
ARMA forecast

Assume xt causal and invertible. Let xnn+m be the mean square predictor
of xn+m based on x1:n, that is

xnn+m = E(xn+m|xn, . . . , x1).

Also define predictor defined on the complete past

x̃n+m = E(xn+m|xn, . . . , x1, x0, x−1, . . .),

which equals

E(xn+m|xn, . . . , x1, x0, x−1, . . .)
= E(Σ∞j=0ψjwm+n−j|xn, . . . , x1, x0, x−1, . . .)
= Σ∞j=mψjwm+n−j,

since by causality and invertibility

w̃t = E(wt|xn, . . . , x1, x0, x−1, . . .) =

{
0 t > n
wt t ≤ n.

Also by causality and invertibility

0 = E(wn+m|xn, . . . , x1, x0, x−1, . . .)
= E(Σ∞j=0πjxn+m−j|xn, . . . , x1, x0, x−1, . . .)
= Σm−1

j=0 πjx̃n+m−j + Σ∞j=mπjxn+m−j.

Because π0 = 1

x̃n+m = −Σm−1
j=1 πjx̃n+m−j − Σ∞j=mπjxn+m−j.

Now prediction using x̃n+m can be done recrursivly starting with

m=1 x̃n+1 = −Σ∞j=1πjx1+n−j

m=2 x̃n+2 = −π1x̃n+1 − Σ∞j=2πjx2+n−j

m=3 x̃n+3 = −π1x̃n+1 − π2x̃n+2 − Σ∞j=3πjx3+n−j

etc. Also

xn+m − x̃n+m = Σ∞j=0ψjwn+m−j − Σ∞j=mψjwn+m−j = Σm−1
j=0 ψjwn+m−j

1



so the mean square prediction error is

P n
n+m = E(xn+m − x̃n+m)2 = σ2Σm−1

j=0 ψ
2
j

The prediction errors are correlated so

E(xn+m − x̃n+m)(xn+m+k − x̃n+m+)2 = σ2Σm−1
j=0 ψjψj+k.

Assume xt ARMA with mean µx. Then

x̃n+m = µx + Σ∞j=mψjwm+n−j

so x̃n+m → µx as m→∞ and P n
n+m → σ2Σ∞j=0ψ

2
j = γx(0) = var(xt).

Truncated prediction

Remember

x̃n+m = −Σm−1
j=1 πjx̃n+m−j − Σ∞j=mπjxn+m−j.

The variables x0, x−1, . . . are not observable so a truncated version is ob-
tained by setting them equal to 0, their expected values, giving the truncated
predictor

x̃nn+m = −Σm−1
j=1 πjx̃

n
n+m−j − Σn+m−1

j=m πjxn+m−j.

which also can be computed recursively for m = 1, 2, . . ..
For AR(p) models x̃nn+m = x̃n+m = xnn+m when n > p so the approxima-

tions are exact.
For ARMA(p,q) where q > 1 the situation is a bit more complicated. For

example if xt is ARMA(1,1), xn+1 = φxn + wn+1 + θwt. The truncated one
step ahead forecast is

x̃nn+1 = φxn + 0 + w̃nn

setting w̃nn+1 = 0 and for m ≥ 2

x̃nn+m = φx̃n+m−1

setting w̃nt = 0 when t > n. Then w̃nn is initiated using wt = xt − φxt−1 −
θwt−1, t = 1, . . . , n. Set w̃n0 = 0, x0 = 0 and iterate

w̃nt = xt − φxt−1 − θw̃nt−1, t = 1, . . . , n

The general ARMA(p,q) is treated similarly using the model equation
setting x̃nt = xt when 1 ≤ t ≤ n and x̃nt = 0 when t ≤ 0 so

x̃nn+m = φ1x̃
n
n+m−1 + · · ·+ φpx̃

n
n+m−p + θ1w̃

n
n+m−1 + · · ·+ θqw̃

n
n+m−q
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For t = 1, · · · , n the model equation with x̃nt and w̃nt = 0 when t > n or
t ≤ 0 are used to obtain w̃nt .

Thus,

w̃tn = φ1x̃
n
t + · · ·+ φpx̃

n
t−p − θ1w̃t−1n− · · · − θqw̃nt−q

For ARMA(p,q) the weights ψj are known so the P n
n+m derived earlier

can be used as an approximate forecast variance. These and the predictions
xnn+m or their approximations can be used to construct prediction intervals.

Backcasting

In backcasting x1−m is predicted using data x1:n. If xn1−m = αnxn +
αn−1xn−1 + · · ·+ α1x1 the prediction equations take the form

Σn
j=1αjE(xjxk) = E(xn1−mxk), k = 1, · · · , n

or

Σn
j=1αjγ(k − j) = γ(m+ k − 1), k = 1, · · · , n.

which are the same as for the forward case so the solutions αj = φmnj and the
backcasts are given by

xn1−m = φnnnxn + · · ·+ φmn1x1.

Now consider the ARMA(1,1) process xt = φxt−1 + wt + θwt−1, where
the weights ψj are found by expanding 1+θz

1−φz . The weights for the model

xt = φxt+1 + vt + θvt+1 is determined by expanding 1+θ(1/z)
1−φ(1/z) so xt may be

expressed as xt = Σ∞j=0ψjvt+j. The two models have therefore the same
autocovariance function if the σw = σv. If they in addition are iid N(0, σ2

w),
the two models are equivalent.

Given data x1:n, set vnn = 0 and generate the errors backwards

ṽnt = xt − φxt+1 − θṽnt+1, t = (n− 1), (n− 2), . . . , 1.

and
x̃n0 = φx1 + ṽn1 + ṽn0 = φx1 + ṽn1 + 0

since ṽnt , t ≤ 0. Continuing

x̃n1−m = φx̃n2−m, m = 2, 3, · · ·

To backcast: reverse the data, fit the model and predict.
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