance of the

as above gave the following results: SCOI"ing function.
Iteration s .,BE(,S) .ﬁis) ,ﬁés) (a2)®) 1B, (62)9)
0 90.000  95.00 0.0050000 209.39 -143.259
1 81.400 102.66 0.0048760 0.5758 -66.609
2 81.374 102.68 0.0048844 0.5696 ~66.468 Which in turn stabilize
3 81.374 102.68 0.0048844  0.5696 -66.468 .
4 81.374 102.68 0.0048844 0.5696 -66.468 the SOIUtIOﬂ.

Give a general description of this algorithm and discuss its benefits
compared to Newton’s method

24
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(d) Show that given 3, the maximum values for all the other parameters
can be found analytically.

What benefits do this result have with respect to optimisation?

mn

RSS(B) = (yi — fo — BreP2m)?.
1=1

(d) For given 32, we can define z; = e~ 2% and we then have an ordinary
linear regression model with z; as explanatory variable. We can then
use the general results from linear regression.

This means that we can reduce the optimization down to just one
variable, simplifying the problem significantly.

25
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Exercise 6
Consider a mixture model where

Pr(C; = k) =mg,

Af{i e*Ak_
Pr(y = y|Ci = k) ="k —— o
Al

Our aim is to obtain maximum likelihood estimates of 8 = {(7g, Ag), k

1...., K} based on observations y = (Y1, ..., Yn )

The histogram below shows a simulated dataset with K = 10 classes and

n = 10000.

Histogram of y K
_ o : Pr(Y; = y) = Y_ Pr(C; = k) Pr(Y; = y|Ci = k)
) 1Al T LT K /\ii(___,\ﬂ
> 2 L = T |
» | i Y
8 K K Es(_—,\k
N 1O) = 11> "
I I ] i=1 k= .h'

(a) Write down the likelihood function based on the observations .

60

26
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A call to a general optimiser using the Nelder-Mead algorithm gave
the following estimates:
k 1 2 3 4 5 6 7 8 9 10
. 0.107 0.000 0.146 0.164 0.049 0.126 0.004 0.202 0.183 0.020
:\k 518 826 11.32 19.26 27.75 28.01 28.27 37.17 47.85 48.83
with a log-likelihood value equal to 40573.98, obtained after 502 func-
tion calls.

Describe short the main features of the Nelder-Mead algorithm.

Nelder-Mead: With @ p-dimensional, we start with p + 1 values of
6. These p + 1 values are dynamically altered by changing the worst
value with a better one, defined through a search line going through
the worst value and the average of the other values. The worst value is
then updated to a better (best?) value along this line. The algorithm
is performing these steps iteratively until some stopping criterion is
achieved. This method does not need the derivatives.
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(b) An alternative to a direct optimiser is to use the KM algorithm where
we treat {¢;} as missing variables. Derive the updating equations for
the parameters involved in this case.

The plot below shows the log-likelihood values at different iterations
based on the EM algorithm.

Further, the final estimates obtained in this case is given in the table
below, obtained after 346 iterations with a final log-likelihood value of
40573.98.

Explain the result in the figure with respect to properties of the EM

algorithm.
k: 1 2 3 4 5 6 7 8 10
7 0.110  0.136  0.097 0.107 0.103 0.025 0.149 0.074 0.119 0.081
N 524 1131 1756 2230 27.80 31.13 35.04 40.76  46.68 49.32

-40700

Log-likelihood

-40900
1

-41100

0 50 100 150 200 250 300 350

lterations

28
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(b) We have that the complete likelihood is given by

= [logme, + yilog A, — A, — log ys!]

1=1
n K

=> " I(c; = k)[log e + yi log A, — A — log ]
1i=1 k=1

Q(0.6") =E[(:(0)|6"

n K

=> ") Pr(C; = k|6")[log T, + yi log A — \ie — log y!]
1i—=1 I—1

k=1

29
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Pr(C; = k|0")[log 7w + yilog Ay — A, — logys!] +6(> m — 1)
i k=1

M:\-:

>3

-?.:1 I("

3, n 1
——Qaar(0.0Y) = Pr(C; = k|0 — —§
g Qlaar (0.6 =3 Pr(C = k")

gving

mh =61 ZP1 = k|6
1=1

1
= Z Pr(C; = k|6")
iz

30
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/,

1

ZZPI 2 = k|0 [log 7y, + yilog A, — A, — logy;!] + 6 Z@—l

i=1 b—

Yi :
Qlagr 9 Qt ZPI ‘1 k|9t)[_ o H

giving
)\t+1 _ Pr(C = k[0Y)y;
Zz 1 Pr(Ci = k|67)
where the probabilities Pr(C; = k|#') are based on the parameter

values from the previous iteration.

31
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Explain the result in the figure with respect to properties of the EM

algorithm.
k 1 2 3 4 5 6 7 8 9 10
. 0.110 0.136 0.097 0.107 0.103 0.025 0.149 0.074 0.119 0.081
:\k 524 11.31 17.56 2230 27.80 31.13 35.04 40.76 46.68 49.32

-40700

Log-likelihood

-40900
|

-41100

I I I T T I I I
0 50 100 150 200 250 300 350

lterations

The EM-algorithm has the property that the (log-)likelihood values
will never decrease from one iteration to another, which the plot
demonstrate.
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(c) Comparing the results from the two algorithms, the estimates appears
to be quite different. However, the log-likelihood values are quite sim-
ilar. Try to give an explanation on this.

A call to a general optimiser using the Nelder-Mead algorithm gave
the following estimates:

k 1 2 3 4 5 6 7 8 0 10 log-likelihood
. 0107 0.000 0146 0.164 0.049 0126 0.004 0.202 0.183 0.020 40573 .98

M 508 826 1132 1026 2775 28.01 28.27 3717 47.85 48.83 ’

J 1 2 3 4 5 6 7 8 9 10

7. 0110 0.136 0.097 0.107 0.103 0.025 0.140 0.074 0.119 0.081 log-likelihood
Mo 524 1131 17.56 22.30 27.80 3113 3504 4076 46.68 49.32 40573.98.

Histogram of y
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Exercise 7
Cortez et al. [2009] considers a dataset of red wine quality of the Portuguese
"Vinho Verde” wine. The following variables are measured:
Input variables (based on physicochemical tests): a - fixed acidity, o -
volatile acidity, a3, - citric acid, x4 - residual sugar, x5 - chlorides, x¢ - free
sulfur dioxide, x7 - total sulfur dioxide, xg - density, 29 - pH, 219 - sulphates,
211 - alcohol.
Output variable (based on sensory data): y - quality (score between 0 and
10).
A simple model for the output quality is

P
v =Bo+ Y Bjxij + &
j=1

with p =11 and 7 = 1,...,n = 1599. This model is including all the variables
as linear terms. In practice however, we would like to perform some kind of

model selection. One way ot describing possible submodels is
P
vi = Bo+ > viBjxij + =i
Jj=1

where v; = 1if the covariate is to be included into the model and 0 otherwise.
Define v = (71, ...,7p). Our aim will be to minimise .J(vy) where

p
J(y) = =2 L(y) + 2% (2+ ) _v))
j=1

and ((v) is the log-likelihood value obtained by selecting the optimal 3
values for the given model.
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(a) The figure below shows the results from two different versions of sim-
ulated annealing, the first changing one ~; at a time, the second also
allowing for two changes at a time. For the first version, one compo-
nent is selected at random at each iteration. For the second version,
first a random selection on whether to change one or two variables is
made, thereafter the components to change are selected at random.

Give a short description of the simulated annealing algorithm. Discuss
in particular the use of neighborhoods and relate that to the figure be-
low.

Exercise 7 (a) In simulated annealing, first a neighborhood structure is
chosen defining possible changes at each iteration. Thereafter a possi-
ble proposal 4* is drawn from the neighborhood of the current value
~t. The proposal is then accepted with a probability

min[1, exp{[J (") = J(v*)]/7:}

where 7 is the temperature at iteration ¢. In order to guarantee
convergence to the global maximum 73 chould convergence to zero
as ¢/log(1l + t) where ¢ is the depth (the smalles increase needed to
escape from a local minimum). In practice this leads to much too slow
convergence and a faster decrease is typically used.
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Give a short description of the simulated annealing algorithm. Discuss
in particular the use of neighborhoods and relate that to the figure be-

low.
2 T
2 l}l —— 1-Neigh
- —— 2-Neigh
o | |
= b
o)
= 8. ”i
5 2 u
ig*
o
oo
o
o« L
(=]
w
(=]
™ T T T T T T
0 1000 2000 3000 4000 5000

Iteration

* In the figure a too fast cooling schedule has
been used, the 1-Neigh is stuck before the
2-Neigh since this has less flexebility
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(b) Assume that the temperature is selected to be very large. What kind
of algorithm does then appear?

On the other hand, if the temperature is kept fixed, what kind of
algorithm do we then obtain?

min[1, exp{[J(v") — J(v")]/7:}

(b) If the temperature is chosen to be very large, just random changes are
made, not using .J(7) at all.

If a a very low temperature is chosen, changes are only made if a better
proposal is found. corresponding to a greedy algorithm.

If the temperature is fixed, we obtain a Metropolis-Hastings algorithm
with J(~)/7 as target distribution. For 7 = 1 this then corresponds
to a Bavesian posterior with the penalty term serving as a prior.
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