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Abstract

These are Exercises and Lecture Notes for the course on time series, modelling and analysis,
STK 4060 (Master level) or STK 9060 (PhD level), for the spring semester 2022. The collection

will grow during the course.

1. The variance or an average of correlated variables

A classical and crucial result from traditional statistics is that if x1,...,z, are independent with
the same distribution, then Varz, = o2/n, for the data average z = (1/n) > ., z;, where o2 is
the variance of a single observation. This is rather different for models with dependence. Suppose
now that z1,...,x, is a stationary sequence, with cov(zx,z;yn) = o2p(|h|), for some correlation

function p(h) = corr(x;, Titn)-

(a) Show that

0'2 i 0'2 i
Varz, = {1423 (1= h/n)p(h) } = 2= 37 (1= [hl/m)p(j).
h=1

h=—n

(b) For the special case of p(h) = p", called autocorrelation of order 1, show that

B 0_2 n—1 N n—1 B 0_2 1 + P
Varmn:;{l—&—QZp —(l/n)th }:;{ﬂ—&—O(l/n)}
h=1 h=1
With a positive autocorrelation, therefore, the variance of z,, becomes clearly bigger than

under independence.

(c) Suppose you observe such a stationary time series x1,...,x,, with autocorrelation function

p(h) = p" for h = 1,2,3,..., and with unknown mean p, variance o>

, and autocorrelation
parameter p € (—1,1). If you do the traditional Z,, £1.96 s,,/y/n interval for u, recommended
in 99 statistics books, with s, the empirical standard deviation, what will be its confidence

coverage level?

(d) Give estimators for u, o, p, constructed from the observed time series.



(e) Give a more careful and appropriate 95 percent confidence interval, taking autocorrelation
into account. Note in particular that such a confidence interval is wider than the traditional

one, when the autocorrelation is positive.

2. An autoregressive time series model

Construct a time series z1, o, ..., T, as follows, via i.i.d. €1,...,&, being standard normal. Let

1 = e1 and then z;1 = pxy + &441 for i =¢,2,. .., where p is a value inside (—1,1).

(a) Take n =100 and p = 0.345, and simulate such a time series in your computer. Check what

the acf (xdata) does, playing also a bit with other combinations of n and p.

(b) Write F; for all observed history up to and including time point ¢. Show that E (x4 | Fy) =
pxy and Var (2441 | Fz) = 1. Deduce also from this that

Exz;=pExz;y and Varax; =1+ p2 Varx;_q.
Show that Ex; = 0, for all ¢, and find a formula for the variance of x;.
(c) Starting from

To = pe1 + €2,
z3 = p°eq + pea + €3,

Ty = p351 + p252 + pes + €4,

find a general formula for x;, expressed in terms of the i.i.d. components €1, ...,&;. Use this

to find and explicit distribution of z;. Also show

1— p2t
VarX; =1+ p> 4+ pt+--- 4 p2¢D =T
- P
re-proving what you found in (b).
(d) Find the explicit covariance and correlation between x; and ;1.

(e) When the time series has been at work for some time, show that

Varz; — cov(x;, ir1) — cov(xy, Tiva) —

b p e
1—p2’ 1—p2’ 1—p2’

etc.

(f) Show that the real acf (the autocorrelation function) becomes 1, p, p2, p?, . . .,

(g) Simulate a few time series using the above construction, with a few combinations of n and

p. Verify that with n moderate-to-large, the empirical acf (xdata) becomes close to the real

17p7p2)p37""

3. Using regression modelling for the Johnson & Johnson dataset

Consider the dataset called jj in the astsa package, giving the quarterly earnings of the J & J
company, from quarter 1 1960 to quarter 4 1980. One wishes to study how these y1, ..., y, evolve
over time (with n = 84 quarters over 21 years), e.g. to predict earnings for the coming year. The
task here is to go through some regression models, so to speak before factoring in correlations and

specific time series aspects.
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Figure 0.1: The JJ data, with estimated trend, from the five-parameter model.

(a) Write z; = t—1960, for t = 1,...,n. Fit the rather simple classic linear regression model, with

~—

y: = Bo+B1xs+¢¢, with the e; taken i.i.d. N(0, 02). Look at the fitted trend m 1 (t) = Bﬁ—ﬁlxt,
alongside data, to check that this model is far too simple. For the practice, check also the
residuals r1 4 = ¥, — M4 (t); these will vary too much, indicating again that this model is too

coarse.

A rather better model is to include a quadratic term for the trend. Fit the regression model
yr = Bo+ B1w¢+ Bax? +¢¢, again with the ; taken i.i.d. from the N(0,0?). Plot the estimated
trend mo(t) = BO + let + ngf alongside data, examine the residuals ro s = y — m2(t), and

comment on what you find.

You learn from the above that the trend function is adequately described by such a parabola,
but that that variance of data is not constant; it increases over time. So try the variance

heteroscedastic model
Yr = Bo + Buxy + Por} + opey, fort=1,...,n, with oy = exp{y0 + 71 (2 — 2)},

and with the €; now being i.i.d. and standard normal. The model has three parameters for the
mean and two for the variance. Show that the log-likelihood function for this five-parameter

model can be expressed as
000) = Z{— log oy — %(yt — Bo — Biwy — Pox?)?Jo? — %log(27r)}7
t=1

in terms of the full parameter vector 6.

Find the maximum likelihood (ML) estimates, say gml, by numerically maximising the log-

likelihood function. Compute also approximate standard errors, for the five parameter esti-



mates, via the general normal approximation theorem for parametric models,

é\ml g Np(97 i), with & = J L. (0.1)
Here J = 732€(§m1) /0006, the Hesse matrix of second order derivatives, computed at the
the ML position. Using nlm in R you get the Hesse matrix for free, along with the numerical

optimisation, using something like
hello = nlm(minuslogLl,starthere,hessian=T)
followed, pretty generically and very usefully, by

ML = hello$estimate
Jhat = hello$hessian
se = sqrt(diag(solve(Jhat)))
showme = cbind(ML,se,ML/se)

print (round (showme,4))

(e) Produce a version of Figure

(f) There’s at least one more very useful practical thing to learn, following from the general
machinery of the Master Theorem (0.1} namely the so-called delta method. If one is interested
in a a certain parameter, day -, which is a function v = g(6) of the model parameters, then

(i) the ML estimator is 7y = g(fm1), i.e. via simple plug-in; and (ii) it is approximately a

normal, with
Tt ~a N(7,72),

with 72 = ¢'53¢, where ¢ = dg(f,1)/00 is the gradient of g, evaluated at the ML estimate. In

R language, if we first programme the g as a function, we have

gammahat = g(ML)
chat = grad(g,ML)
tauhat = sqrt(chat %*% solve(Jhat) %x*% chat)

I find it practical to include the numDeriv package, which has grad and hessian on board.
Now try out such a machinery, by working with 7, the 0.90 quantile of the distribution for
the next datapoint, in the JJ estup.

(g) Once you have the basic code up and running it is relatively easy to try out other variations
of such models. Try to put in a cyclic term, perhaps /34 cos(2nt/4), and again look at both

the residuals and the acf.

4. Understanding the empirical acf, under independence

Suppose 1, Zo9, ... are really independent, with mean zero and variance one. What happens then,

with the acd(xdata)? Below, write Z,; for the average of values z,, ..., zp.

(a) Consider first A, = (1/n) Zl:ll 7;2441. Show that A,, has mean zero and variance (n—1)/n?,

i.e. approximately 1/n.



(b) Then go to the proper empirical B,, = (1/n) >0 (2 — #1,,) (€141 — Z1,n). Show that

n—1 n—1 n—1
T1nT1n-1 — $1n$2n+T n=An 561”;

B,=A,—
with = meaning ‘good approximation, not affecting limits when n grows’.

(c) Show that B,, like the simpler A,,, has mean zero and variance approximately equal to
1/n. Show then that A,, =, 0, B, —p: 0, with ‘—,,’ denoting convergence in probability:
Pr(|B,| > €) — 0 for each small .

(d) Since A, is a sum of variables with the same distribution, with mean zero, and Var A,, = 1/n,
it is natural to expect limiting normality, i.e. \/nA, —4 N(0,1). This does not follow from
the traditional CLTs (central limit theorems), since xzix5 is not independent of zsx3, etc.
Check with the book’s Appendix A.2, however, concerning CLT's for m-dependent variables,
and verify that indeed /nA, —q4 1.

(e) From \/nB, = \/nA, — \/nii,, show that also \/nB, —q N(0,1), i.e. the same limit

distribution.

(f) Now go from 1-step to 2-step, and work through the details for A, = (1/n) 21" #1244 and

n—2

B, =7(2) = (1/n) Y (s — T1.0) (T2 — T1n)-

t=1
The main things are that 5(2) —p; 0, the true value of v(2) under independence, and that

Vy(2) —a N(0,1).
(g) Generalise properly to the result v/nvy(h) —4 N(0,1), for

n—h

= (1/n) Z — Z1.0)(®psn — T1n)-
t=1
(h) So far we've assumed variance o2 = 1, for simplicity of presentation and argumentation. For
the general case, show that for a sequence of independent variables, with some mean p and

variance o2, we have \/ny(h) —4 N(0,0%). Finally show that for
y(h — — ZT1in —Zin n:h —Tin —Tin
(h) (h) _ 1/m S (@ = T1n) (Bein = T1m) _ 2= (xtn T, z(ift+h2 Tin)
7(0) — o g Yoie (e —Z1n)

our good friend the acf, we do have the clarifying easy good result v/np(h) —4 N(0,1).
(i) For such a sequence of i.i.d. variables, show that when one computes the empirical acf, then
Pr{p(h) € [-1.96//n,1.96/y/n|} — 0.95,

for each lag h. This is the reason for the ‘magical band’ £1.96/y/n provided in the standard

use of acf.

5. A simple moving average process

Suppose wo, W1, W+a, . .. are i.i.d., with finite variance ¢2. Then consider the process
xy = awi—1 + (1 — 2a)w; + awysq,

with a a tuning parameter. We call this a moving average process, with window length 3.



(a) Compute the variance of x;, and also the covariance function (k) and autocorrelation func-

tion p(h). Plot the acf for a few values of a, including the equal balance case of a = 1/3.
(b) Then do a similar analysis for a 5-window moving average process, of the type
Tt = awi—g + awi—1 + (1 — da)wy + awi 1 + aw;po.
Again, plot the acf for a few values of a, including the balanced case of a = 1/5.

(c) Similarly consider the case of
Ty = pPWi_o + pWi_1 + Wi + pWii1 + PPWeio.

Find the acf, and plot it, for a few values of p.

6. A general stationary normal time series model

Suppose x1,...,Z, is a stationary normal time series, which means that the full vector has a
multinormal distribution; this is also equivalent to saying that all linear combinations are normal.

2

Assume it has mean pu, varianec o2, and correlation function p(h) = corr(xs, Tyyp).

(a) Show that the joint distribution of the full series is a N, (u1,02A), where 1 = (1,...,1)% is
the vector of 1s, and A the A n x n matrix of p(s —t), for s,¢ = 1,...,n; in particular, the

diagonal elements are all 1.

(b) Using the basic definition of the multinormal joint density, show that the log-likelihood

function can be written
0(0) = —nlogo — jlog|A] — 5(y — pu1)* A7 (y — p1)/0” — jnlog(2m),

wiith 6 the parameters involved. If the correlation function is known, then A is known, and

0 comprises only u, 0. For such a case, show that the ML estimators become

5 _ Qo

1tA-1
Y and & =, with Qo = (y — i)' A (y — iL)-

1tA-11

Check that this leads to familiar formulae in the case of i.i.d. observations, where A = I,,,

///Z:

the identity matrix.

(c) If there is a parameter, say A, in the correlation function, however, we need also A = A()),

and we have
U, 0,0) = —nlogo — §log [A(N)| — §(y — p1)* A(N) " (y — p1) /0 — Snlog(2r).
Use the above to find that the log-likelihood profile function, in A, becomes
Corot(\) = —nlog () — Llog [ A(N)| — 1n — Inlog(2m).
Here one first computes
and then 3%(\) = (1/n)Qo(\),
where

Qo(A) = {y — AN} AN " {y — (N1}



(d) Take e.g. n = 100, generate x1,...,Z, from the standard normal in your computer, and fit
the three-parameter model which has unknown p, o, A, where the correlation function is
modelled as p(h) = exp(—Ah) = p”, i.e. with p = exp(—\) the 1-step correlation. Repeat the
experiment a few times, to see how well the ML estimators succeed in coming close to the

true values.

7. Conditional multinormal distributions

A vector X = (Xq,...,X,) has the multinormal distribution, with mean ¢ and covariance matrix
¥, if its density takes the form

f(z) = 2m) 27 2 exp{—5(z — 'S (2 — )}

We write X ~ N, (£,X) to indicate this; not that the distribution is fully specified by giving the &
and the X.

(a) Check that this becomes the classic formula for N(&, 0?) in the one-dimensional case. In the
general case, show that ¥ = AX has distribution N, (A&, AL AY), if A is a n x n matrix.
Show that f integrates to 1.

(b) Block X into Xy and X(y), of lengths p, ¢, with p 4 ¢ = n. Write

Y1 X
s (P 2zl
o1 Yoo

with 31, of size p x p, etc. Try to show that X (1| (X(2) = 2(2)) is multinormal, in dimension

p, with these important formulae for conditional mean and conditional variance:

E(Xq)lze) = &) + 212255 (T2) — &@)
Var (X(l) |£C(2))m 211 — 2122521221.

In particular, the conditional mean is a linear function of x(s), and the conditional variance

is constant.

(¢) For the most simple but still interesting case of a normalised binormal distribution, show

that if
Xl 0 1 1%
()G

then Xs | (X7 = 1) is normal (pz1,1— p?). Generalise to the case where X7, X5 have means

&1, & and variances 0%, 03.

8. Predicting x2 after having seen x1

Part of the business of time series modelling and analysis is to predict: what happens next? If we
see r1, what can we say about the x5 of tomorrow? It is useful to learn from the multinormal

situation.



(a) Suppose

() =)0

with knoen p, and that z; has been observed. In which sense is To = px; the best prediction

for 97 Give a 95 percent prediction interval for zo, and discuss how its length is influenced

by p.
(b) Suppose Xi,...,X,, X,t1 have a joint multinormal distribution, as for many time series
model, and that z1,...,x, are observed. Give the distribution for X, 1, given x1,...,z,.

Give also a prediction for z,,1, and a 95 percent prediction interval.

(c) Specialise the above to the case of a stationary Gaussian time series model, with mean pu,
variance o2, and correlation function p(h) for h = 1,2,3,.... Again give a prediction, and a

prediction interval, for x, 1, assuming that z1,...,x, have been observed.

(d) Discuss how these formulae hold up outside the multinormal situation.

9. The AIC and the BIC

Suppose there are competing parametric models for the same dataset, of size n (the number of
observed data points, or data vectors). Oune first fits these candidate models, say M, ..., My, by
maximising their likelihoods. Writing ¢;(6,) for model M;, we find the ML estimate 5] and the

maximised log-likelihood value,
Cimax = £;(0;) forj=1,... k.
Then we define
aic; = 2dim(6;) — 2¢; max and bic; = dim(6;) logn — 2¢; max, (0.2)

with dim(¢;) the number of parameters estimated in that model. These are the Akaike Information
Criterion and the Bayesian Information Criterion; see Chapters 2, 3 in Claeskens and Hjort (2008)
for considerably more information. These two information criteria act as ranking scores for the
competing models, with small values being preferred over bigger ones. Thus there is an AIC winner
and a BIC winner (perhaps the same).

Note that these AIC and BIC recipes are completely general; they may be used with indepen-
dent data, or for time series models with dependence, we may compare normal with non-normal

models, and almost apples with bananas.

(a) Explain, in intuitive terms, why these ranking criteria make sense, balancing complexity with
model fit. Explain also that the BIC places a harsher penalty on complexity (well, as long
asn > 8).

(b) Suppose I have two coins, with probabilities p, and p;, for ‘krone’. I flip them 40 times each,
and get 17 krone with the first and 23 krone with the second. Model 1 says that p, = py;
model 2 says that p, and p, are different. Which of these two models is best, according to
the AIC, and to the BIC? — Note that we get answers, of the type ‘model 1 is better than
model 2’ etc., without using formal null hypothesis tests, and there’s no ‘0.05’ business going

on (well, at least not directly).



()

Interestingly, it turns out that I have three coins in my skuff. I call their krone probabilities
Das Pb, Pe, and the number of times I do get a krone, in 40 flips for each, are 17, 23, 26. Carry
out AIC and BIC analysis, to rank as many as five candidate models: (i) p,, pp, p. are equal;
(ii) po = pp but different from p,.. (iii) p, = p. but different from py; (iv) p, = p. but different
from pg; (v) the three are different.

Suppose a certain start model has dimension k and log-likelihood maximum value £y max, and
that one contemplates extending this start model to a bigger one, with one more parameter.

Assume specifically that the narrow model lies inside the bigger model. Argue that

A= Z1,max - gO,max

must be positive. Show that AIC thinks the extended model is a good idea, provided A > 1.
The BIC, however, thinks it’s only worth the trouble if A > %log n. — One may show that
if the narrow model holds, then 2A ~; X%, so this can be used to see how likely it is to

‘incorrectly’, or unnecessarily, choose the bigger model, if the narrow model is already ok.

10. The AIC and the BIC for linear regression models

We now apply the general AIC and BIC schemes for comparing and ranking different linear regres-

sion models, for the same dataset, perhaps to decide on which covariates to include and which to

exclude.

(a)

Suppose we have regression data (z;, x¢), for t = 1,...,n, with z; the main outcome (perhaps

t

a time series) and z, = (21,...,4,k)" a covariate vector of length k. Consider the classical

linear regression model, with
e =Pizea+ 4 Brak +er=2B+e fort=1,...,n,
with the ¢; being i.i.d. N(0,02). Show that the log-likelihood function can be written
0(8,0) = —nlogo — LQ(B)/o® — Lnlog(2n), (0.3)

with subscript k& for the number of covariates included in the model. Here
Q(B) =D {we —mu(B)}?,  where my(B) = E (x| 2) = 24,
t=1

the classic sum of squares.

Show that the ML estimator for 3 is the least sum of squares estimator, with a formula

n n 1 n
b= E;lnfl g 24Ty = (n*1 E ztz;“) nt E 21T,
=1 t=1 t=1

assuming here that there is no linearity between the covariate vectors, so that ¥, has full
rank. Show then that the ML estimator for o is 07 = Qmin/n = Q(B)/n. Deduce from this
that

U max = max{ly(B,0): all B,0} = —nlogdy, — in — snlog(2n).
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Deduce that for such a linear regression model, with k covariates on board, we have

aicy, = 2(k+ 1) + 2nlogoy + n + nlog(27),
bicy, = (k+ 1)logn + 2nlogaoy + n + nlog(2n).

By omitting factors not depending on the different models, show then, that doing well for
AIC is the same as having a small k + nlog gy, or 2k + nlogoy; and that doing well for BIC

is the same as having a small klogn + 2nlog oy, or klogn + nlogas.

Above we’ve derived AIC and BIC formulae from their general definitions. Check that ‘doing
well with AIC’ is equivalent to what we find by using the book’s AIC formula, and the same
with BIC, even though the book’s AIC and BIC formulae are not fully identical to the aicy
and bicy above. — The general AIC and BIC formulae, as laid out in this exercise, are part
of the course’s active curriculum, and can specifically be used when comparing different time

series models for the same dataset.

11. Where are the snows of yesteryear?

Figure is a dramatic one, for at least my segment of civilisation. It gives the number of skiing

days at the location Bjgrnholt in Nordmarka, a skiing hour away from tram stations Voksenkollen

and Frognerseteren, with skiing day defined as there being at least 25 cm snow on the ground.

The linear trend is the estimated regression line using what we call Model 2 below, drastically

indicating that the climate has consequences also for the skiing days of the Oslo people. See Heger
(2011) and Cunen, Hermansen, and Hjort (2019) for further discussion and details.

The time series goes from 1897 to 2015, but, crucially, there’s a big hole in the series, with no

data recorded from 1938 to 1954. This spells trouble for classes of traditional time series models,

since there prefer data to be equidistanced. We may still model and analyse the data, using

autocorrelation functions, etc., though.

(a)

Let for convenience z; = year — 1896, so that these start out like 1,2,3, ..., and let z; be the
skiing days number for year ¢, if recorded. Fit first Model 0 and Model 1, using ordinary linear
regression, ignoring time dependence. Model 0 takes z; = Bo-+e0.+, with the ¢ ; i.i.d. N(0, 03),
i.e. assumes a constant stationary level. Model 1 takes x; = [y + B12: + €1+, with the ;¢
iid. N(0,02). Give a 95 percent confidence interval for 3, and give an interpretation of
this negative trend coefficient. Also carry out AIC analysis. You should find log-likelihood
maxima g max = —519.479 and 1 max = —512.167.

For Model 1, compute and inspect the estimated residuals, r, = {x: — my(t)}/T2, where

mz(t) is the estimated trend under Model 1. Check in particular the acf, and comment.
Then go to Model 2, which includes autocorrelation. We take
xy = Po+ Prze + oy fort=1,2,3,..., with corr(eg, &) = pls=t,

So p is the correlation for skiing days numbers for consecutive years; p? for times two years
apart, etc. We also take the &4 to be jointly multinormal with mean zero and variance one.
Show that this entails

€T~ NYL(§7 U2Ap)7

10



o o
° ° o °
© ucu ° )
o ° % °
® o . o o .
o o ° ® © o
g oy o o o o
9 & o~ o R
= -~
E R © . .
v~ o o
c -~ o o
= ° & =g o o
8 ° o7 =~ =~ ‘< o
j=X -
o o oo ° e s~
—
T S ° o °°
2 o
o] o °
© o
= o
= o o
= °
[ZI= °
o
o
0
un
T T T T T T
1900 1920 1940 1960 1980 2000
year

Figure 0.2: The number of skiing days per year, at the location Bjgrnholt in Nordmarka, from 1897 to 2015, though

(2)

with a gap in the series, with no records from 1938 to 1954. The red line is the estimated regression

from the four-parameter Model 2.

where §; = (o + 12, and A, is the n x n matrix with 1 on the diagonal and p%i in position
(4,7), with d; ; the time difference. Note that this A, is well-defined in spite of the gap in

the time series. We have n = 102, the number of observations.

Show that the log-likelihood function can be written

K(BOaﬁlvo-a p) = —nloga - %log(det(Ap)) - %(l’ - mt)tA_l(x - mt)/02 - %nlog(ZF)7

P

where m; = By + P12 It is numerically a bit troublesome to maximise this here (also since
we cannot uitilise simplifying formula for the inverse and determinant of A,, due to the gap
in the data, which means data not being equidistant). It is practical to compute and display

the log-likelihood profile function instead:

Corot (p) = max{£(Bo, B1,0, p): all Bo, B1,0} = £(Bo(p). B (p), (). p).
Try to reproduce Figure |0.3

In particular, by carrying out these computations, involving maximising over parameters
(Bo, B1,0) for each p, you should find that the ML estimate for p is p = 0.208, and that
l9 max = —509.983. Carry out AIC analysis for comparing Models 0, 1, 2.

Given Model 2, predict the numnber of skiing days in 2013, given the data collected up to
2012, and give an approximate 90 percent confidence interval. Do this exercise also trusting

Model 1; compare, and discuss.

Try out one or two more models for these data.

11
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Figure 0.3: The log-likelihood profile funcion £y,,4¢(p), for the Bjgrnholt data, for the four-parameter model with

linear trend, a constant o, and correlation function p|s—t‘, for pairs of data with interdistance |t — s|.
The horizontal dashed line indicates the level £1 max obtained for the submodel of independence, where

p=0.

12. Estimating the three parameters in stationary AR(1)

Consider the stationary Gaussian AR(1) model, with

where the g; are standard normal, but correlated with corr(e,, &;) = pt~

(a)

xr=p+oeg fort=1,...,n,

s

Take n = 100, p = 0, 0 = 1, p = 0.555 in your computer, and simulate a dataset from
this model. Use results and insights from Exercise 2 to do this. — There are also other
general simulation schemes, for simulating from a general multinormal distribution, which I
will briefly come back to in my teaching. You may also use library(MASS) and then use

mvrnorm.

Then estimate (p, 0, p) from the data you've created, using ML, maximum likelihood. You
may do this via the log-likelihood profile function £p,0¢(p); see earlier R scripts from Nils of

this type.

Compare your py,; with two other estimators, both of the form

n o~ o~
1 L—1 — BTy — [
F=x E 5
t=2

Version (i) uses the simple classic estimates for (u, o), trusting independence; version (ii) uses

the more elaborate ({1, 0m1), from ML in the three-parameter model.

Construct both an estimator and an (approximate) 90 percent confidence interval for the

next point, i.e. z,41, based on having observed the first n datapoints.
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When your code works, for a single simulated dataset, to a loop on top, to simulate the full
thing e.g. sim = 1000 times, to learn how the estimators perform. Whare are the differences
in performance, for the three estimators of p? Do your 90 percent confidence intervals manage

to capture z, 11 anout 90 percent of the time?

13. Estimating cycle length

A model used a few places in the book for capturing cyclic behaviour is

xy =acos(2nt/w+ @)+ e, fort=1,...,n,

with different natural assumptions for the the ;. We will do fuller time series versions of this

later, but on this occasion we make life simple by taking the &; i.i.d. N(0,0?). The model has three

parameters for the mean, including the crucial cycle length parameter w, and so far one for the

variability. It turns out that estimation of w can be carried out with remarkable precision.

(a)

Simulate such a dataset, for say n = 200, and with values you choose yourself for atyye, @true,
Otrues and take wiye = 7 (think about seven days a week). First take wiue to be known, and
estimate the parameters a, ¢. You may use the trick of Example 2.10 in the book, to convert
the problem to linear regression in cos(27t/wirye) and sin(27t/wire); or why not attack the

problem directly, minimising

Qnla, o) = Z{xt — acos(27t/w + ¢)}?

t=1

by throwing it to the clever nlm minimisation algorithm. Check that these two computational

methods give the same answers.

For the case of (a,¢) known, making cycle length w the single unknown parameter in the
mean function, let ¢ be the minimiser of Q,(w) = S {xy — acos(2mt/w + ¢)}2. Attempt

to prove the miraculous result that
6 50
25— w) 4 Y027 N(0.1).
nH@ —w) =g 5w —N(0, 1)

This means that the variance of & is surprisingly small. T haven’t seen this in the literature,

and I might write up a paper about such themes.

Then estimate also w from your simulated dataset, using the profiled log-likelihood function
lorot (W) = max{l(a, ¢, 0, p) : over all a, ¢, c}.
You might find that the cycle length w is rather sharply estimated, with good precision.

How can you set approximate 90 percent confidence intervals for the parameters? Play with
your code a bit, setting different values for (a, ¢, w, o), and also n. Check how your estimates

work.

Try to extend your model and estimation schemes to the case where there also is an auto-

correlation parameter.
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14. Annual mean temperature at New Haven

Fin the dataset nhtemp of annual average temperature at New Haven, from 1912 to 1971, and
then please translate these to the Celsius scale; this is z; = (z¢,p — 32)/(5(9), I think. Writing

t =1,2,...,60 for these years, let for numerical convenience z; = yr, — yr, travelling through

1912 — yr,...,1971 — yr, with yr the averaige of these n = 60 year. It is easiest and best to write

down and work with models in terms of such a z;, rather than with the high numbers 1912-1971.

12

11
|

annual average temperature
10

T T T T
1920 1940 1960 1980

year

Figure 0.4: Annual average temperature at New Haven, 1912 to 1971, with prediction and 90 percent confidence for

(a)

5 years before and 5 years after.

Fit first the two simple classical models My, where z; = By + o0&y, and My, where z; =
Bo + B1z: + o0&y, where the € are i.i.d. and standard normal. Trusting model M7, what is a

confidence interval for 817 Give an interpretation of this result.

Then go to model My, which takes x; = B+ /31+0&;, now with correlations corr(eg, g;) = p*~ .

Fit this four-parameter model to data. Find a confidence interval for p. Find also AIC scores

aicg, aicy, aice, and comment.

For fun & profit, investigate one more model, namely the four-parameter model z; = 5y +
B1z¢ + og¢, where the g, now are taken i.i.d. from the t,, the t distributiion with degrees of
freedom v. The point is that this allows fatter tails than the normal, with outcomes say 2
standard deviations away from the mean less strange than under normal conditions. Fit the
model, and find the AIC score.

Go 5 years into the future, and also 5 years into the past, to provide both a point estimate
and a 90 percent prediction interval for the average temperature at New Hanven, for the
years 1907 and 1976. Try to construct a version of Figure Play with your code to learn

a bit more.
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15. The AR(p) model: definition, presentation, backshift polynomials, estimation

Consider a stationary zero-mean time series model for z1, ..., x,, with the autoregressive property
that

Ty = P11 + Poxy_o + d3wy_3 +wy fort =4,5,...,n. (0.4)

Here the w, are seen as i.i.d. white noise terms, with mean zero and variance o2,. We call this an
AR(3) model. The parameters in play are ¢ = (¢1, ¢2, ¢3)° for the autoregressive structure and oo

for the variability level. It will be clear how to generalise to any AR(p) model, with p > 1.

(a) It is useful to simulate a few time series realisations from such a model, with different sets of ¢
parameters. One way is as follows: construct a longer chain, say _50, _49,...,%0, Z1,. .., Zn,
with an extra burn-in phase, starting at perhaps even strange values, and then letting
decide on the rest. After this, trusting that the chain has reached its equilibrium after the
burn-in, discard this burn-in portion, and consider (zi,...,z,) a sample from the AR(3).
— Now do this, with say n = 250, and these two choices for ¢: (i) (0.60,0.30,0.05); (ii)
(0.30,0.40, 0.50).

(b) You are supposed to learn from simple simulations above that not all ¢1, @2, ¢3 are OK, but
OK means stationarity and stability; not-OK might mean explosions and eruptions. We shall

find a clear criterion for OK-ness below. Start by showing that
¢(B)xy = (1= ¢1B — ¢2B> — ¢3B*)xy = wy  for all t,
where B is the backshift operator, with Bx; = x;_1, B2, = B(z4_1) = 74_2, etc.

(¢) Then we allude to a general stationarity lemma (not made precise here, and not proven): for

any zero-mean stationary sequence, with finite variance, it can be presented in the form

(oo}
Ty = Z%‘wt—j = Yowt + Yrwe—1 + Powr—o + -,
=0

where the w; are i.i.d. zero mean white noise variables with some variance o2. Note that

this somehow requires an infinite past; that x; is a function of all these w, for s < t; but
that x; is not allowed to depend on the future. — Show that x; has variance (Z;io w?)afu,

so convergence of this series is assumed. Find also expressions for (1) = cov(x¢, z441) and
v(2) = cov(xy, xi12).
(d) Show that ¢(B)w; = x, for all t, where 1(B) = g+t B+ B?+- - - is the psi representation
infinite-degree polynomial. Show from this that
(B (B)wy = wy, (B)$(B)ay = a4,

for all t. Consider ¢(2) = 1 — ¢p12 — 22?2 — ¢32% and ¥(2) = > o 1;27, and note that the
natural domain for z, inside which there is convergence of the power series, is |z| < 1, the

unit circle in the complex plane. Argue that we need to have
Y(2)p(z) =1 for all z with |z] < 1.

A criterion for OK-ness is clearly that ¢(z) # 0 for |z| < 1; all the roots, of this 3rd order
polynomial, need to lie outside. This is actually a necessary and sufficient condition for (0.4])

to determine a well-defined stationary mean-zero process.
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In principle, the ¢ determines all the ¢, via the equation above. At least for z small, show
that

1
V&) = T g
= 14 (12 + ¢22° + ¢32°) + (d12 + P22 + ¢32°)% + (d12 + P22 + ¢32°)° + - -

= 1+ g1z + (d2 + 61)2% + (03 + 20100 + ¢%)2° +--- .

Equating coeflicients, perhaps aided by computer algebra code, will then give us all ¢;, from

é1, P2, 3.

Let as elsewhere in the course y(h) = cov(zs, x14), with correlation p(h) = corr(xs, Typ).

Multiply the start equation z; — p124-1 — Poxs_o — P3x4_3 — wy = 0 with x;_p, to get
Ti—pTt — Q1T4—pTt—1 — P2T4—pTt—2 — P3Tt—pTi—3 — Tr—pwi = 0.
First, for h = 0, deduce that
Y(0) = ¢17(1) — $27(2) — ¢37(3) = 03,

important in its own right; if we manage to estimate the ¢, via the empirical y(h), we also

manage to estimate o,,. Secondly, show that

y(h) = p1y(h — 1) — ¢2y(h — 2) — ¢37(h — 3)
p(h) = ¢1p(h — 1) — 2p(h — 2) — ¢3p(h — 3)

0,
0

)

valid for h = 1,2,.... These are called the Yule-Walker equations (and though modern in
outlook and use, they’re astoundingly old, in essence from these two scholars’ papers from
1927 and 1931). From this find

p(1) = ¢1p(0) — p2p(1) — ¢3p(2)
p(2) = ¢1p(1) — d2p(0) — p3p(1)

)

0
0.

and find from these equations p(—2), p(—1) expressed via the ¢. We may then use the

recurrence relations above to read off, or to find values, for say p(1),..., p(100).

From equations above, show that

Y(0)p1 +v(1)p2 +7(2)d3 = (1),
Y1 +7(0) 2 +v(L)gs = 7(2),
Y(2)p1 +v(1) 2 + 7(0)p3 = ¥(3),

[\

or in matrix form
T30 =73, or ¢=TI5";.

Here T'3 is the 3 x 3 matrix with elements v(j — k) for j,k = 1,2,3 and 3 the 3 x 1 vector
with elements v(1),v(2), v(3).
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(h) Argue that all of this leads to the estimator

I
-

(4 A0 A AR\ (30
o=|a:|= 303030 ]| [52].
) \a@ A 50/ \5e

where
) =n"" > (w1 — 2) (w10 — T).
t=h+1

The estimation for the AR(3) process is completed by setting

o~ o~ o~

3121; = ?(0) - ¢ﬁ(1) - ¢>ﬁ(2) - ¢:ﬁ(3)~

(i) (xx briefly. using appendix. need \/n(y — 7). then read off \/ﬁ(g?) — ¢). also need 02,. xx)

16. Simulating AR(p) processes and estimating their parameters

Set up a simulation scheme, to create x1,...,z, of length e.g. n = 250, from a zero-mean AR(3)
model, where you choose your AR parameters ¢; as you wish. Make sure that the AR polynomial
d(2) = 1 — ¢12 — 22?2 — ¢323 is not touching zero for the |z| < 1 unit circle, however, to ensure
stationarity (and so-called causality). Do the simulation by starting ‘somewhere in the past’, with
a burn-in phase, then throw away the burn-in part afterwards.

For your simulated chain of z;, estimate the ¢ parameters and also the noise level o, using

the methods of Exercise 15. Play with your code a bit, to learn how well the estimators work.

17. The MA(q) time series model

The MA(q) model for a zero-mean time series holds that
Ty = Wy + O1wi—1 + - - + Oqwi—_g,

in terms of unobserved i.id. variables w; with mean zero and finite variance, say o2. One sometimes

writes the first term as fyw;, for notational symmetry, with 8y = 1.
(a) Consider the MA(1) model, with z; = w; + 6w;—1. Show that
7(0) = 1 +6%)05, (1) =00, ~(2)=0,
indeed with (k) = 0 for & > 2. Show from this that p(1) = /(1 + 6?), and that |p(1)| < 3.
(b) For the MA(2) model, show that
v(0) = (1+ 67 +63)00, (1) = (6061 + 0102)00, (2) = Ooba0p,
with y(h) = 0 for h > 3. Also show that

061 + 010,
1460240637

0002

1 - 02
p(1) 1+67+063

p(2)

with p(h) =0 for h > 3.
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(¢) Assume you actually observe x1, ..., x,, for a reasonably high n, and compute its acf. What
behaviour would you expect this to have, if the model behind the data is an MA(2)?

(d) Simulate an MA(2) process z1,...,T,, for say n = 500. with ¢; = 0.66 and 62 = 0.33.
Compute the autocorrelations p(1), p(2) from the data, and equate these to the population
parameters p(1), p(2), to find autocorrelation based estimators 51, 05. From these also esti-
mate the underlying o,,. Repeat the experiment say 1000 times, to check the precision of

these estimators.

17. The ARMA (p,q) time series model
(xx after all of this: put them together, to form and AR(2,2) process, more generally an MR (p,q)

process. backshift operator, polynomials, estimation, approximate log-likelihood, AIC. i also find

a few real data examples. xx)
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