UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in:	STK4060 — Time Series
Day of examination:	Monday June 4'th 2012
Examination hours:	09.00-13.00
This problem set consists of 4 pages.	
Appendices:	None
Permitted aids:	Approved calculator

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Solution proposal

Problem 1

a) Weak stationarity: $E(X_t) = \mu$, $Var(X_t) = \sigma_w^2 \sum_{j=-\infty}^{\infty} \psi_j^2$ independent og t, and autocovarinces $\gamma(h) = Cov(x_{t+h}, x_t)$ only dependent on h. For all integer h

$$\gamma(h) = E[(\sum_{j=-\infty}^{\infty} \psi_j w_{t+h-j})(\sum_{j=-\infty}^{\infty} \psi_j w_{t-j})]$$
$$= E[(\sum_{j=-\infty}^{\infty} \psi_{j+h} w_{t-j})(\sum_{j=-\infty}^{\infty} \psi_j w_{t-j})]$$
$$= \sigma_w^2 \sum_{j=-\infty}^{\infty} \psi_j \psi_{j+h}$$

because $E(w_s w_t) = \sigma_w^2$, s = t and $E(w_s w_t) = 0$ $s \neq t$.

b) Solving backwards

$$x_t = \phi^k x_{t-k} + w_t + \dots + \phi^k w_{t-k}.$$

Because $|\phi| < 1$,

$$E[x_t - w_t + \dots + \phi^k w_{t-k}]^2 = \phi^{2k} E[X_{t-k}^2] \to 0$$

since $E[x_{t-k}^2] < \infty$ by assumption. Hence $x_t = \sum_{k=0}^{\infty} \phi^k w_{t-k}$, which is linear with

$$\psi_j = \begin{cases} \theta^j \ j \ge 0\\ 0 \ j < 0 \end{cases}$$

Since $\psi_j = 0$ j < 0, the time series is causal.

c) An ARMA(p,q) process is a weak stationary time series satisfing the stochastic difference equation

$$x_t - \phi_1 x_{t-1} - \dots - \phi_p x_{t-p} = w_t + \theta_1 e_{t-1} + \dots + \theta_q w_{t-q}$$

where w_t , $t = 0, \pm 1, \pm 2, \ldots$ is a sequence of white noise.

The time series x_t is causal if the solutions of $1 - \phi_1 z - \cdots - \phi_p z^p = 0$ are larger than 1 in absolute value.

The time series x_t is invertible if the solutions of $1+\theta_1 z - \cdots - \theta_q z^q = 0$ are larger than 1 in absolute value.

For stationary AR(p) time series the autocorrelation function (ACF), $\rho(h)$, is exponentially decreasing and the partial autocorrelation function (PACF), ϕ_{hh} , equals zero if h > p.

For MA(q) time series the autocorrelation function, $\rho(h)$ equals zero if h > q and the partial autocorrelation function, ϕ_{hh} , is exponentially decreasing.

For ARMA(p,q), where p, q > 0 processes both ACF and PACF are decreasing.

By plotting ACF and PACF, pure AR(p) and MA(q) processes can be identified. If neither is appropriate, this suggests an ARMA(p,q).

d) For a stationary process the Yule-Walker equations are in matrix notation defined as

$$\Gamma_n \phi_n = \gamma_n \text{ and } \sigma_w^2 = \gamma(0) - \phi'_n \gamma_n$$

where Γ_n is the covariance matrix

$$\Gamma_n = \begin{pmatrix} \gamma(0) & \cdots & \gamma(n-1) \\ \vdots & & \vdots \\ \gamma(n-1) & \cdots & \gamma(0) \end{pmatrix} \text{ and } \gamma_n = \begin{pmatrix} \gamma(1) \\ \vdots \\ \gamma(n) \end{pmatrix}.$$

For an causal AR(p) time series

$$x_t - \phi_1 x_{t-1} - \dots - \phi_p x_{t-p} = w_t$$

one get by successively multiplying both sides by $x_t, x_{t-1}, \dots, x_{t-p}$, using the assumed causality and taking expectations

$$\phi_1 \gamma(1) + \dots + \phi_p \gamma(p) = \gamma(0) - \sigma_u^2$$

$$\phi_1 \gamma(0) + \dots + \phi_p \gamma(p-1) = \gamma(1)$$

$$\phi_1 \gamma(p-1) + \dots + \phi_p \gamma(0) = \gamma(p)$$

The first equation is $\sigma_w^2 = \gamma(0) - \phi'_n \gamma_n$ and the p last equations $\Gamma_n \phi_n = \gamma_n$.

Estimating the theoretical autocovariances, $\gamma(h)$ by the corresponding empirical, $\hat{\gamma}(h)$, one obtains estimators for the parameters ϕ_1, \dots, ϕ_p and σ_w^2 .

e) The polynomial equation $1 - (5/6)z + (1/6)z^2 = 0$ has solutions 3 and 2, and hence the AR(2) time series defined by

$$x_t - (5/6)x_{t-1} + (1/6)x_{t-2} = w_t$$

is causal. Using this one gets by multiplying by x_t, x_{t-1}, \ldots and taking expectations

$$\gamma(0) - (5/6)\gamma(1) + (1/6)\gamma(2) = E(x_t w_t) = \sigma_w^2$$

$$\gamma(1) - (5/6)\gamma(0) + (1/6)\gamma(1) = E(x_{t-1}w_t) = 0$$

$$\gamma(k) - (5/6)\gamma(k-1) + (1/6)\gamma(k-2) = E(x_{t-k}w_t) = 0$$

for $k = 2, 3, \ldots$

The covariances sayisfy the difference equation

$$\gamma(k) - (5/6)\gamma(k-1) + (1/6)\gamma(k-2) = 0, \ k = 1, \dots$$

Dividing by $\gamma(0)$ yields the difference equation

$$\rho(k) - (5/6)\rho(k-1) + (1/6)\rho(k-2) = 0, \ k = 1, \dots$$

for the autocovariance function. This difference equation has the general solution

$$\gamma(k) = c_1(1/2)^k + c_2(1/3)^k, \ k = 2, \dots$$

and initial conditions $\rho(0) = 1$ and $\rho(1) - (5/6)\rho(0) + (1/6)\rho(1) = 0$, i.e $\rho(0) = 1$ and $\rho(1) = 5/7$. Thus c_1 and c_2 are determined by

$$c_1 + c_2 = \rho(0) = 1$$

$$c_1(1/2) + c_2(1/3) = \rho(1) = 5/7$$

which have solutions $c_1 = (16/7)$ and $c_2 = -(9/7)$.

Therefore the autocorrelation function is $\rho(k) = [(16/7)(1/2)^k - (9/7)(1/3)^k]/2, \ k = 0, 1, 2, \dots$

The PACF is found by solving recursively the Yule-Walker equations, i.e. for $\mathrm{h}{=}1$

$$\gamma(0)\phi_{11} = \gamma(1)$$
 or $\phi_{11} = \rho(1) = 10/7$.

Since the process is AR(2) we know that the solution $\phi_{22} = \phi_2 = 1/4$ and that $\phi_{kk} = 0, k = 3, 4, \dots$

Problem 2

a) The spectral density $f_x(\omega)$ is defined as

$$f_x(\omega) = \sum_{h=-\infty}^{\infty} \gamma(h) e^{-2\pi\omega h}$$

where γ is the autocovariance function.

Large values of $f_x(\omega)$ indicates that the corresponding frequencies contribute much to the periodic variation in the time series $\{x_t\}$.

b) Using that the auto covariances are $\gamma(h) = \phi^{|h|} \sigma_w^2$ in a stationary causal AR(1) process, the spectral density can be found directly from the definition.

Alternatively, in an ARMA(p,q) process with autoregressive polynomial $\phi(z)$ and moving average polynomial $\theta(z)$ the spectral density is

$$f_x(\omega) = \sigma_w^2 \frac{|\theta(e^{-2\pi i\omega})|^2}{|\phi(e^{-2\pi i\omega})|^2}$$

which in this case means

$$f_x(\omega) = \sigma_w^2 \frac{1}{|1 - 0.5e^{-2\pi i\omega})|^2} = \frac{\sigma_w^2}{1.25 - \cos(2\pi\omega)}.$$

c) The periodogram is defined as

$$I(j/n) = \left|\frac{1}{\sqrt{n}}\sum_{t=1}^{n} x_t e^{-2\pi i(j/n)t}\right|^2, \ j = 0, 1, \dots, n-1$$

For j = 1, ..., n - 1

$$\sum_{t=1}^{n} \mu e^{-2\pi i (j/n)t} = \mu e^{-2\pi i (j/n)} \sum_{t=0}^{n-1} (e^{-2\pi i (j/n)})^t = \mu e^{-2\pi i (j/n)} \frac{1 - e^{-2\pi i (j/n)n}}{1 - e^{-2\pi i (j/n)}} = 0.$$

Therefore, for $j = 1, \ldots, n-1$

$$I(j/n) = \left|\frac{1}{\sqrt{n}}\sum_{t=1}^{n} (x_t - \mu)e^{-2\pi i(j/n)t}\right|^2 = \frac{1}{n}\sum_{s,t=1}^{n} (x_s - \mu)(x_t - \mu)(e^{-2\pi i(j/n)(s-t)}).$$

Hence,

$$E[I(j/n)] = \frac{1}{n} \sum_{s,t=1}^{n} \gamma(s-t) e^{-2\pi i (j/n)(s-t)} = \frac{1}{n} \sum_{h=-(n-1)}^{n-1} (n-|h|)\gamma(h) e^{-2\pi i (j/n)h}$$

by changing summation variable h = s - t.

d) For $j \neq k \ I(j/n)$ and I(k/n) are for large values of n under the regularity conditions described in Shumway and Stoffer, in particular $\sum_{h=-\infty}^{\infty} |h|\gamma(h) < \infty$, approximately uncorrelated. For linear processes $\left(\frac{2I(j_1/n)}{f_x(j_1/n)}, \ldots, \frac{2I(j_k/n)}{f_x(j_k/n)}\right)'$ is moreover approximately distributed as $(X_1, \ldots, X_k)'$ where X_1, \ldots, X_k are independently χ^2 -distributed with 2 degrees of fredom.

The spectral density f_x is continuous and if it is not varying too much, gain can be obtained by smoothing/averaging over adjacent frequencies. But there is a tradeoff, if the smooting is too coarse, bias will result when f_x is not constant, and if not enough frequencies are included in the smooth the variance will increase.