
Exercises and Lecture Notes

STK 4060, Spring 2022

Version 0.16, 11-Feb-2022

Nils Lid Hjort

Department of Mathematics, University of Oslo

Abstract

These are Exercises and Lecture Notes for the course on time series, modelling and analysis,

STK 4060 (Master level) or STK 9060 (PhD level), for the spring semester 2022. The collection

will grow during the course.

1. The variance or an average of correlated variables

A classical and crucial result from traditional statistics is that if x1, . . . , xn are independent with

the same distribution, then Var x̄n = σ2/n, for the data average x̄ = (1/n)
∑n
i=1 xi, where σ2 is

the variance of a single observation. This is rather different for models with dependence. Suppose

now that x1, . . . , xn is a stationary sequence, with cov(xk, xi+h) = σ2ρ(|h|), for some correlation

function ρ(h) = corr(xi, xi+h).

(a) Show that

Var x̄n =
σ2

n

{
1 + 2

n∑
h=1

(1− h/n)ρ(h)
}

=
σ2

n

n∑
h=−n

(1− |h|/n)ρ(j).

(b) For the special case of ρ(h) = ρh, called autocorrelation of order 1, show that

Var x̄n =
σ2

n

{
1 + 2

n−1∑
h=1

ρh − (1/n)

n−1∑
h=1

hρh
}

=
σ2

n

{1 + ρ

1− ρ
+O(1/n)

}
.

With a positive autocorrelation, therefore, the variance of x̄n becomes clearly bigger than

under independence.

(c) Suppose you observe such a stationary time series x1, . . . , xn, with autocorrelation function

ρ(h) = ρh for h = 1, 2, 3, . . ., and with unknown mean µ, variance σ2, and autocorrelation

parameter ρ ∈ (−1, 1). If you do the traditional x̄n±1.96 sn/
√
n interval for µ, recommended

in 99 statistics books, with sn the empirical standard deviation, what will be its confidence

coverage level?

(d) Give estimators for µ, σ, ρ, constructed from the observed time series.
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(e) Give a more careful and appropriate 95 percent confidence interval, taking autocorrelation

into account. Note in particular that such a confidence interval is wider than the traditional

one, when the autocorrelation is positive.

2. An autoregressive time series model

Construct a time series x1, x2, . . . , xn as follows, via i.i.d. ε1, . . . , εn being standard normal. Let

x1 = ε1 and then xt+1 = ρxt + εt+1 for i = t, 2, . . ., where ρ is a value inside (−1, 1).

(a) Take n = 100 and ρ = 0.345, and simulate such a time series in your computer. Check what

the acf(xdata) does, playing also a bit with other combinations of n and ρ.

(b) Write Ft for all observed history up to and including time point t. Show that E (xt+1 | Ft) =

ρxt and Var (xt+1 | Ft) = 1. Deduce also from this that

Ext = ρExt−1 and Varxt = 1 + ρ2 Varxt−1.

Show that Ext = 0, for all t, and find a formula for the variance of xt.

(c) Starting from

x2 = ρε1 + ε2,

x3 = ρ2ε1 + ρε2 + ε3,

x4 = ρ3ε1 + ρ2ε2 + ρε3 + ε4,

find a general formula for xt, expressed in terms of the i.i.d. components ε1, . . . , εt. Use this

to find and explicit distribution of xt. Also show

VarXt = 1 + ρ2 + ρ4 + · · ·+ ρ2(t−1) =
1− ρ2t

1− ρ2
,

re-proving what you found in (b).

(d) Find the explicit covariance and correlation between xi and xi−1.

(e) When the time series has been at work for some time, show that

Varxi →
1

1− ρ2
, cov(xi, xi+1)→ ρ

1− ρ2
, cov(xi, xi+2)→ ρ2

1− ρ2
,

etc.

(f) Show that the real acf (the autocorrelation function) becomes 1, ρ, ρ2, ρ3, . . .,

(g) Simulate a few time series using the above construction, with a few combinations of n and

ρ. Verify that with n moderate-to-large, the empirical acf(xdata) becomes close to the real

1, ρ, ρ2, ρ3, . . ..

3. Using regression modelling for the Johnson & Johnson dataset

Consider the dataset called jj in the astsa package, giving the quarterly earnings of the J & J

company, from quarter 1 1960 to quarter 4 1980. One wishes to study how these y1, . . . , yn evolve

over time (with n = 84 quarters over 21 years), e.g. to predict earnings for the coming year. The

task here is to go through some regression models, so to speak before factoring in correlations and

specific time series aspects.
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Figure 0.1: The JJ data, with estimated trend, from the five-parameter model.

(a) Write xt = t−1960, for t = 1, . . . , n. Fit the rather simple classic linear regression model, with

yt = β0+β1xt+εt, with the εt taken i.i.d. N(0, σ2). Look at the fitted trend m̂1(t) = β̂0+β̂1xt,

alongside data, to check that this model is far too simple. For the practice, check also the

residuals r1,t = yt − m̂1(t); these will vary too much, indicating again that this model is too

coarse.

(b) A rather better model is to include a quadratic term for the trend. Fit the regression model

yt = β0+β1xt+β2x
2
t +εt, again with the εt taken i.i.d. from the N(0, σ2). Plot the estimated

trend m̂2(t) = β̂0 + β̂1xt + β̂2x
2
t alongside data, examine the residuals r2,t = yt − m̂2(t), and

comment on what you find.

(c) You learn from the above that the trend function is adequately described by such a parabola,

but that that variance of data is not constant; it increases over time. So try the variance

heteroscedastic model

yt = β0 + β1xt + β2x
2
t + σtεt, for t = 1, . . . , n, with σt = exp{γ0 + γ1(xt − x̄)},

and with the εt now being i.i.d. and standard normal. The model has three parameters for the

mean and two for the variance. Show that the log-likelihood function for this five-parameter

model can be expressed as

`(θ) =

n∑
t=1

{− log σt − 1
2 (yt − β0 − β1xt − β2x2t )2/σ2

t − 1
2 log(2π)},

in terms of the full parameter vector θ.

(d) Find the maximum likelihood (ML) estimates, say θ̂ml, by numerically maximising the log-

likelihood function. Compute also approximate standard errors, for the five parameter esti-
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mates, via the general normal approximation theorem for parametric models,

θ̂ml ≈d Np(θ, Σ̂), with Σ̂ = Ĵ−1. (0.1)

Here Ĵ = −∂2`(θ̂ml)/∂θ∂θ
t, the Hesse matrix of second order derivatives, computed at the

the ML position. Using nlm in R you get the Hesse matrix for free, along with the numerical

optimisation, using something like

hello = nlm(minuslogL, starthere, hessian = T)

followed, pretty generically and very usefully, by

ML = hello$estimate

Jhat = hello$hessian

se = sqrt(diag(solve(Jhat)))

showme = cbind(ML,se,ML/se)

print(round(showme,4))

(e) Produce a version of Figure 0.1.

(f) Once you have the basic code up and running it is relatively easy to try out other variations

of such models. Try to put in a cyclic term, perhaps β4 cos(2πt/4), and again look at both

the residuals and the acf.

4. Understanding the empirical acf, under independence

Suppose x1, x2, . . . are really independent, with mean zero and variance one. What happens then,

with the acd(xdata)? Below, write x̄a,b for the average of values xa, . . . , xb.

(a) Consider first An = (1/n)
∑n−1
t=1 xtxt+1. Show that An has mean zero and variance (n−1)/n2,

i.e. approximately 1/n.

(b) Then go to the proper empirical Bn = (1/n)
∑n−1
t=1 (xt − x̄1,n)(xt+1 − x̄1,n). Show that

Bn = An −
n− 1

n
x̄1,nx̄1,n−1 −

n− 1

n
x̄1,nx̄2,n +

n− 1

n
x̄21,n

.
= An − x̄21,n,

with
.
= meaning ‘good approximation, not affecting limits when n grows’.

(c) Show that Bn, like the simpler An, has mean zero and variance approximately equal to

1/n. Show then that An →pr 0, Bn →pr 0, with ‘→pr’ denoting convergence in probability:

Pr(|Bn| ≥ ε)→ 0 for each small ε.

(d) Since An is a sum of variables with the same distribution, with mean zero, and VarAn
.
= 1/n,

it is natural to expect limiting normality, i.e.
√
nAn →d N(0, 1). This does not follow from

the traditional CLTs (central limit theorems), since x1x2 is not independent of x2x3, etc.

Check with the book’s Appendix A.2, however, concerning CLTs for m-dependent variables,

and verify that indeed
√
nAn →d 1.

(e) From
√
nBn

.
=
√
nAn −

√
nx̄21,n, show that also

√
nBn →d N(0, 1), i.e. the same limit

distribution.
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(f) Now go from 1-step to 2-step, and work through the details for An = (1/n)
∑n−2
t=1 xtxt+2 and

Bn = γ̂(2) = (1/n)

n−2∑
t=1

(xt − x̄1,n)(xt+2 − x̄1,n).

The main things are that γ̂(2) →pr 0, the true value of γ(2) under independence, and that
√
nγ̂(2)→d N(0, 1).

(g) Generalise properly to the result
√
nγ̂(h)→d N(0, 1), for

γ̂(h) = (1/n)

n−h∑
t=1

(xt − x̄1,n)(xt+h − x̄1,n).

(h) So far we’ve assumed variance σ2 = 1, for simplicity of presentation and argumentation. For

the general case, show that for a sequence of independent variables, with some mean µ and

variance σ2, we have
√
nγ̂(h)→d N(0, σ4). Finally show that for

ρ̂(h) =
γ̂(h)

γ̂(0)
= (1/n)

n−h∑
t=1

(xt − x̄1,n)

σ̂

(xt+h − x̄1,n)

σ̂
=

∑n−h
t=1 (xt − x̄1,n)(xt+h − x̄1,n)∑n

t=1(xt − x̄1,n)2
,

our good friend the acf, we do have the clarifying easy good result
√
nρ̂(h)→d N(0, 1).

(i) For such a sequence of i.i.d. variables, show that when one computes the empirical acf, then

Pr{ρ̂(h) ∈ [−1.96/
√
n, 1.96/

√
n]} → 0.95,

for each lag h. This is the reason for the ‘magical band’ ±1.96/
√
n provided in the standard

use of acf.

5. A simple moving average process

Suppose w0, w±1, w±2, . . . are i.i.d., with finite variance σ2. Then consider the process

xt = awt−1 + (1− 2a)wt + awt+1,

with a a tuning parameter. We call this a moving average process, with window length 3.

(a) Compute the variance of xt, and also the covariance function γ(h) and autocorrelation func-

tion ρ(h). Plot the acf for a few values of a, including the equal balance case of a = 1/3.

(b) Then do a similar analysis for a 5-window moving average process, of the type

xt = awt−2 + awt−1 + (1− 4a)wt + awt+1 + awt+2.

Again, plot the acf for a few values of a, including the balanced case of a = 1/5.

(c) Similarly consider the case of

xt = ρ2wt−2 + ρwt−1 + wt + ρwt+1 + ρ2wt+2.

Find the acf, and plot it, for a few values of ρ.
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6. A general stationary normal time series model

Suppose x1, . . . , xn is a stationary normal time series, which means that the full vector has a

multinormal distribution; this is also equivalent to saying that all linear combinations are normal.

Assume it has mean µ, varianec σ2, and correlation function ρ(h) = corr(xt, xt+h).

(a) Show that the joint distrisbution of the full series is a Nn(µ1, σ2A), where 1 = (1, . . . , 1)t is

the vector of 1s, and A the n × n matrix of ρ(s − t), for s, t = 1, . . . , n; in particular, the

diagonal elements are all 1.

(b) Using the basic definition of the multinormal joint density, show that the log-likelihood

function can be written

`(θ) = −n log σ − 1
2 log |A| − 1

2 (y − µ1)tA−1(y − µ1)/σ2 − 1
2n log(2π),

wiith θ the parameters involved. If the correlation function is known, then A is known, and

θ comprises only µ, σ. For such a case, show that the ML estimators become

µ̂ =
1tA−1y

1tA−11
and σ̂2 =

Q0

n
, with Q0 = (y − µ̂1)tA−1(y − µ̂1).

Check that this leads to familiar formulae in the case of i.i.d. observations, where A = In,

the identity matrix.

(c) If there is a parameter, say λ, in the correlation function, however, we need also A = A(λ),

and we have

`(µ, σ, λ) = −n log σ + 1
2 log |A(λ)| − 1

2 (y − µ1)tA(λ)−1(y − µ1)/σ2 − 1
2n log(2π),

(d) Take e.g. n = 100, generate x1, . . . , xn from the standard normal in your computer, and fit

the three-parameter model which has unknown µ, σ, λ, where the correlation function is

modelled as ρ(h) = exp(−λh) = ρh, i.e. with ρ = exp(−λ) the 1-step correlation. Repeat the

experiment a few times, to see how well the ML estimators succeed in coming close to the

true values.

7. Conditional multinormal distributions

A vector X = (X1, . . . , Xn) has the multinormal distribution, with mean ξ and covariance matrix

Σ, if its density takes the form

f(x) = (2π)−1/2|Σ|−1/2 exp{− 1
2 (x− ξ)tΣ−1(x− ξ)}.

We write X ∼ Nn(ξ,Σ) to indicate this; not that the distribution is fully specified by giving the ξ

and the Σ.

(a) Check that this becomes the classic formula for N(ξ, σ2) in the one-dimensional case. In the

general case, show that Y = AX has distribution Nn(Aξ,AΣAt), if A is a n × n matrix.

Show that f integrates to 1.

(b) Block X into X(1) and X(2), of lengths p, q, with p+ q = n. Write

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,
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with Σ11 of size p×p, etc. Try to show that X(1) | (X(2) = x(2)) is multinormal, in dimension

p, with these important formulae for conditional mean and conditional variance:

E (X(1) |x(2)) = ξ(1) + Σ12Σ−122 (x(2) − ξ(2)),

Var (X(1) |x(2)) = Σ11 − Σ12Σ−122 Σ21.

In particular, the conditional mean is a linear function of x(2), and the conditional variance

is constant.

(c) For the most simple but still interesting case of a normalised binormal distribution, show

that if (
X1

X2

)
∼ N2(

(
0

0

)
,

(
1 ρ

ρ 1

)
),

then X1 | (X2 = x2) is normal (ρx2, 1− ρ2). Generalise to the case where X1, X2 have means

ξ1, ξ2 and variances σ2
1 , σ

2
2 .

8. Predicting x2 after having seen x1

Part of the business of time series modelling and analysis is to predict: what happens next? If we

see x1, what can we say about the x2 of tomorrow? It is useful to learn from the multinormal

situation.

(a) Suppose (
X1

X2

)
∼ N2(

(
0

0

)
,

(
1 ρ

ρ 1

)
),

with knoen ρ, and that x1 has been observed. In which sense is x̂2 = ρx1 the best prediction

for x2? Give a 95 percent prediction interval for x2, and discuss how its length is influenced

by ρ.

(b) Suppose X1, . . . , Xn, Xn+1 have a joint multinormal distribution, as for many time series

model, and that x1, . . . , xn are observed. Give the distribution for Xn+1, given x1, . . . , xn.

Give also a prediction for xn+1, and a 95 percent prediction interval.

(c) Specialise the above to the case of a stationary Gaussian time series model, with mean µ,

variance σ2, and correlation function ρ(h) for h = 1, 2, 3, . . .. Again give a prediction, and a

prediction interval, for xn+1, assuming that x1, . . . , xn have been observed.

(d) Discuss how these formulae hold up outside the multinormal situation.

9. The AIC the BIC

Suppose there are competing parametric models for the same dataset, of size n (the number of

observed data points, or data vectors). One first fits these candidate models, say M1, . . . ,Mk, by

maximising their likelihoods. Writing `j(θj) for model Mj , we find the ML estimate θ̂j and the

maximised log-likelihood value,

`j,max = `j(θ̂j) for j = 1, . . . , k.

7



Then we define

aicj = 2 dim(θj)− 2`j,max and bicj = dim(θj) log n− 2`j,max, (0.2)

with dim(θj) the number of parameters estimated in that model. These are the Akaike Information

Criterion and the Bayesian Information Criterion; see Chapters 2, 3 in Claeskens and Hjort (2008)

for considerably more information. These two information criteria act as ranking scores for the

competing models, with small values being preferred over bigger ones. Thus there is an AIC winner

and a BIC winner (perhaps the same).

Note that these AIC and BIC recipes are completely general; they may be used with indepen-

dent data, or for time series models with dependence, we may compare normal with non-normal

models, and almost apples with bananas.

(a) Explain, in intuitive terms, why these ranking criteria make sense, balancing complexity with

model fit. Explain also that the BIC places a harsher penalty on complexity (well, as long

as n ≥ 8).

(b) Suppose I have two coins, with probabilities pa and pb for ‘krone’. I flip them 40 times each,

and get 17 krone with the first and 23 krone with the second. Model 1 says that pa = pb;

model 2 says that pa and pb are different. Which of these two models is best, according to

the AIC, and to the BIC? – Note that we get answers, of the type ‘model 1 is better than

model 2’, etc., without using formal null hypothesis tests, and there’s no ‘0.05’ business going

on (well, at least not directly).

(c) Interestingly, it turns out that I have three coins in my skuff. I call their krone probabilities

pa, pb, pc, and the number of times I do get a krone, in 40 flips for each, are 17, 23, 26. Carry

out AIC and BIC analysis, to rank as many as five candidate models: (i) pa, pb, pc are equal;

(ii) pa = pb but different from pc (iii) pa = pc but different from pb; (iv) pb = pc but different

from pa; (v) the three are different.

(d) Suppose a certain start model has dimension k and log-likelihood maximum value `0,max, and

that one contemplates extending this start model to a bigger one, with one more parameter.

Assume specifically that the narrow model lies inside the bigger model. Argue that

∆ = `1,max − `0,max

must be positive. Show that AIC thinks the extended model is a good idea, provided ∆ > 1.

The BIC, however, thinks it’s only worth the trouble if ∆ > 1
2 log n. – One may show that

if the narrow model holds, then 2∆ ≈d χ2
1, so this can be used to see how likely it is to

‘incorrectly’, or unnecessarily, choose the bigger model, if the narrow model is already ok.

10. The AIC the BIC for linear regression models

We now apply the general AIC and BIC schemes for comparing and ranking different linear regres-

sion models, for the same dataset, perhaps to decide on which covariates to include and which to

exclude.
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(a) Suppose we have regression data (zt, xt), for t = 1, . . . , n, with xt the main outcome (perhaps

a time series) and zt = (zt,1, . . . , zt,k)t a covariate vector of length k. Consider the classical

linear regression model, with

xt = β1zt,1 + · · ·+ βkzt,k + εt = zttβ + εt for t = 1, . . . , n,

with the εt being i.i.d. N(0, σ2). Show that the log-likelihood function can be written

`k(β, σ) = −n log σ − 1
2Q(β)/σ2 − 1

2n log(2π), (0.3)

with subscript k for the number of covariates included in the model. Here

Q(β) =

n∑
t=1

{xt −mt(β)}2, where mt(β) = E (xt | zt) = zttβ,

the classic sum of squares.

(b) Show that the ML estimator for β is the least sum of squares estimator, with a formula

β̂ = Σ−1n n−1
n∑
t=1

ztxt =
(
n−1

n∑
t=1

ztz
t
t

)−1
n−1

n∑
t=1

ztxt,

assuming here that there is no linearity between the covariate vectors, so that Σn has full

rank. Show then that the ML estimator for σ is σ̂2
k = Qmin/n = Q(β̂)/n. Deduce from this

that

`k,max = max{`k(β, σ) : all β, σ} = −n log σ̂k − 1
2n−

1
2n log(2π).

(c) Deduce that for such a linear regression model, with k covariates on board, we have

aick = 2(k + 1) + 2n log σ̂k + n+ n log(2π),

bick = (k + 1) log n+ 2n log σ̂k + n+ n log(2π).

By omitting factors not depending on the different models, show then, that doing well for

AIC is the same as having a small k+ n log σ̂k, or 2k+ n log σ̂2
k; and that doing well for BIC

is the same as having a small k log n+ 2n log σ̂k, or k log n+ n log σ̂2
k.

(d) Above we’ve derived AIC and BIC formulae from their general definitions. Check that ‘doing

well with AIC’ is equivalent to what we find by using the book’s AIC formula, and the same

with BIC, even though the book’s AIC and BIC formulae are not fully identical to the aick

and bick above. – The general AIC and BIC formulae, as laid out in this exercise, are part

of the course’s active curriculum, and can specifically be used when comparing different time

series models for the same dataset.

11. Where are the snows of yesteryear?

Figure 0.2 is a dramatic one, for at least my segment of civilisation. It gives the number of skiing

days at the location Bjørnholt in Nordmarka, a skiing hour away from tram stations Voksenkollen

and Frognerseteren, with skiing day defined as there being at least 25 cm snow on the ground.

The linear trend is the estimated regression line using what we call Model 2 below, drastically
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indicating that the climate has consequences also for the skiing days of the Oslo people. See Heger

(2011) and Cunen, Hermansen, and Hjort (2019) for further discussion and details.

The time series goes from 1897 to 2012, but, crucially, there’s a big hole in the series, with no

data recorded from 1938 to 1954. This spells trouble for classes of traditional time series models,

since there prefer data to be equidistanced. We may still model and analyse the data, using

autocorrelation functions, etc., though.
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Figure 0.2: The number of skiing days per year, at the location Bjørnholt in Nordmarka, from 1897 to 2012, though

with a gap in the series, with no records from 1938 to 1954. The red line is the estimated regression

from the four-parmaeter Model 2.

(a) let for convenience zt = year− 1896, so that these start out like 1, 2, 3, . . ., and let xt be the

skiing days number for year t, if recorded. Fit first Model 0 and Model 1, using ordinary linear

regression, ignoring time dependence. Model 0 takes xt = β0+ε0,t, with the ε0,t i.i.d. N(0, σ2
0),

i.e. assumes a constant stationary level. Model 1 takes xt = β0 + β1zt + ε1,t, with the ε1,t

i.i.d. N(0, σ2
1). Give a 95 percent confidence interval for β, and give an interpretation of

this negative trend coefficient. Also carry out AIC analysis. You should find log-likelihood

maxima `0,max = −505.3060 and `1,max = −499.2870.

(b) For Model 1, compute and inspect the estimated residuals, rt = {xt − m̂1(t)}/σ̂2, where

m̂2(t) is the estimated trend under Model 1. Check in particular the acf, and comment.

(c) Then go to Model 2, which includes autocorrelation. We take

xt = β0 + β1zt + σεt for t = 1, 2, 3, . . . , with corr(εs, εt) = ρ|s−t|.

So ρ is the correlation for skiing days numbers for consecutive years; ρ2 for times two years

apart, etc. We also take the εt to be jointly multinormal with mean zero and variance one.

Show that this entails

x ∼ Nn(ξ, σ2Aρ),
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where ξt = β0 +β1zt, and Aρ is the n×n matrix with 1 on the diagonal and ρdi,j in position

(i, j), with di,j the time difference. Note that this Aρ is well-defined in spite of the gap in

the time series. We have n = 99, the number of observations.

(d) Show that the log-likelihood function can be written

`(β0, β1, σ, ρ) = −n log σ − 1
2 log(det(Aρ))− 1

2 (x−mt)
tA−1ρ (x−mt)/σ

2 − 1
2n log(2π),

where mt = β0 + β1zt. It is numerically a bit troublesome to maximise this here (also since

we cannot uitilise simplifying formula for the inverse and determinant of Aρ, due to the gap

in the data, which means data not being equidistant). It is practical to compute and display

the log-likelihood profile function instead:

`prof(ρ) = max{`(β0, β1, σ, ρ) : all β0, β1, σ} = `(β̂0(ρ), β̂1(ρ), σ̂(ρ), ρ).

Try to reproduce Figure 0.3.

(e) In particular, by carrying out these computations, involving maximising over parameters

(β0, β1, σ) for each ρ, you should find that the ML estimate for ρ is ρ̂ = 0.208, and that

`2,max = −496.0681. Carry out AIC analysis for comparing Models 0, 1, 2.

(f) Given Model 2, predict the numnber of skiing days in 2013, given the data collected up to

2012, and give an approximate 90 percent confidence interval. Do this exercise also trusting

Model 1; compare, and discuss.

(g) Try out one or two more models for these data.
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Figure 0.3: The log-likelihood profile funcion `prof(ρ), for the Bjørnholt data, for the four-parameter model with

linear trend, a constant σ, and correlation function ρ|s−t|, for pairs of data with interdistance |t − s|.
The horizontal dashed line indicates the level `1,max obtained for the submodel of independence, where

ρ = 0.
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