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Abstract

These are Exercises and Lecture Notes for the course on time series, modelling and analysis,

STK 4060 (Master level) or STK 9060 (PhD level), for the spring semester 2022. The collection

will grow during the course.

1. The variance or an average of correlated variables

A classical and crucial result from traditional statistics is that if x1, . . . , xn are independent with

the same distribution, then Var x̄n = σ2/n, for the data average x̄ = (1/n)
∑n

i=1 xi, where σ2 is

the variance of a single observation. This is rather different for models with dependence. Suppose

now that x1, . . . , xn is a stationary sequence, with cov(xk, xi+h) = σ2ρ(|h|), for some correlation

function ρ(h) = corr(xi, xi+h).

(a) Show that

Var x̄n =
σ2

n

{
1 + 2

n∑
h=1

(1− h/n)ρ(h)
}

=
σ2

n

n∑
h=−n

(1− |h|/n)ρ(j).

(b) For the special case of ρ(h) = ρh, called autocorrelation of order 1, show that

Var x̄n =
σ2

n

{
1 + 2

n−1∑
h=1

ρh − (1/n)

n−1∑
h=1

hρh
}

=
σ2

n

{1 + ρ

1− ρ
+O(1/n)

}
.

With a positive autocorrelation, therefore, the variance of x̄n becomes clearly bigger than

under independence.

(c) Suppose you observe such a stationary time series x1, . . . , xn, with autocorrelation function

ρ(h) = ρh for h = 1, 2, 3, . . ., and with unknown mean µ, variance σ2, and autocorrelation

parameter ρ ∈ (−1, 1). If you do the traditional x̄n±1.96 sn/
√
n interval for µ, recommended

in 99 statistics books, with sn the empirical standard deviation, what will be its confidence

coverage level?

(d) Give estimators for µ, σ, ρ, constructed from the observed time series.
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(e) Give a more careful and appropriate 95 percent confidence interval, taking autocorrelation

into account. Note in particular that such a confidence interval is wider than the traditional

one, when the autocorrelation is positive.

2. An autoregressive time series model

Construct a time series x1, x2, . . . , xn as follows, via i.i.d. ε1, . . . , εn being standard normal. Let

x1 = ε1 and then xt+1 = ρxt + εt+1 for i = t, 2, . . ., where ρ is a value inside (−1, 1).

(a) Take n = 100 and ρ = 0.345, and simulate such a time series in your computer. Check what

the acf(xdata) does, playing also a bit with other combinations of n and ρ.

(b) Write Ft for all observed history up to and including time point t. Show that E (xt+1 | Ft) =

ρxt and Var (xt+1 | Ft) = 1. Deduce also from this that

Ext = ρExt−1 and Varxt = 1 + ρ2 Varxt−1.

Show that Ext = 0, for all t, and find a formula for the variance of xt.

(c) Starting from

x2 = ρε1 + ε2,

x3 = ρ2ε1 + ρε2 + ε3,

x4 = ρ3ε1 + ρ2ε2 + ρε3 + ε4,

find a general formula for xt, expressed in terms of the i.i.d. components ε1, . . . , εt. Use this

to find and explicit distribution of xt. Also show

VarXt = 1 + ρ2 + ρ4 + · · ·+ ρ2(t−1) =
1− ρ2t−1

1− ρ2
,

re-proving what you found in (b).

(d) Find the explicit covariance and correlation between xi and xi−1.

(e) When the time series has been at work for some time, show that

Varxi →
1

1− ρ2
, cov(xi, xi+1)→ ρ

1− ρ2
, cov(xi, xi+2)→ ρ2

1− ρ2
,

etc.

(f) Show that the real acf (the autocorrelation function) becomes 1, ρ, ρ2, ρ3, . . .,

(g) Simulate a few time series using the above construction, with a few combinations of n and

ρ. Verify that with n moderate-to-large, the empirical acf(xdata) becomes close to the real

1, ρ, ρ2, ρ3, . . ..

3. Using regression modelling for the Johnson & Johnson dataset

Consider the dataset called jj in the astsa package, giving the quarterly earnings of the J & J

company, from quarter 1 1960 to quarter 4 1980. One wishes to study how these y1, . . . , yn evolve

over time (with n = 84 quarters over 21 years), e.g. to predict earnings for the coming year. The

task here is to go through some regression models, so to speak before factoring in correlations and

specific time series aspects.
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Figure 0.1: The JJ data, with estimated trend, from the five-parameter model.

(a) Write xt = t−1960, for t = 1, . . . , n. Fit the rather simple classic linear regression model, with

yt = β0+β1xt+εt, with the εt taken i.i.d. N(0, σ2). Look at the fitted trend m̂1(t) = β̂0+β̂1xt,

alongside data, to check that this model is far too simple. For the practice, check also the

residuals r1,t = yt − m̂1(t); these will vary too much, indicating again that this model is too

coarse.

(b) A rather better model is to include a quadratic term for the trend. Fit the regression model

yt = β0+β1xt+β2x
2
t +εt, again with the εt taken i.i.d. from the N(0, σ2). Plot the estimated

trend m̂2(t) = β̂0 + β̂1xt + β̂2x
2
t alongside data, examine the residuals r2,t = yt − m̂2(t), and

comment on what you find.

(c) You learn from the above that the trend function is adequately described by such a parabola,

but that that variance of data is not constant; it increases over time. So try the variance

heteroscedastic model

yt = β0 + β1xt + β2x
2
t + σtεt, for t = 1, . . . , n, with σt = exp{γ0 + γ1(xt − x̄)},

and with the εt now being i.i.d. and standard normal. The model has three parameters for the

mean and two for the variance. Show that the log-likelihood function for this five-parameter

model can be expressed as

`(θ) =

n∑
t=1

{− log σt − 1
2 (yt − β0 − β1xt − β2x2t )/σ2

t − 1
2 log(2π)},

in terms of the full parameter vector θ.
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(d) Find the maximum likelihood (ML) estimates, say θ̂ml, by numerically maximising the log-

likelihood function. Compute also approximate standard errors, for the five parameter esti-

mates, via the general normal approximation theorem for parametric models,

θ̂ml ≈d Np(θ, Σ̂), with Σ̂ = Ĵ−1. (0.1)

Here Ĵ = −∂2`(θ̂ml)/∂θ∂θ
t, the Hesse matrix of second order derivatives, computed at the

the ML position. Using nlm in R you get the Hesse matrix for free, along with the numerical

optimisation, using something like

hello = nlm(minuslogL, starthere, hessian = T)

followed, pretty generically and very usefully, by

ML = hello$estimate

Jhat = hello$hessian

se = sqrt(diag(solve(Jhat)))

showme = cbind(ML,se,ML/se)

print(round(showme,4))

(e) Produce a version of Figure 0.1.

(f) Once you have the basic code up and running it is relatively easy to try out other variations

of such models. Try to put in a cyclic term, perhaps β4 cos(2πt/4), and again look at both

the residuals and the acf.

4. Understanding the empirical acf, under independence

Suppose x1, x2, . . . are really independent, with mean zero and variance one. What happens then,

with the acd(xdata)? Below, write xa,b for the average of values xa, . . . , xb.

(a) Consider first An = (1/n)
∑n−1

t=1 xtxt+1. Show that An has mean zero and variance (n−1)/n2,

i.e. approximately 1/n.

(b) Then go to the proper empirical Bn = (1/n)
∑n−1

t=1 (xt − x̄1,n)(xt+1 − x̄1,n). Show that

Bn = An −
n− 1

n
x̄1,nx̄1,n−1 −

n− 1

n
x̄1,nx̄2,n +

n− 1

n
x̄21,n

.
= An − x̄21,n,

with
.
= meaning ‘good approximation, not affecting limits when n grows’.

(c) Show that Bn, like the simpler An, has mean zero and variance approximately equal to

1/n. Show then that An →pr 0, Bn →pr 0, with ‘→pr’ denoting convergence in probability:

Pr(|Bn| ≥ ε)→ 0 for each small ε.

(d) Since An is a sum of variables with the same distribution, with mean zero, and VarAn
.
= 1/n,

it is natural to expect limiting normality, i.e.
√
nAn →d N(0, 1). This does not follow from

the traditional CLTs (central limit theorems), since x1x2 is not independent of x2x3, etc.

Check with the book’s Appendix A.2, however, concerning CLTs for m-dependent variables,

and verify that indeed
√
nAn →d 1.
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(e) From
√
nBn

.
=
√
nAn −

√
nx̄21,n, show that also

√
nBn →d N(0, 1), i.e. the same limit

distribution.

(f) Now go from 1-step to 2-step, and work through the details for An = (1/n)
∑n−2

t=1 xtxt+2 and

Bn = γ̂(2) = (1/n)

n−2∑
t=1

(xt − x̄1,n)(xt+2 − x̄1,n).

The main things are that γ̂(2) →pr 0, the true value of γ(2) under independence, and that
√
nγ̂(2)→d N(0, 1).

(g) Generalise properly to the result
√
nγ̂(h)→d N(0, 1), for

γ̂(h) = (1/n)

n−h∑
t=1

(xt − x̄1,n)(xt+h − x̄1,n).

(h) So far we’ve assumed variance σ2 = 1, for simplicity of presentation and argumentation. For

the general case, show that for a sequence of independent variables, with some mean µ and

variance σ2, we have
√
nγ̂(h)→d N(0, σ4). Finally show that for

ρ̂(h) =
γ̂(h)

γ̂(0)
= (1/n)

n−h∑
t=1

(xt − x̄1,n)

σ̂

(xt+h − x̄1,n)

σ̂
=

∑n−h
t=1 (xt − x̄1,n)(xt+h − x̄1,n)∑n

t=1(xt − x̄1,n)2
,

our good friend the acf, we do have the clarifying easy good result
√
nρ̂(h)→d N(0, 1).

(i) For such a sequence of i.i.d. variables, show that when one computes the empirical acf, then

Pr{ρ̂(h) ∈ [−1.96/
√
n, 1.96/

√
n]} → 0.95,

for each lag h. This is the reason for the ‘magical band’ ±1.96/
√
n provided in the standard

use of acf.

5. A simple moving average process

Suppose w0, w±1, w±2, . . . are i.i.d., with finite variance σ2. Then consider the process

xt = awt−1 + (1− 2a)wt + awt+1,

with a a tuning parameter. We call this a moving average process, with window length 3.

(a) Compute the variance of xt, and also the covariance function γ(h) and autocorrelation func-

tion ρ(h). Plot the acf for a few values of a, including the equal balance case of a = 1/3.

(b) Then do a similar analysis for a 5-window moving average process, of the type

xt = awt−2 + awt−1 + (1− 4a)wt + awt+1 + awt+2.

Again, plot the acf for a few values of a, including the balanced case of a = 1/5.

(c) Similarly consider the case of

xt = ρ2wt−2 + ρwt−1 + wt + ρwt+1 + ρ2wt+2.

Find the acf, and plot it, for a few values of ρ.
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6. A general stationary normal time series model

Suppose x1, . . . , xn is a stationary normal time series, which means that the full vector has a

multinormal distribution; this is also equivalent to saying that all linear combinations arfe normal.

Assume it has mean µ, varianec σ2, and correlation function ρ(h) = corr(xt, xt+h).

(a) Show that the joint distrisbution of the full series is a Nn(µ1, σ2A), where 1 = (1, . . . , 1)t is

the vector of 1s, and A the n × n matrix of ρ(s − t), for s, t = 1, . . . , n; in particular, the

diagonal elements are all 1.

(b) Using the basic definition of the multinormal joint density, show that the log-likelihood

function can be written

`(θ) = −n log σ − 1
2 log |A| − 1

2 (y − µ1)tA−1(y − µ1)/σ2 − 1
2n log(2π),

wiith θ the parameters involved. If the correlation function is known, then A is known, and

θ comprises only µ, σ. For such a case, show that the ML estimators become

µ̂ =
1tA−1y

1tA−11
and σ̂2 =

Q0

n
, with Q0 = (y − µ̂1)tA−1(y − µ̂1).

Check that this leads to familiar formulae in the case of i.i.d. observations, where A = In,

the identity matrix.

(c) If there is a parameter, say λ, in the correlation function, however, we need also A = A(λ),

and we have

`(µ, σ, λ) = −n log σ + 1
2 log |A(λ)| − 1

2 (y − µ1)tA(λ)−1(y − µ1)/σ2 − 1
2n log(2π),

(d) Take e.g. n = 100, generate x1, . . . , xn from the standard normal in your computer, and fit

the three-parameter model which has unknown µ, σ, λ, where the correlation function is

modelled as ρ(h) = exp(−λh) = ρh, i.e. with ρ = exp(−λ) the 1-step correlation. Repeat the

experiment a few times, to see how well the ML estimators succeed in coming close to the

true values.
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