ARMA forecast
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nem be the mean square predictor

Assume z; causal and invertible. Let z
of z,,, based on 1., that is

Ty = E(Tpqm|Tn, ... 1),

Also define predictor defined on the complete past

jn—&—m = E(l’n+m|l'n, ey X1, X0, L1y - - .),
which equals
E(xpim|Tn, ..., 1,20, 2_1,...)
= E(E?Ozoiﬁjwm_;_n_ﬂl‘n, ey L1, X9y L1y - - )

_ 00
- Z]j:mwj/mernfj7

since by causality and invertibility
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wy = E(wy|xy, ..., 21, 20,21, ... { w t<n.
Also by causality and invertibility

0= E(wpim|Tn, ..., x1, 200,21, ...)
J— o
= E(XE0miTnim—jlTn, -, 1,20, T 1, )
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Because my =1
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Tptm = _Ejzl T§Lytm—j Zj:mﬁjxn—&-m—j'

Now prediction using Z,,.,, can be done recrursivly starting with

m=1 'i‘n—&—l = —E]o-il’ﬂ'jxl_,_n_j

m=2 Tpi2 = —M1Tpy1 — Z?igﬂjl’unﬁ'

m=3 Tpi3 = —M1Tpt1 — T2Tpi2 — L5233 1n—j
ete. Also
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Tntm — Tndm = Ej:oqu)jwn—&—m—j - Zj:mwjzUn-l—m—j - E]’:D ijn—f—m—j



so the mean square prediction error is

Pr?—s-m = E(Tnym — jn+m) = QEm 017/)

The prediction errors are correlated so

E($n+m - jn—&-m)(l‘n-i-m—l—k - jn—i—m-{—) — QZm Oled]j-i-k

Assume r; ARMA with mean p,. Then
f%n-i-m = g + E]Qimijm'i‘n—j

SO Tpym — He a5 m — 00 and Py, — 0?8207 = 4,(0) = var(zy).

Truncated prediction

Remember
~ m— o
Tntm = E =1 ijn-i-m —j T Ty

The variables xq,x_q,... are not observable so a truncated version is ob-
tained by setting them equal to 0, their expected values, giving the truncated
predictor

_ En—i—m 1

~n m—1
Lptm = Z =1 W]xn—i-m —j j=m  TjTntm—j-

which also can be computed recursively for m =1,2,.. ..

For AR(p) models 2}, = &4y = 2],,, When n > p so the approxima-
tions are exact.

For ARMA(p,q) where ¢ > 1 the situation is a bit more complicated. For
example if z; is ARMA(1,1), 2,41 = ¢y + Wyy1 + Owy. The truncated one
step ahead forecast is
setting w;,,, = 0 and for m > 2

~n

Toym — ¢xn+m—1

setting wy’ = 0 when ¢t > n. Then w], is initiated using w; = z; — ¢xy_1 —
w1, t=1,...,n. Set wj = 0,29 =0 and iterate

T T
Wy =T — Qrig —OW 4, t=1,...,n

The general ARMA(p,q) is treated similarly using the model equation
setting 2} = x; when 1 <¢ <n and 2} =0 when ¢ <0 so

~n
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Tptm = ¢1xn+m—1 et ¢pxn+m—p + elwn-‘rm—l +- 40 wn-l—m q
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Fort =1,--- ,n the model equation with z} and w; = 0 when ¢ > n or
t <0 are used to obtain w;'.
Thus,

n
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w,, = ¢1$t +-- (,Zspl’tfp — 01wt_1n — e = qutfq

For ARMA(p,q) the weights v; are known so the P?.  derived earlier

can be used as an approximate forecast variance. These and the predictions
Ty, ., or their approximations can be used to construct prediction intervals.

Backcasting

In backcasting x;_,, is predicted using data zy.,,. If 27, = a,z, +
Qp_1Tp_1 + - -+ + ayxq the prediction equations take the form

Yo E(rjay) = E(@f_ar), k=1,---,n
or
Yigapy(k—j)=ym+k-1), k=1 n

which are the same as for the forward case so the solutions a; = Z*] and the
backcasts are given by

Now consider the ARMA(1,1) process x; = ¢x;—1 + w; + Owy_q, where
the weights v, are found by expanding Haj The weights for the model

1-¢
Ty = Ty + v + Ovyyq is determined by expanding EZ%?) so x; may be
expressed as z; = X32,¢;v45. The two models have therefore the same

autocovariance function if the o, = o,. If they in addition are iid N(0,02),
the two models are equivalent.
Given data x1.,, set v)' = 0 and generate the errors backwards

B = = Grin — 05, t= (n—1),(n—2),.... 1.

and

since o7, t < 0. Continuing
~n _ ~n o
Ti_m _¢x2—m> m_2737"'

To backcast: reverse the data, fit the model and predict.



