
Solution sketch to problems of 2024 exam 
 

Problem 1: Monte Carlo 
Approximation:   𝜇ℎ ≈ 𝑚 , since we have 𝐸(𝑚) = 𝜇ℎ  

Estimate for uncertainty:   Std(𝑚) ≈
√𝑣

10
,  or  Var(𝑚) ≈

𝑣

100
 

For this to be valid we need to have Var𝑓(ℎ(𝑋)) < ∞ , or 𝐸𝑓 (ℎ(𝑋)2) < ∞, where subscript 

𝑓 indicate that the quantities are computed under the distribution of 𝑓.  

The dimension of 𝑥 does not impact the result directly, but off course if the dimension of 𝑥 is 

high this might influence the variance: Var𝑓(ℎ(𝑋)).  

To decide whether the number is sufficient we need to know which accuracy that is required in 

the answer. The standard deviation above can be used to get a handle on this. If we increase the 

number of samples the error will go as:   StdB(𝑚) =
√𝑣

√𝐵
 . If noting else is said we could use a 

rule of the thumb that the standard deviation due to Monte Carlo variability should be a fraction 

of the standard deviation of ℎ(𝑋), e.g. 5% => 400 samples 1% => 10 000 samples.   

 

Problem 2:  EM-Algorithm 
Utilizing that the data are independent, we get:  

                                       𝐿(𝜃) = ∏(1 − 𝑝)𝜙(𝑥𝑖|𝜇, 𝜎2) + 𝑝𝑓𝑐(𝑥𝑖)

𝑇

𝑖=1

                                                (1) 

For a single observation we have: 

𝑝(𝑥𝑖|𝐶𝑖 = 0) = 𝜙(𝑥𝑖|𝜇, 𝜎2), 𝑝(𝑥𝑖|𝐶𝑖 = 1) = 𝑓𝑐(𝑥𝑖) 

𝑝(𝑥𝑖, 𝐶𝑖) = 𝑝(𝐶𝑖 = 𝑐)𝑝(𝑥𝑖|𝐶𝑖 = 𝑐) = ∏[𝑝(𝐶𝑖 = 𝑐)𝑝(𝑥𝑖|𝐶𝑖 = 𝑐)]𝐼(𝐶𝑖=𝑐)

1

𝑐=0

 

Utilizing that 𝑝(𝐶𝑖 = 1) = 𝑝 and 𝑝(𝐶𝑖 = 0) = (1 − 𝑝), and that all data are independent we 

find that:  

𝑝(𝑥, 𝐶|𝜃) = ∏[(1 − 𝑝)𝜙(𝑥𝑖|𝜇, 𝜎2)]𝐼(𝐶𝑖=0)[𝑝𝑓𝑐(𝑥𝑖)]𝐼(𝐶𝑖=1) 

𝑇

𝑖=1

 

  



Taking the logarithm and inserting the normal density we get: 

𝑙(𝑥, 𝐶|𝜃) = 

∑ 𝐼(𝐶𝑖 = 0) ⋅
1

2
(2ln(1 − 𝑝) − ln 2𝜋 − ln 𝜎2 −

(𝑥𝑖 − 𝜇)2

𝜎2
)

𝑇

𝑖=1

+ 𝐼(𝐶𝑖 = 1)(ln 𝑝 + ln 𝑓𝑐(𝑥𝑖) ) 

b)  The 𝑄(𝜃|𝜃(𝑡)) function is the expectation of the log-likelihood for the complete data, given 

the current estimate of the parameters and the observed data. 

𝑄(𝜃|𝜃(𝑡)) = 𝐸(𝑙(𝑥, 𝐶|𝜃)|𝑥, 𝜃(𝑡)) 

In our situation we have that the only random part in the likelihood of the complete data is the 

indicator functions, which turn into probabilities for the indicator event: 

𝑄(𝜃|𝜃(𝑡)) 

= ∑ 𝑃(𝐶𝑖 = 0|𝑥𝑖, 𝜃(𝑡)) ⋅
1

2
(2 ln(1 − 𝑝) − ln 𝜙(𝑥𝑖|𝜇, 𝜎2))

𝑇

𝑖=1

+ 𝑃(𝐶𝑖 = 1|𝑥𝑖, 𝜃(𝑡)) [ln p +  ln 𝑓𝑐(𝑥𝑖)]  

= ∑ 𝑃(𝐶𝑖 = 0|𝑥𝑖, 𝜃(𝑡)) ⋅
1

2
(2 ln(1 − 𝑝) − ln 2𝜋 − ln 𝜎2 −

(𝑥𝑖 − 𝜇)2

𝜎2
)

𝑇

𝑖=1

+ 𝑃(𝐶𝑖 = 1|𝑥𝑖, 𝜃(𝑡)) [ln p +  ln 𝑓𝑐(𝑥𝑖)]  

Where:  

𝑃(𝐶𝑖 = 1|𝑥𝑖 , 𝜃(𝑡)) =
𝑃(𝐶𝑖 = 1, 𝑥𝑖|𝜃

(𝑡))

𝑝(𝑥𝑖|𝜃(𝑡))
=

𝑝𝑓𝑐(𝑥𝑖)

(1 − 𝑝)𝜙(𝑥𝑖|𝜇, 𝜎2) + 𝑝𝑓𝑐(𝑥𝑖)
 , 

and 𝑃(𝐶𝑖 = 0|𝑥𝑖, 𝜃(𝑡)) = 1 −  𝑃(𝐶𝑖 = 1|𝑥𝑖, 𝜃(𝑡)) 

To derive the estimates, we find: 

𝜕𝑄(𝜃|𝜃(𝑡))

𝜕𝑝
= ∑ 𝑃(𝐶𝑖 = 0|𝑥𝑖, 𝜃(𝑡)) ⋅ (

1

1 − 𝑝
)

𝑇

𝑖=1

+ 𝑃(𝐶𝑖 = 1|𝑥𝑖, 𝜃(𝑡))
1

𝑝
  

𝜕𝑄(𝜃|𝜃(𝑡))

𝜕𝑝
= 0 ⟹ 𝑝 =  

1

𝑇
∑ 𝑃(𝐶𝑖 = 1|𝑥𝑖 , 𝜃(𝑡))

𝑇

𝑖=1

 

𝜕𝑄(𝜃|𝜃(𝑡))

𝜕𝜇
=  ∑ 𝑃(𝐶𝑖 = 0|𝑥𝑖 , 𝜃(𝑡)) ⋅

1

2
(

2(𝑥𝑖 − 𝜇)

𝜎2
)

𝑇

𝑖=1

 

𝜕𝑄(𝜃|𝜃(𝑡))

𝜕𝜇
= 0 ⟹ 𝜇 =

∑ 𝑃(𝐶𝑖 = 0|𝑥𝑖, 𝜃(𝑡))𝑥𝑖
𝑇
𝑖=1

∑ 𝑃(𝐶𝑖 = 0|𝑥𝑖 , 𝜃(𝑡))𝑇
𝑖=1

 



𝜕𝑄(𝜃|𝜃(𝑡))

𝜕𝜎2
=  ∑ 𝑃(𝐶𝑖 = 0|𝑥𝑖, 𝜃(𝑡)) ⋅

1

2
(−

1

𝜎2
+

(𝑥𝑖 − 𝜇)2

(𝜎2)2
)

𝑇

𝑖=1

 

𝜕𝑄(𝜃|𝜃(𝑡))

𝜕𝜎2
= 0 ⟹ 𝜎2 =

∑ 𝑃(𝐶𝑖 = 0|𝑥𝑖, 𝜃(𝑡))(𝑥𝑖 − 𝜇)2𝑇
𝑖=1

∑ 𝑃(𝐶𝑖 = 0|𝑥𝑖 , 𝜃(𝑡))𝑇
𝑖=1

 

 

c) In a parametric bootstrap we can quantify the uncertainty by generating new datasets from a 

parameterized model, where the parameters are estimated from original dataset. In the context 

of the contamination model above, 𝜃 = (𝑝, 𝜇, 𝜎2) , can be estimated using formulas from b, 

giving 𝜃 = (𝑝̂, 𝜇̂, 𝜎2̂), and 𝑓𝑐(𝑥) is known.    

The algorithm for the parametric bootstrap is then: 

1) Repeat B times: 

1)  Sample 𝑇 samples from 𝑁(𝜇̂, 𝜎2̂),   𝑿 = (𝑋1, 𝑋2, … , 𝑋𝑇)  

2) Sample number of contaminated samples, 𝑁𝐶 ∼ binominal(𝑇, 𝑝̂),   

3) Sample 𝑁𝐶 samples from 𝑓𝐶(𝑥),  𝑌1, 𝑌2, … , 𝑌𝑁𝐶
 

4) Replace 𝑁𝐶 samples from 𝑿,   𝑿𝑪 = (𝑌1, 𝑌2, … , 𝑌𝑁𝑐
, 𝑋𝑁𝐶+1, … , 𝑋𝑇) 

5) Estimate  𝜇𝑘̂, 𝜎𝑘
2̂,  using  𝑿 and 𝜇𝑘,𝐶̂ , 𝜎𝑘,𝐶

2̂  using   𝑿𝑪. 

2) Compare the statistics of (𝜇𝑘̂, 𝜎𝑘
2̂)

𝑘=1

𝐵
 and (𝜇𝑘,𝐶̂ , 𝜎𝑘,𝐶

2̂ )
𝑘=1

𝐵
, i.e. compute mean and covariance 

of   the two samples, compute the bias and difference in uncertainty.  

Note:  by using the algorithm above we utilize common random numbers to reduce the Monte 

Carlo variability in the comparison due to a finite (𝐵) number of samples.  It is possible also to 

do comparison with two independent samples, or with theoretical results for the Gaussian case.  

 

Problem 3: SGD  
It is known from theory that convergence of the algorithm requires the learning rate to approach 

zero in the limit, at a rate such that:  

∑ 𝛼𝑡

∞

𝑖=1 

= ∞, and ∑ 𝛼𝑡
2

∞

𝑖=1 

< ∞   

Although the first part is fulfilled with a constant learning rate, the second is not.  In the figure 

both cases oscillate randomly around 2. The largest learning rate converges faster but has larger 

amplitude in the oscillations. This can roughly be interpreted like having a large learning rate 

makes the first sum grow fast which finds the level fast, but also the second sum grows fast 

and give a large variability around the true value.    

  



Computations:  

𝑔(𝑥) =
1

2
 (𝑥 −  𝑏)2, ∇𝑔(𝑥) = (𝑥 − 𝑏) 

Starting with (6) insert expression for 𝑧𝑡, with a constant learning rate, and subtract 𝑏 from 

both sides gives: 

𝑥𝑡+1 − 𝑏 =  𝑥𝑡 − 𝑏 −  𝛼 ⋅ (𝑥𝑡 − 𝑏) − 𝛼𝜀𝑡 

𝑥𝑡+1 − 𝑏 = (1 − 𝛼 )(𝑥𝑡 − 𝑏) − 𝛼𝜀𝑡 

Re-inserting this relation for t, we get: 

𝑥𝑡+1 − 𝑏 = (1 − 𝛼 )((1 − 𝛼 )(𝑥𝑡−1 − 𝑏) − 𝛼𝜀𝑡−1) − 𝛼𝜀𝑡 

𝑥𝑡+1 − 𝑏 = (1 − 𝛼 )2(𝑥𝑡−1 − 𝑏) − 𝛼(1 − 𝛼 )𝜀𝑡−1 − 𝛼𝜀𝑡 

Which gives the result.  

Generalizing this, we see that as we move back k steps in time in time, the first term will evolve 

as (1 − 𝛼 )𝑘 (𝑥𝑡−𝑘+1 − 𝑏),..., (1 − 𝛼 )𝑡+1 (𝑥0 − 𝑏). The second term will evolve as: 

𝜀𝑡
𝑘 = ∑(1 − 𝛼 )𝑘𝜀𝑡−𝑘

𝑘−1 

𝑡=0

 

Thus, the variance will be Var(𝜀𝑡
𝑘) = ∑ (1 − 𝛼 )2𝑘𝑘−1 

𝑡=0 ,  such that:  

𝑘 → ∞ ⇒ Var(𝜀𝑡
𝑘) →

1

1 − (1 − 𝛼)2
=

1

2𝛼 − 𝛼2 
⇒ Var(𝛼 𝜀𝑡

𝑘) →  
𝛼

2 − 𝛼
≈

𝛼

2
  

Here we see that for the deterministic part we will have exponential convergence, whereas for 

the stochastic part the variance will scale with the learning rate.   This is the type of behavior 

observed in the figure, where we see an exponential form initially when the first term is 

dominating, and random fluctuations in the latter part.  

Problem 4: Slice sampler 
a) In the Gibbs Sampler, we sample the joint distribution using iterations. In each step we 

update one variable by sampling from the conditional distribution of this variable given 

the other variables. The other variables are fixed at their current value in the iterations. 

There are different versions of the Gibbs sampler, we can do a systematic scan or a 

random scan.  

In an example with two variables (𝑢, 𝑥) the algorithm goes: 

1) Initialize 𝑥 = 𝑥0  

2) For 𝑖 from 1 to 𝐵: 

a. Sample 𝑢𝑖 from 𝑓(𝑢|𝑥𝑖−1) 

b. Sample 𝑥𝑖  from 𝑓(𝑥|𝑢𝑖) 

The algorithm below samples from the “gray area” using the Gibbs-sampler, updating 

𝑓(𝑢|𝑥𝑖−1) = Unif(0, 𝑓(𝑥𝑖−1 )), and  𝑓(𝑥|𝑢𝑖) = Unif({𝑥: 𝑓(𝑥) > 𝑢 }).  The boundaries 



of the region of latter can be found solving the equation 𝜙(𝐿) = 𝑢. Which gives the 

limits in step 3.  

 

b) In a McMC step using M-H we have that we propose with probability 𝑔(𝑥𝑝|𝑥), and 

accept the proposal with probability , 𝑤here:   

𝑅(𝑥𝑝|𝑥) =
𝑓(𝑥𝑝)𝑔(𝑥|𝑥𝑝)

𝑓(𝑥)𝑔(𝑥𝑝|𝑥)
 

In our case: 𝑓(𝑥)  =  𝑓(𝑥|𝑢𝑖) = Unif({𝑥: 𝑓(𝑥) > 𝑢 }) ∝ 𝐼(𝑓(𝑥) > 𝑢), and 

𝑔(𝑥𝑝|𝑥) = {
1

2𝑟
𝑥 − 𝑟 < 𝑥𝑝 < 𝑥 + 𝑟

0 else                              

  

Thus: 𝑅(𝑥𝑝|𝑥) =
𝐼(𝑓(𝑥𝑝)>𝑢)

𝐼(𝑓(𝑥)>𝑢)
∝ 𝐼(𝑓(𝑥𝑝) > 𝑢).   If at some point  𝑓(𝑥) < 𝑢, then the 

ratio is undefined. However, this will only occur if we accept a proposal 𝑥𝑝 for which 

𝑓(𝑥𝑝) > 𝑢, since this probability is zero, we just need to be careful with our starting 

point. The step in the algorithm becomes:  

A) Sample 𝑥𝑝 ∼  𝑔(𝑥𝑝|𝑥) 

B) Accept 𝑥𝑝 if  𝑓(𝑥𝑝) > 𝑢 

 

c) For a McMC to sample from a target distribution we need: The chain to be irreducible, 

aperiodic, and recurrent for the limit distribution to be the stationary point of the 

Markov chain. Next we need the transition kernel 𝑝(𝑦|𝑥) fulfill:   

𝑓(𝑦) = ∫ 𝑓(𝑥)𝑝(𝑦|𝑥)𝑑𝑥 

The chain is aperiodic, since the algorithm as it is constructed will propose points 

outside the valid region, we have a probability of staying in the same location for one 

or more steps, and thus avoid cycles.  It is not obvious that the chain will not be 

irreducible/recurrent since the support of 𝜙(𝑥) is infinite and the support of the proposal 

distribution is finite. 

   

d) In the table we see that there is a monotone trend for acceptance probabilities which 

decrease as  𝑟 increases, whereas for effective sample size and GR statistics there is an 

extreme point 𝑟 = 10. The values of effective sample size and GR statisticsis preferable 

for 𝑟 = 10. If we look at the acceptance rate, we would expect the optimal value 𝑟 to 

have acceptance rate in the range 0.3-0.5, thus it is likely that an even better value could 

have been found for r values between 1 and 10.  If we look at the sample path, we see 

that the high acceptance rate for low 𝑟 values is because there is too high correlation in 

the sample path. This effect is also seen in the cumsum-statistics which have large 

values and a smooth appearance for low values of 𝑟.   We see that the correlation 

decreases as r increases, but for 𝑟 = 100 the acceptance rate becomes too small, this is 

seen in the sample path which have long periods of constant values. In addition to the 

values and plots shown, the corresponding values for u and f(x) would increase the trust 

in the data. Summary statistics for 𝑓(𝑥, 𝑢) is not required since this is constant. As seen 



from answer to 1a) we want more than 400 samples to have a reasonable reduction in 

the uncertainty. Thus case 3 and 4 are ok. 

     

 

Problem 5: Simulated annealing  
Note it is not expected that all expressions should be understood, (2-opt, TSP, Graph coloring, 

etc) but comments should be given to those that are in the curriculum. In general, the answer 

from the LLM generates much text that was not requested, and have a mistake with respect to 

the effect of restricting the neighborhood. See specific comments below. 

Intro: Just a rephrase of question.  

Part 1: Text is ok, but it would have been nice to be clearer text e.g.  possible solutions vs valid 

solutions.  

Part 2: Text is ok, but it should be clearer that a particular neighborhood is a choice. This 

choice will define which cells that are the adjacent ones.  

Part 3: In this element b) is not correct, by restricting the neighborhood we increase the number 

of local optima, i.e. we make the problem worse with respect to “being stuck”.    By extending 

size of the neighborhood, we might increase the probability to escape from what would be 

considered local optima according to a narrower neighborhood definition. In c) this is details 

that where not relevant to the question asked LLM, but when it is brought up, it would have 

been nice to have the formula as well. 

Part 4: This statement actually gets right what is wrong in 3b. 

Part 5: In 5c, this is a too general statement and thus misleading, if we set up SA correct all 

options are possible, and we can even give guarantee of convergence if the cooling schedule 

(defined below) is logarithmic. However, given a limited time we only explore a subset of 

solutions. Which subset that is investigated (within a limited time) is determined by 

randomness. 

Part 6:  In 6b,  the examples are slightly random.   

Summary: It is true that the neighborhood guides the SA, but the neighborhood also creates 

the local minima, which SA escapes by the randomness.  

A direct answer to the question could have been: “In discrete optimization problems, the 

neighborhood limits the search space for “improved solutions” to a set adjacent to the current 

solution. This makes the search space manageable in terms of compute time in each iteration, 

but also creates a set of local minima. A local minimum is such that even though it is impossible 

to improve the solution in the current neighborhood, there might still exist a is a better solution 

among all possibilities.   

It should also be mentioned missing in (answer by LLM) that the neighborhoods must 

communicate, such that it is possible to visit any solution in a finite number of steps.  

 

SA for maximization of 𝑱(𝒙): 



1) Initialize 𝑥0  

2) Propose a new value 𝑥𝑝 by randomly sampling the neighborhood of 𝑥𝑖 

3) Accept the new proposal (𝑥𝑖+1 = 𝑥𝑝 ) with probability min(1, 𝛼), where  

𝛼 = exp ((𝐽(𝑥𝑝) − 𝐽(𝑥𝑖)) /𝜏𝑗), otherwise keep the old value (𝑥𝑖+1 = 𝑥𝑖)  

4) Update 𝜏𝑗  according to the cooling schedule. 

5) repeat from 2) 

 

A cooling schedule is defined by setting a sequence of pairs (𝜏𝑗 , 𝑚𝑗), such that you keep the 

level  𝜏𝑗 for 𝑚𝑗 iterations, before you update to next 𝜏𝑗 , i.e. use 𝜏𝑗 when ∑ 𝑚𝑘
𝑗−1
𝑘=0 < 𝑖 <

∑ 𝑚𝑘
𝑗
𝑘=0 , 𝑚0 = 0.  In the cooling schedule 𝜏𝑗  converges monotonously towards zero as 𝑗 

increases. i.e. 𝜏1 > 𝜏2 > ⋯ > 0. 

 


