ARIMA modelling

Basic steps for modelling

- 1. Plot data
- 2. Transform data if necessary

★ ロメ (御) (제 語) (제 語) (《 語)

- 3. Identify orders d, p, q
- 4. Estimate parameters
- 5. Diagnostics
- 6. Model choice

Example, GNP data

 y_t : quarterly adjusted US GNP in billions 1996 dollars

$$
x_t = \log y_t - \log y_{t-1} = \log(1 + \frac{y_t - y_{t-1}}{y_{t-1}}) \approx \frac{y_t - y_{t-1}}{y_{t-1}}
$$

Candidates: AR(1) for x_t , i.e. ARIMA(1,1,0) for log y_t . $MA(2)$ for x_t .

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『 코 │ ⊙ 9 Q ⊙

Fitted MA(2) model: $\hat{x}_t = .008(.001) + .303(.065) \hat{w}_{t-1} + .204(.064) \hat{w}_{t-2} + \hat{w}_t,$ $\sigma_w = .0094$, 219 degrees of freedom.

Fitted AR(1) model: $\hat{x}_t = .005 + .347(.063)\hat{x}_{t-1} + \hat{w}_t$, $\sigma_w = .0095, 220$ degrees of freedom.

Fitted models similar since $x_t = (1-.35B)^{-1}$ w_t = w_t + .35w_{t−1} + (.35)²w_{t−2} + · · · ≈ $.35w_{t-1} + 0.12w_{t-2} + w_t$

《 ロ 》 《 御 》 《 唐 》 《 唐 》 《 唐 》

 $2Q$

Diagnostics

Standardized innovations:
$$
e_t = \frac{x_t - \hat{x}_t^{t-1}}{\sqrt{\hat{P}_t^{t-1}}}
$$

Tools:

$$
\blacksquare \; \mathsf{Plot} \; (t, e_t), \; t = 1, \ldots, n
$$

Histograms and Q-Q plots to check for normality

• ACF of
$$
e_t
$$
: $\hat{\rho}_e(h)$, $h = 1, \ldots$

■ *Ljung-Box-Pierre Q-statistic*
\n
$$
Q = n(n+2)\sum_{h=1}^{H} \frac{\hat{\rho}_e^2(h)}{n-h}
$$
\nis approximately χ^2_{H-p-q} if model correct.

Example, Glacial Varve Series

 y_t : thickness of glacial deposits, varves. $x_t = \log y_t$ Two candidates:

- x_t ARIMA(0,1,1)
- x_t ARIMA(1,1,1)

Example, Model choice US GNP series

《 ロ 》 《 御 》 《 결 》 《 理 》 《 理 》

Regression with autocorrelated errors Weigthed least squares

Consider the model

$$
y_t = \sum_{j=1}^r \beta_j z_{tj} + x_t
$$

where x_t has covariance function $\gamma_x(s,t)$. In vector notation

$$
y=Z\beta+x.
$$

where y $n \times n$, Z $n \times r$, β $r \times 1$ and x $n \times 1$.

Let $\Gamma = \{\gamma_x(\mathfrak{s},t)\}\.$ Multiplying with $\Gamma^{-1/2}$ yields

$$
y^* = Z^*\beta + \delta.
$$

K ロ ▶ K 레 ▶ K 호 ▶ K 호 ▶ 『 호 │ ⊙ ٩. @

where $\delta = I_n$.

Weighted LS estimator:
\n
$$
\beta_w = (Z^*Z^*)^{-1}Z'y^* = (Z'\Gamma^{-1}Z)^{-1}Z'\Gamma^{-1}y.
$$
\n
$$
E(\beta_w) = \beta, \text{ var}(\beta_w) = (Z'\Gamma^{-1}Z)^{-1}
$$
\nIf x_t w(0, σ_w^2), OLS

Can time series properties of x_t be used to find Γ?

Suppose first x_t AR(p) so $\phi(B)x_t = w_t$ Then

$$
y_t^* = \phi(B)y_t = \sum_{j=1}^r \beta_j \phi(B) z_{tj} + \phi(B)x_t = \sum_{j=1}^r \beta_j z_{tj}^* + w_t
$$

and the weighted LS estimator is found by minimizing

$$
S(\phi,\beta)=\Sigma_{j=1}^r w_t^2=\Sigma_{j=1}^r[\phi(B)y_t-\Sigma_{j=1}^r\beta_j\phi(B)z_{tj}]^2
$$

K ロ ▶ K 레 ▶ K 호 ▶ K 호 ▶ 『 호 │ ⊙ ٩. @

w.r.t. ϕ and β .

If x_t ARMA(p, q) so $\phi(B)x_t = \theta(B)w_t$ or $\theta(B)^{-1}\phi(B)x_t=\pi(B)x_t=w_t$ weighted LS estimator is found by minimising

$$
S(\phi,\theta,\beta)=\Sigma_{j=1}^r w_t^2=\Sigma_{j=1}^r[\pi(B)y_t-\Sigma_{j=1}^r\beta_j\pi(B)z_{tj}]^2.
$$

wrt ϕ , θ and β . The problem is to find the best specification of x_t .

Remark: Numerical methods necessary in minimisation.

Feasible procedure:

- i) Regress y_t on z_{t1}, \ldots, z_{tr} by OLS with residuals $\hat{x}_t = y_t - \Sigma_{j=1}^r \hat{\beta}_j z_t$
- ii) Find ARMA model(s) for \hat{x}_t
- iii) For the chosen model run weighted LS on model where errors autocorrelated.

K ロ B | K 個 B | K 결 B | K 결 B | [결]

 OQ

iv) Inspect residuals \hat{w}_t . Do they look like white noise?

Example: Mortality, temperature and pollution.

Example: Regression with lagged values.

Multiplicative seasonal ARIMA models

This is an additional extension to take seasonality into account. For example the model $x_t = \phi x_{t-4} + w_t$ is a model relating x_t and x_{t-4} , which may be appropriate for quarterly data.

Seasonal AR operator: $\Phi_P(B^s) = 1 - \Phi_1 B^s - \cdots - \Phi_P(B^{Ps})$ Seasonal MA operator: $\Theta_Q(B^s) = 1 + \Theta_1 B^s - \cdots - \Theta_Q(B^{Qs})$

Seasonal ARMA models are a particular class of stationary ARMA models so earlier results for causality and invertibility apply.

Example, A seasonal AR series

$$
(1 - \Phi B^{12})x_t = w_t
$$
 or $x_t = x_{t-12} + w_t$

K ロ ▶ K 레 ▶ K 호 ▶ K 호 ▶ 『 호 │ ⊙ ٩. @

P and Q are determined as before by looking at the ACF and PACF at $h = ks k = 1, \ldots$ Behaviour as before, the duality persists.

For the multiplicative seasonal autoregressive moving average model $\Phi_P(B^s)\phi(B)x_t = \Theta_Q(B^s)\theta(B)w_t$ the behaviour is roughly as before, but tends to be a mixture of the behaviour of $\phi(B)x_t = \theta(B)w_t$ and $\Phi_P(B^s)x_t = \Theta_Q(B^s)w_t$.

K ロ ▶ K 레 ▶ K 호 ▶ K 호 ▶ 『 호 │ ⊙ ٩. @

Modelling strategy: Focus on seasonal AR and MA components first and determine P and Q.

Example, A mixed seasonal model

ARMA $(0,1)\times(1,0)_{12}$, i.e. $x_t = \Phi x_{t-12} + w_t + \theta w_{t-1}$ $\gamma(0) = \frac{1+\theta^2}{1-\phi^2}$ $\frac{1+\nu}{1-\Phi^2}\sigma_w^2$ $\gamma(1)$ = $\Phi \gamma(11) + \theta \sigma^2_{\sf w}$ $\gamma(h) = \Phi \gamma(h-12), h = 2, \ldots$

so

$$
\gamma(11) = \Phi \gamma(1) + \theta \sigma_w^2
$$

\n
$$
\gamma(1) = \Phi^2 \gamma(1) + \Phi \theta \sigma_w^2
$$

\n
$$
\gamma(1) = \frac{\Phi \theta \sigma_w^2}{1 - \Phi^2}
$$

Hence,

$$
\rho(12h) = \Phi^h, h = 1, 2, ...
$$

\n
$$
\rho(12h + 1) = \rho(12h - 1) = \frac{\theta}{1 + \theta^2} \Phi^h, h = 0, 1, ...
$$

\n
$$
\rho(h) = 0 \text{ else}
$$

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Seasonal persistence is a feature it can be useful to incorporate in a model. For example, temperature in each month can be thought of as $x_t = S_t + w_t$ where S_t is a seasonal component being roughly the same as last year, $\mathcal{S}_t = \mathcal{S}_{t-12} + \mathcal{v}_t$. Thus $x_t - x_{t-12} = S_t + w_t - S_{t-12} - w_{t-12} = v_t + w_t - w_{t-12}$ which is a stationary $MA(1)_{12}$ model.

Seasonal difference of order D: $\bigtriangledown_s^D x_t = (1 - B^s)^D x_t$

Seasonal differencing is appropriate when ACF decays slowly at multiples of a seasons, but is negligible between periods.

K ロ ▶ 《 御 ▶ 《 결 ▶ 《 결 ▶ 》 [결 ...

The multiplicative seasonal autoregressive integrated moving average model, SARIMA:

 $\Phi_P(B^s)\phi(B)\bigtriangledown^D_s\bigtriangledown^d x_t = \delta\Theta_Q(B^s)\theta(B)$ w $_t$

The model is denoted $ARIMA(p,d,q)\times (P,D,Q)_s$.

Example, An SARIMA model

The ARIMA(0,1,1)×(0,1,12)₁₂ with
$$
\delta = 0
$$
 is
\n
$$
\bigtriangledown_{12} \bigtriangledown x_t = \Theta_Q(B^{12})\theta(B)w_t
$$

or

$$
(1-B^{12})(1-B)x_t = (1+\Theta B^{12})(1+\theta B)w_t
$$

or

$$
(1 - B - B12 + B13)xt = (1 + \theta B + \Theta B12 + \Theta \theta B13)wt
$$

or

 $x_t = x_{t-1} + x_{t-12} - x_{t-13} + w_t + \theta w_{t-1} + \Theta w_{12} + \Theta \theta w_{13}$.

Modelling strategy

- **Focus first on difference operators to determine roughly** stationary series by determining D and d.
- Then inspect ACF and PACF to find P and Q, i.e. the seasonal polynomials.

K ロ ▶ 《 御 ▶ 《 결 ▶ 《 결 ▶ 》 [결 ...

- Then inspect ACF and PACF to find p and q.
- Estimate model.
- Diagnostic check to evaluate model.

Example, Air passengers Two models:

 $ARIMA(1,1,1)\times(0,1,1)_{12}$ $ARIMA(0,1,1)\times(0,1,1)_{12}.$

