
ARIMA modelling

Basic steps for modelling

1. Plot data

2. Transform data if necessary

3. Identify orders d, p, q

4. Estimate parameters

5. Diagnostics

6. Model choice



Example, GNP data

yt : quarterly adjusted US GNP in billions 1996 dollars

xt = log yt − log yt−1 = log(1 + yt−yt−1

yt−1
) ≈ yt−yt−1

yt−1

Candidates: AR(1) for xt , i.e. ARIMA(1,1,0) for log yt .
MA(2) for xt .



Fitted MA(2) model:
x̂t = .008(.001) + .303(.065)ŵt−1 + .204(.064)ŵt−2 + ŵt ,
σw = .0094, 219 degrees of freedom.

Fitted AR(1) model: x̂t = .005 + .347(.063)x̂t−1 + ŵt ,
σw = .0095, 220 degrees of freedom.

Fitted models similar since
xt = (1− .35B)−1wt = wt + .35wt−1 + (.35)2wt−2 + · · · ≈
.35wt−1 + 0.12wt−2 + wt



Diagnostics

Standardized innovations: et = xt−x̂ t−1
t√

P̂t−1
t

Tools:

Plot (t, et), t = 1, . . . , n

Histograms and Q-Q plots to check for normality

ACF of et : ρ̂e(h), h = 1, . . .

Ljung-Box-Pierce Q-statistic

Q = n(n + 2)ΣH
h=1

ρ̂2e(h)
n−h is approximately χ2

H−p−q if model
correct.



Example, Glacial Varve Series

yt : thickness of glacial deposits, varves.
xt = log yt
Two candidates:

xt ARIMA(0,1,1)

xt ARIMA(1,1,1)

Example, Model choice US GNP series



Regression with autocorrelated errors
Weigthed least squares

Consider the model

yt = Σr
j=1βjztj + xt

where xt has covariance function γx(s, t). In vector notation

y = Zβ + x .

where y n × n, Z n × r , β r × 1 and x n × 1 .

Let Γ = {γx(s, t)}. Multiplying with Γ−1/2 yields

y∗ = Z ∗β + δ.

where δ = In.



Weighted LS estimator:
βw = (Z ∗′Z ∗)−1Z ′y∗ = (Z ′Γ−1Z )−1Z ′Γ−1y .

E (βw ) = β, var(βw ) = (Z ′Γ−1Z )−1

If xt w(0, σ2w ), OLS

Can time series properties of xt be used to find Γ?

Suppose first xt AR(p) so φ(B)xt = wt Then

y∗t = φ(B)yt = Σr
j=1βjφ(B)ztj + φ(B)xt = Σr

j=1βjz
∗
tj + wt

and the weighted LS estimator is found by minimizing

S(φ, β) = Σr
j=1w

2
t = Σr

j=1[φ(B)yt − Σr
j=1βjφ(B)ztj ]

2

w.r.t. φ and β.



If xt ARMA(p, q) so φ(B)xt = θ(B)wt or
θ(B)−1φ(B)xt = π(B)xt = wt weighted LS estimator is found
by minimising

S(φ, θ, β) = Σr
j=1w

2
t = Σr

j=1[π(B)yt − Σr
j=1βjπ(B)ztj ]

2.

wrt φ, θ and β. The problem is to find the best specification of
xt .

Remark: Numerical methods necessary in minimisation.



Feasible procedure:

i) Regress yt on zt1, . . . , ztr by OLS with residuals
x̂t = yt − Σr

j=1β̂jztj

ii) Find ARMA model(s) for x̂t

iii) For the chosen model run weighted LS on model where
errors autocorrelated.

iv) Inspect residuals ŵt . Do they look like white noise?

Example: Mortality, temperature and pollution.

Example: Regression with lagged values.



Multiplicative seasonal ARIMA models

This is an additional extension to take seasonality into account.
For example the model xt = φxt−4 + wt is a model relating xt
and xt−4, which may be appropriate for quarterly data.

Seasonal AR operator:
ΦP(Bs) = 1− Φ1B

s − · · · − ΦP(BPs)
Seasonal MA operator:
ΘQ(Bs) = 1 + Θ1B

s − · · · −ΘQ(BQs)

Seasonal ARMA models are a particular class of stationary
ARMA models so earlier results for causality and invertibility
apply.

Example, A seasonal AR series

(1− ΦB12)xt = wt or xt = xt−12 + wt



P and Q are determined as before by looking at the ACF and
PACF at h = ks k = 1, . . .. Behaviour as before, the duality
persists.

For the multiplicative seasonal autoregressive moving average
model ΦP(Bs)φ(B)xt = ΘQ(Bs)θ(B)wt the behaviour is
roughly as before, but tends to be a mixture of the behaviour
of φ(B)xt = θ(B)wt and ΦP(Bs)xt = ΘQ(Bs)wt .

Modelling strategy: Focus on seasonal AR and MA
components first and determine P and Q.



Example, A mixed seasonal model

ARMA(0,1)×(1,0)12, i.e.

xt = Φxt−12 + wt + θwt−1

γ(0) =
1 + θ2

1− Φ2
σ2w

γ(1) = Φγ(11) + θσ2w

γ(h) = Φγ(h − 12), h = 2, . . .

so

γ(11) = Φγ(1) + θσ2w

γ(1) = Φ2γ(1) + Φθσ2w

γ(1) =
Φθσ2w
1− Φ2



Hence,

ρ(12h) = Φh, h = 1, 2, . . .

ρ(12h + 1) = ρ(12h − 1) =
θ

1 + θ2
Φh, h = 0, 1, . . .

ρ(h) = 0 else



Seasonal persistence is a feature it can be useful to incorporate
in a model. For example, temperature in each month can be
thought of as xt = St + wt where St is a seasonal component
being roughly the same as last year, St = St−12 + vt . Thus
xt − xt−12 = St + wt − St−12 −wt−12 = vt + wt −wt−12 which
is a stationary MA(1)12 model.

Seasonal difference of order D: 5D
s xt = (1− Bs)Dxt

Seasonal differencing is appropriate when ACF decays slowly at
multiples of a seasons, but is negligible between periods.



The multiplicative seasonal autoregressive integrated
moving average model, SARIMA:

ΦP(Bs)φ(B)5D
s 5dxt = δΘQ(Bs)θ(B)wt

The model is denoted ARIMA(p,d,q)×(P,D,Q)s .



Example, An SARIMA model

The ARIMA(0,1,1)×(0,1,12)12 with δ = 0 is

512 5 xt = ΘQ(B12)θ(B)wt

or
(1− B12)(1− B)xt = (1 + ΘB12)(1 + θB)wt

or

(1− B − B12 + B13)xt = (1 + θB + ΘB12 + ΘθB13)wt

or

xt = xt−1 + xt−12 − xt−13 + wt + θwt−1 + Θw12 + Θθw13.



Modelling strategy

Focus first on difference operators to determine roughly
stationary series by determining D and d.

Then inspect ACF and PACF to find P and Q, i.e. the
seasonal polynomials.

Then inspect ACF and PACF to find p and q.

Estimate model.

Diagnostic check to evaluate model.



Example, Air passengers
Two models:

ARIMA(1,1,1)×(0,1,1)12
ARIMA(0,1,1)×(0,1,1)12.


