Problem 3.5

Proposition 1 Consider the $A R(2)-m o d e l ~\left(1-\phi_{1} B-\phi_{2} B^{2}\right) x_{t}=w_{t}$ where $w_{t} \sim w n\left(0, \sigma_{w}^{2}\right)$. Then the following two statements are equivalent.
(i) $\phi(z)=\left(1-\phi_{1} z-\phi_{2} z^{2}\right)=0 \Rightarrow|z|>1$
(ii) $\phi_{1}+\phi_{2}<1, \phi_{2}-\phi_{1}<1$ and $\left|\phi_{2}\right|<1$.

Proof. $(i) \Rightarrow(i i)$: As in class
(ii) $\Rightarrow(i)$: Note the following:

$$
\begin{array}{r}
\phi(1)=1-\phi_{1}-\phi_{2}>0, \tag{1}\\
\phi(-1)=1+\phi_{1}-\phi_{2}>0, \\
\phi(0)=1
\end{array}
$$

and

$$
\begin{equation*}
\phi^{\prime}(z)=-\phi_{1}-2 \phi_{2} z, \quad \phi^{\prime}(1)=-\phi_{1}-2 \phi_{2}, \quad \phi^{\prime}(-1)=-\phi_{1}+2 \phi_{2} \tag{2}
\end{equation*}
$$

For $\phi_{2}=0$ the result is true so it suffices to consider the following cases:
a) Two real roots of $\phi(z)=0, \phi_{2}>0$.

Since $\phi(z)$ is a parabola and $\phi(z) \rightarrow-\infty$ as $z \rightarrow \pm \infty$ and $\phi(-1), \phi(0), \phi(1)>$ 0 by (1), the solutions of $\phi(z)=0$ must be outside $[-1,1]$.
b) Two real roots of $\phi(z)=0, \phi_{2}<0, \phi_{1}>0$.

By (1) $\phi(0), \phi(1)>0$. Since the roots are real, $\phi_{1}^{2}+4 \phi_{2}>0$. From (2) it follows that $\phi^{\prime}(0)=-\phi_{1}<0$ and $\phi^{\prime}(1)=-\phi_{1}-2 \phi_{2}<-\phi_{1}+\phi_{1}^{2} / 2<0$ becauce $0<\phi_{1}<2$. Using that $\phi(z)$ is a parabola and $\phi(z) \rightarrow \infty$ $z \rightarrow \pm \infty$ it follows that $\phi(z)$ must be decreasing in $[0,1]$ so the roots of $\phi(z)=0$ are larger than 1 .
c) Two real roots of $\phi(z)=0, \phi_{2}<0, \phi_{1}<0$.

By (1) $\phi(-1), \phi(0)>0$. Now $\phi^{\prime}(-1)=-\phi_{1}+2 \phi_{2}>-\phi_{1}-\phi_{1}^{2} / 2>0$ because $-2<\phi_{1}<0$. Hence arguing as in b) $\phi(z)$ must be increasing in $[-1,0]$ so the roots of $\phi(z)=0$ are smaller than -1 .
d) Two complex roots of $\phi(z)=0$.

Since z_{1} and z_{2} are the roots, $z_{2}=\bar{z}_{1}$ and $\phi(z)=\left(1-\frac{1}{z_{1}} z\right)\left(1-\frac{1}{\bar{z}_{1}} z\right)=$ $1-\phi_{1} z-\phi_{2} z^{2}$. Hence $\frac{1}{\left|z_{1}\right|^{2}}=\left|\phi_{2}\right|<1$ and $\left|z_{1}\right|=\left|z_{2}\right|>1$.

