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Abstract

These are Exercises and Lecture Notes for the course on time series, modelling and analysis,

STK 4060 (Master level) or STK 9060 (PhD level), for the spring semester 2022. The collection

will grow during the course.

1. The variance or an average of correlated variables

A classical and crucial result from traditional statistics is that if x1, . . . , xn are independent with

the same distribution, then Var x̄n = σ2/n, for the data average x̄ = (1/n)
∑n
i=1 xi, where σ2 is

the variance of a single observation. This is rather different for models with dependence. Suppose

now that x1, . . . , xn is a stationary sequence, with cov(xk, xi+h) = σ2ρ(|h|), for some correlation

function ρ(h) = corr(xi, xi+h).

(a) Show that

Var x̄n =
σ2

n

{
1 + 2

n∑
h=1

(1− h/n)ρ(h)
}

=
σ2

n

n∑
h=−n

(1− |h|/n)ρ(j).

(b) For the special case of ρ(h) = ρh, called autocorrelation of order 1, show that

Var x̄n =
σ2

n

{
1 + 2

n−1∑
h=1

ρh − (1/n)

n−1∑
h=1

hρh
}

=
σ2

n

{1 + ρ

1− ρ
+O(1/n)

}
.

With a positive autocorrelation, therefore, the variance of x̄n becomes clearly bigger than

under independence.

(c) Suppose you observe such a stationary time series x1, . . . , xn, with autocorrelation function

ρ(h) = ρh for h = 1, 2, 3, . . ., and with unknown mean µ, variance σ2, and autocorrelation

parameter ρ ∈ (−1, 1). If you do the traditional x̄n±1.96 sn/
√
n interval for µ, recommended

in 99 statistics books, with sn the empirical standard deviation, what will be its confidence

coverage level?

(d) Give estimators for µ, σ, ρ, constructed from the observed time series.
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(e) Give a more careful and appropriate 95 percent confidence interval, taking autocorrelation

into account. Note in particular that such a confidence interval is wider than the traditional

one, when the autocorrelation is positive.

2. An autoregressive time series model

Construct a time series x1, x2, . . . , xn as follows, via i.i.d. ε1, . . . , εn being standard normal. Let

x1 = ε1 and then xt+1 = ρxt + εt+1 for i = t, 2, . . ., where ρ is a value inside (−1, 1).

(a) Take n = 100 and ρ = 0.345, and simulate such a time series in your computer. Check what

the acf(xdata) does, playing also a bit with other combinations of n and ρ.

(b) Write Ft for all observed history up to and including time point t. Show that E (xt+1 | Ft) =

ρxt and Var (xt+1 | Ft) = 1. Deduce also from this that

Ext = ρExt−1 and Varxt = 1 + ρ2 Varxt−1.

Show that Ext = 0, for all t, and find a formula for the variance of xt.

(c) Starting from

x2 = ρε1 + ε2,

x3 = ρ2ε1 + ρε2 + ε3,

x4 = ρ3ε1 + ρ2ε2 + ρε3 + ε4,

find a general formula for xt, expressed in terms of the i.i.d. components ε1, . . . , εt. Use this

to find and explicit distribution of xt. Also show

VarXt = 1 + ρ2 + ρ4 + · · ·+ ρ2(t−1) =
1− ρ2t

1− ρ2
,

re-proving what you found in (b).

(d) Find the explicit covariance and correlation between xi and xi−1.

(e) When the time series has been at work for some time, show that

Varxi →
1

1− ρ2
, cov(xi, xi+1)→ ρ

1− ρ2
, cov(xi, xi+2)→ ρ2

1− ρ2
,

etc.

(f) Show that the real acf (the autocorrelation function) becomes 1, ρ, ρ2, ρ3, . . .,

(g) Simulate a few time series using the above construction, with a few combinations of n and

ρ. Verify that with n moderate-to-large, the empirical acf(xdata) becomes close to the real

1, ρ, ρ2, ρ3, . . ..

(h) Then generalise to the case of the new contributions having variance σ2
w, not necessarily equal

to 1. In other words, xt = ρxt−1 +wt for t = 1, 2, . . ., where the wt are i.i.d. with mean zero

and variance σ2
w; Show that for the stationary version of this, where the chain has reached

its equilibrium, has

γ(0) = Varxt =
σ2
w

1− ρ2
, γ(h) = cov(xt, xt+h) =

σ2
w

1− ρ2
ρh,

which also leads to correlations ρ(h) = ρh for h = 1, 2, . . ..
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3. Using regression modelling for the Johnson & Johnson dataset

Consider the dataset called jj in the astsa package, giving the quarterly earnings of the J & J

company, from quarter 1 1960 to quarter 4 1980. One wishes to study how these y1, . . . , yn evolve

over time (with n = 84 quarters over 21 years), e.g. to predict earnings for the coming year. The

task here is to go through some regression models, so to speak before factoring in correlations and

specific time series aspects.
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Figure 0.1: The JJ data, with estimated trend, from the five-parameter model.

(a) Write xt = t−1960, for t = 1, . . . , n. Fit the rather simple classic linear regression model, with

yt = β0+β1xt+εt, with the εt taken i.i.d. N(0, σ2). Look at the fitted trend m̂1(t) = β̂0+β̂1xt,

alongside data, to check that this model is far too simple. For the practice, check also the

residuals r1,t = yt − m̂1(t); these will vary too much, indicating again that this model is too

coarse.

(b) A rather better model is to include a quadratic term for the trend. Fit the regression model

yt = β0+β1xt+β2x
2
t +εt, again with the εt taken i.i.d. from the N(0, σ2). Plot the estimated

trend m̂2(t) = β̂0 + β̂1xt + β̂2x
2
t alongside data, examine the residuals r2,t = yt − m̂2(t), and

comment on what you find.

(c) You learn from the above that the trend function is adequately described by such a parabola,

but that that variance of data is not constant; it increases over time. So try the variance

heteroscedastic model

yt = β0 + β1xt + β2x
2
t + σtεt, for t = 1, . . . , n, with σt = exp{γ0 + γ1(xt − x̄)},

and with the εt now being i.i.d. and standard normal. The model has three parameters for the

mean and two for the variance. Show that the log-likelihood function for this five-parameter
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model can be expressed as

`(θ) =

n∑
t=1

{− log σt − 1
2 (yt − β0 − β1xt − β2x2t )2/σ2

t − 1
2 log(2π)},

in terms of the full parameter vector θ.

(d) Find the maximum likelihood (ML) estimates, say θ̂ml, by numerically maximising the log-

likelihood function. Compute also approximate standard errors, for the five parameter esti-

mates, via the general normal approximation theorem for parametric models,

θ̂ml ≈d Np(θ, Σ̂), with Σ̂ = Ĵ−1. (0.1)

Here Ĵ = −∂2`(θ̂ml)/∂θ∂θ
t, the Hesse matrix of second order derivatives, computed at the

the ML position. Using nlm in R you get the Hesse matrix for free, along with the numerical

optimisation, using something like

hello = nlm(minuslogL,starthere,hessian=T)

followed, pretty generically and very usefully, by

ML = hello$estimate

Jhat = hello$hessian

se = sqrt(diag(solve(Jhat)))

showme = cbind(ML,se,ML/se)

print(round(showme,4))

(e) Produce a version of Figure 0.1.

(f) There’s at least one more very useful practical thing to learn, following from the general

machinery of the Master Theorem (0.1, namely the so-called delta method. If one is interested

in a a certain parameter, day γ, which is a function γ = g(θ) of the model parameters, then

(i) the ML estimator is γ̂ml = g(θ̂ml), i.e. via simple plug-in; and (ii) it is approximately a

normal, with

γ̂ml ≈d N(γ, τ̂2),

with τ̂2 = ĉtΣ̂ĉ, where ĉ = ∂g(θ̂ml)/∂θ is the gradient of g, evaluated at the ML estimate. In

R language, if we first programme the g as a function, we have

gammahat = g(ML)

chat = grad(g,ML)

tauhat = sqrt(chat %*% solve(Jhat) %*% chat)

I find it practical to include the numDeriv package, which has grad and hessian on board.

Now try out such a machinery, by working with γ, the 0.90 quantile of the distribution for

the next datapoint, in the JJ estup.

(g) Once you have the basic code up and running it is relatively easy to try out other variations

of such models. Try to put in a cyclic term, perhaps β4 cos(2πt/4), and again look at both

the residuals and the acf.
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4. Understanding the empirical acf, under independence

Suppose x1, x2, . . . are really independent, with mean zero and variance one. What happens then,

with the acd(xdata)? Below, write x̄a,b for the average of values xa, . . . , xb.

(a) Consider first An = (1/n)
∑n−1
t=1 xtxt+1. Show that An has mean zero and variance (n−1)/n2,

i.e. approximately 1/n.

(b) Then go to the proper empirical Bn = (1/n)
∑n−1
t=1 (xt − x̄1,n)(xt+1 − x̄1,n). Show that

Bn = An −
n− 1

n
x̄1,nx̄1,n−1 −

n− 1

n
x̄1,nx̄2,n +

n− 1

n
x̄21,n

.
= An − x̄21,n,

with
.
= meaning ‘good approximation, not affecting limits when n grows’.

(c) Show that Bn, like the simpler An, has mean zero and variance approximately equal to

1/n. Show then that An →pr 0, Bn →pr 0, with ‘→pr’ denoting convergence in probability:

Pr(|Bn| ≥ ε)→ 0 for each small ε.

(d) Since An is a sum of variables with the same distribution, with mean zero, and VarAn
.
= 1/n,

it is natural to expect limiting normality, i.e.
√
nAn →d N(0, 1). This does not follow from

the traditional CLTs (central limit theorems), since x1x2 is not independent of x2x3, etc.

Check with the book’s Appendix A.2, however, concerning CLTs for m-dependent variables,

and verify that indeed
√
nAn →d 1.

(e) From
√
nBn

.
=
√
nAn −

√
nx̄21,n, show that also

√
nBn →d N(0, 1), i.e. the same limit

distribution.

(f) Now go from 1-step to 2-step, and work through the details for An = (1/n)
∑n−2
t=1 xtxt+2 and

Bn = γ̂(2) = (1/n)

n−2∑
t=1

(xt − x̄1,n)(xt+2 − x̄1,n).

The main things are that γ̂(2) →pr 0, the true value of γ(2) under independence, and that
√
nγ̂(2)→d N(0, 1).

(g) Generalise properly to the result
√
nγ̂(h)→d N(0, 1), for

γ̂(h) = (1/n)

n−h∑
t=1

(xt − x̄1,n)(xt+h − x̄1,n).

(h) So far we’ve assumed variance σ2 = 1, for simplicity of presentation and argumentation. For

the general case, show that for a sequence of independent variables, with some mean µ and

variance σ2, we have
√
nγ̂(h)→d N(0, σ4). Finally show that for

ρ̂(h) =
γ̂(h)

γ̂(0)
= (1/n)

n−h∑
t=1

(xt − x̄1,n)

σ̂

(xt+h − x̄1,n)

σ̂
=

∑n−h
t=1 (xt − x̄1,n)(xt+h − x̄1,n)∑n

t=1(xt − x̄1,n)2
,

our good friend the acf, we do have the clarifying easy good result
√
nρ̂(h)→d N(0, 1).

(i) For such a sequence of i.i.d. variables, show that when one computes the empirical acf, then

Pr{ρ̂(h) ∈ [−1.96/
√
n, 1.96/

√
n]} → 0.95,

for each lag h. This is the reason for the ‘magical band’ ±1.96/
√
n provided in the standard

use of acf.
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5. A simple moving average process

Suppose w0, w±1, w±2, . . . are i.i.d., with finite variance σ2. Then consider the process

xt = awt−1 + (1− 2a)wt + awt+1,

with a a tuning parameter. We call this a moving average process, with window length 3.

(a) Compute the variance of xt, and also the covariance function γ(h) and autocorrelation func-

tion ρ(h). Plot the acf for a few values of a, including the equal balance case of a = 1/3.

(b) Then do a similar analysis for a 5-window moving average process, of the type

xt = awt−2 + awt−1 + (1− 4a)wt + awt+1 + awt+2.

Again, plot the acf for a few values of a, including the balanced case of a = 1/5.

(c) Similarly consider the case of

xt = ρ2wt−2 + ρwt−1 + wt + ρwt+1 + ρ2wt+2.

Find the acf, and plot it, for a few values of ρ.

6. A general stationary normal time series model

Suppose x1, . . . , xn is a stationary normal time series, which means that the full vector has a

multinormal distribution; this is also equivalent to saying that all linear combinations are normal.

Assume it has mean µ, varianec σ2, and correlation function ρ(h) = corr(xt, xt+h).

(a) Show that the joint distribution of the full series is a Nn(µ1, σ2A), where 1 = (1, . . . , 1)t is

the vector of 1s, and A the Â n× n matrix of ρ(s− t), for s, t = 1, . . . , n; in particular, the

diagonal elements are all 1.

(b) Using the basic definition of the multinormal joint density, show that the log-likelihood

function can be written

`(θ) = −n log σ − 1
2 log |A| − 1

2 (y − µ1)tA−1(y − µ1)/σ2 − 1
2n log(2π),

wiith θ the parameters involved. If the correlation function is known, then A is known, and

θ comprises only µ, σ. For such a case, show that the ML estimators become

µ̂ =
1tA−1y

1tA−11
and σ̂2 =

Q0

n
, with Q0 = (y − µ̂1)tA−1(y − µ̂1).

Check that this leads to familiar formulae in the case of i.i.d. observations, where A = In,

the identity matrix.

(c) If there is a parameter, say λ, in the correlation function, however, we need also A = A(λ),

and we have

`(µ, σ, λ) = −n log σ − 1
2 log |A(λ)| − 1

2 (y − µ1)tA(λ)−1(y − µ1)/σ2 − 1
2n log(2π).

Use the above to find that the log-likelihood profile function, in λ, becomes

`prof(λ) = −n log σ̂(λ)− 1
2 log |A(λ)| − 1

2n−
1
2n log(2π).
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Here one first computes

µ̂(λ) =
1tA(λ)−1y

1tA(λ−11
and then σ̂2(λ) = (1/n)Q0(λ),

where

Q0(λ) = {y − µ̂(λ)1}tA(λ)−1{y − µ̂(λ)1}.

(d) Take e.g. n = 100, generate x1, . . . , xn from the standard normal in your computer, and fit

the three-parameter model which has unknown µ, σ, λ, where the correlation function is

modelled as ρ(h) = exp(−λh) = ρh, i.e. with ρ = exp(−λ) the 1-step correlation. Repeat the

experiment a few times, to see how well the ML estimators succeed in coming close to the

true values.

7. Conditional multinormal distributions

A vector X = (X1, . . . , Xn) has the multinormal distribution, with mean ξ and covariance matrix

Σ, if its density takes the form

f(x) = (2π)−n/2|Σ|−1/2 exp{− 1
2 (x− ξ)tΣ−1(x− ξ)}.

We write X ∼ Nn(ξ,Σ) to indicate this; not that the distribution is fully specified by giving the ξ

and the Σ.

(a) Check that this becomes the classic formula for N(ξ, σ2) in the one-dimensional case. In the

general case, show that Y = AX has distribution Nn(Aξ,AΣAt), if A is a n × n matrix.

Show that f integrates to 1.

(b) Block X into X(1) and X(2), of lengths p, q, with p+ q = n. Write

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

with Σ11 of size p×p, etc. Try to show that X(1) | (X(2) = x(2)) is multinormal, in dimension

p, with these important formulae for conditional mean and conditional variance:

E (X(1) |x(2)) = ξ(1) + Σ12Σ−122 (x(2) − ξ(2)),

Var (X(1) |x(2))′′′ = Σ11 − Σ12Σ−122 Σ21.

In particular, the conditional mean is a linear function of x(2), and the conditional variance

is constant.

(c) For the most simple but still interesting case of a normalised binormal distribution, show

that if (
X1

X2

)
∼ N2(

(
0

0

)
,

(
1 ρ

ρ 1

)
),

then X2 | (X1 = x1) is normal (ρx1, 1− ρ2). Generalise to the case where X1, X2 have means

ξ1, ξ2 and variances σ2
1 , σ

2
2 .
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8. Predicting x2 after having seen x1

Part of the business of time series modelling and analysis is to predict: what happens next? If we

see x1, what can we say about the x2 of tomorrow? It is useful to learn from the multinormal

situation.

(a) Suppose (
X1

X2

)
∼ N2(

(
0

0

)
,

(
1 ρ

ρ 1

)
),

with knoen ρ, and that x1 has been observed. In which sense is x̂2 = ρx1 the best prediction

for x2? Give a 95 percent prediction interval for x2, and discuss how its length is influenced

by ρ.

(b) Suppose X1, . . . , Xn, Xn+1 have a joint multinormal distribution, as for many time series

model, and that x1, . . . , xn are observed. Give the distribution for Xn+1, given x1, . . . , xn.

Give also a prediction for xn+1, and a 95 percent prediction interval.

(c) Specialise the above to the case of a stationary Gaussian time series model, with mean µ,

variance σ2, and correlation function ρ(h) for h = 1, 2, 3, . . .. Again give a prediction, and a

prediction interval, for xn+1, assuming that x1, . . . , xn have been observed.

(d) Discuss how these formulae hold up outside the multinormal situation.

9. The AIC and the BIC

Suppose there are competing parametric models for the same dataset, of size n (the number of

observed data points, or data vectors). One first fits these candidate models, say M1, . . . ,Mk, by

maximising their likelihoods. Writing `j(θj) for model Mj , we find the ML estimate θ̂j and the

maximised log-likelihood value,

`j,max = `j(θ̂j) for j = 1, . . . , k.

Then we define

aicj = 2 dim(θj)− 2`j,max and bicj = dim(θj) log n− 2`j,max, (0.2)

with dim(θj) the number of parameters estimated in that model. These are the Akaike Information

Criterion and the Bayesian Information Criterion; see Chapters 2, 3 in Claeskens and Hjort (2008)

for considerably more information. These two information criteria act as ranking scores for the

competing models, with small values being preferred over bigger ones. Thus there is an AIC winner

and a BIC winner (perhaps the same).

Note that these AIC and BIC recipes are completely general; they may be used with indepen-

dent data, or for time series models with dependence, we may compare normal with non-normal

models, and almost apples with bananas.

(a) Explain, in intuitive terms, why these ranking criteria make sense, balancing complexity with

model fit. Explain also that the BIC places a harsher penalty on complexity (well, as long

as n ≥ 8).
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(b) Suppose I have two coins, with probabilities pa and pb for ‘krone’. I flip them 40 times each,

and get 17 krone with the first and 23 krone with the second. Model 1 says that pa = pb;

model 2 says that pa and pb are different. Which of these two models is best, according to

the AIC, and to the BIC? – Note that we get answers, of the type ‘model 1 is better than

model 2’, etc., without using formal null hypothesis tests, and there’s no ‘0.05’ business going

on (well, at least not directly).

(c) Interestingly, it turns out that I have three coins in my skuff. I call their krone probabilities

pa, pb, pc, and the number of times I do get a krone, in 40 flips for each, are 17, 23, 26. Carry

out AIC and BIC analysis, to rank as many as five candidate models: (i) pa, pb, pc are equal;

(ii) pa = pb but different from pc (iii) pa = pc but different from pb; (iv) pb = pc but different

from pa; (v) the three are different.

(d) Suppose a certain start model has dimension k and log-likelihood maximum value `0,max, and

that one contemplates extending this start model to a bigger one, with one more parameter.

Assume specifically that the narrow model lies inside the bigger model. Argue that

∆ = `1,max − `0,max

must be positive. Show that AIC thinks the extended model is a good idea, provided ∆ > 1.

The BIC, however, thinks it’s only worth the trouble if ∆ > 1
2 log n. – One may show that

if the narrow model holds, then 2∆ ≈d χ2
1, so this can be used to see how likely it is to

‘incorrectly’, or unnecessarily, choose the bigger model, if the narrow model is already ok.

10. The AIC and the BIC for linear regression models

We now apply the general AIC and BIC schemes for comparing and ranking different linear regres-

sion models, for the same dataset, perhaps to decide on which covariates to include and which to

exclude.

(a) Suppose we have regression data (zt, xt), for t = 1, . . . , n, with xt the main outcome (perhaps

a time series) and zt = (zt,1, . . . , zt,k)t a covariate vector of length k. Consider the classical

linear regression model, with

xt = β1zt,1 + · · ·+ βkzt,k + εt = zttβ + εt for t = 1, . . . , n,

with the εt being i.i.d. N(0, σ2). Show that the log-likelihood function can be written

`k(β, σ) = −n log σ − 1
2Q(β)/σ2 − 1

2n log(2π), (0.3)

with subscript k for the number of covariates included in the model. Here

Q(β) =

n∑
t=1

{xt −mt(β)}2, where mt(β) = E (xt | zt) = zttβ,

the classic sum of squares.

(b) Show that the ML estimator for β is the least sum of squares estimator, with a formula

β̂ = Σ−1n n−1
n∑
t=1

ztxt =
(
n−1

n∑
t=1

ztz
t
t

)−1
n−1

n∑
t=1

ztxt,
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assuming here that there is no linearity between the covariate vectors, so that Σn has full

rank. Show then that the ML estimator for σ is σ̂2
k = Qmin/n = Q(β̂)/n. Deduce from this

that

`k,max = max{`k(β, σ) : all β, σ} = −n log σ̂k − 1
2n−

1
2n log(2π).

(c) Deduce that for such a linear regression model, with k covariates on board, we have

aick = 2(k + 1) + 2n log σ̂k + n+ n log(2π),

bick = (k + 1) log n+ 2n log σ̂k + n+ n log(2π).

By omitting factors not depending on the different models, show then, that doing well for

AIC is the same as having a small k+ n log σ̂k, or 2k+ n log σ̂2
k; and that doing well for BIC

is the same as having a small k log n+ 2n log σ̂k, or k log n+ n log σ̂2
k.

(d) Above we’ve derived AIC and BIC formulae from their general definitions. Check that ‘doing

well with AIC’ is equivalent to what we find by using the book’s AIC formula, and the same

with BIC, even though the book’s AIC and BIC formulae are not fully identical to the aick

and bick above. – The general AIC and BIC formulae, as laid out in this exercise, are part

of the course’s active curriculum, and can specifically be used when comparing different time

series models for the same dataset.

11. Where are the snows of yesteryear?

Figure 0.2 is a dramatic one, for at least my segment of civilisation. It gives the number of skiing

days at the location Bjørnholt in Nordmarka, a skiing hour away from tram stations Voksenkollen

and Frognerseteren, with skiing day defined as there being at least 25 cm snow on the ground.

The linear trend is the estimated regression line using what we call Model 2 below, drastically

indicating that the climate has consequences also for the skiing days of the Oslo people. See Heger

(2011) and Cunen, Hermansen, and Hjort (2019) for further discussion and details.

The time series goes from 1897 to 2015, but, crucially, there’s a big hole in the series, with no

data recorded from 1938 to 1954. This spells trouble for classes of traditional time series models,

since there prefer data to be equidistanced. We may still model and analyse the data, using

autocorrelation functions, etc., though.

(a) Let for convenience zt = year− 1896, so that these start out like 1, 2, 3, . . ., and let xt be the

skiing days number for year t, if recorded. Fit first Model 0 and Model 1, using ordinary linear

regression, ignoring time dependence. Model 0 takes xt = β0+ε0,t, with the ε0,t i.i.d. N(0, σ2
0),

i.e. assumes a constant stationary level. Model 1 takes xt = β0 + β1zt + ε1,t, with the ε1,t

i.i.d. N(0, σ2
1). Give a 95 percent confidence interval for β, and give an interpretation of

this negative trend coefficient. Also carry out AIC analysis. You should find log-likelihood

maxima `0,max = −519.479 and `1,max = −512.167.

(b) For Model 1, compute and inspect the estimated residuals, rt = {xt − m̂1(t)}/σ̂2, where

m̂2(t) is the estimated trend under Model 1. Check in particular the acf, and comment.

(c) Then go to Model 2, which includes autocorrelation. We take

xt = β0 + β1zt + σεt for t = 1, 2, 3, . . . , with corr(εs, εt) = ρ|s−t|.

10
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Figure 0.2: The number of skiing days per year, at the location Bjørnholt in Nordmarka, from 1897 to 2015, though

with a gap in the series, with no records from 1938 to 1954. The red line is the estimated regression

from the four-parameter Model 2.

So ρ is the correlation for skiing days numbers for consecutive years; ρ2 for times two years

apart, etc. We also take the εt to be jointly multinormal with mean zero and variance one.

Show that this entails

x ∼ Nn(ξ, σ2Aρ),

where ξt = β0 +β1zt, and Aρ is the n×n matrix with 1 on the diagonal and ρdi,j in position

(i, j), with di,j the time difference. Note that this Aρ is well-defined in spite of the gap in

the time series. We have n = 102, the number of observations.

(d) Show that the log-likelihood function can be written

`(β0, β1, σ, ρ) = −n log σ − 1
2 log(det(Aρ))− 1

2 (x−mt)
tA−1ρ (x−mt)/σ

2 − 1
2n log(2π),

where mt = β0 + β1zt. It is numerically a bit troublesome to maximise this here (also since

we cannot uitilise simplifying formula for the inverse and determinant of Aρ, due to the gap

in the data, which means data not being equidistant). It is practical to compute and display

the log-likelihood profile function instead:

`prof(ρ) = max{`(β0, β1, σ, ρ) : all β0, β1, σ} = `(β̂0(ρ), β̂1(ρ), σ̂(ρ), ρ).

Try to reproduce Figure 0.3.

(e) In particular, by carrying out these computations, involving maximising over parameters

(β0, β1, σ) for each ρ, you should find that the ML estimate for ρ is ρ̂ = 0.208, and that

`2,max = −509.983. Carry out AIC analysis for comparing Models 0, 1, 2.

11



(f) Given Model 2, predict the numnber of skiing days in 2013, given the data collected up to

2012, and give an approximate 90 percent confidence interval. Do this exercise also trusting

Model 1; compare, and discuss.

(g) Try out one or two more models for these data.
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Figure 0.3: The log-likelihood profile funcion `prof(ρ), for the Bjørnholt data, for the four-parameter model with

linear trend, a constant σ, and correlation function ρ|s−t|, for pairs of data with interdistance |t − s|.
The horizontal dashed line indicates the level `1,max obtained for the submodel of independence, where

ρ = 0.

12. Estimating the three parameters in stationary AR(1)

Consider the stationary Gaussian AR(1) model, with

xt = µ+ σεt for t = 1, . . . , n,

where the εt are standard normal, but correlated with corr(εs, εt) = ρt−s|.

(a) Take n = 100, µ = 0, σ = 1, ρ = 0.555 in your computer, and simulate a dataset from

this model. Use results and insights from Exercise 2 to do this. – There are also other

general simulation schemes, for simulating from a general multinormal distribution, which I

will briefly come back to in my teaching. You may also use library(MASS) and then use

mvrnorm.

(b) Then estimate (µ, σ, ρ) from the data you’ve created, using ML, maximum likelihood. You

may do this via the log-likelihood profile function `prof(ρ); see earlier R scripts from Nils of

this type.

(c) Compare your ρ̂ml with two other estimators, both of the form

ρ∗ =
1

n

n∑
t=2

xt−1 − µ̂
σ̂

xt − µ̂
σ̂

.

12



Version (i) uses the simple classic estimates for (µ, σ), trusting independence; version (ii) uses

the more elaborate (µ̂ml, σ̂ml), from ML in the three-parameter model.

(d) Construct both an estimator and an (approximate) 90 percent confidence interval for the

next point, i.e. xn+1, based on having observed the first n datapoints.

(e) When your code works, for a single simulated dataset, to a loop on top, to simulate the full

thing e.g. sim = 1000 times, to learn how the estimators perform. Whare are the differences

in performance, for the three estimators of ρ? Do your 90 percent confidence intervals manage

to capture xn+1 anout 90 percent of the time?

13. Estimating cycle length

A model used a few places in the book for capturing cyclic behaviour is

xt = a cos(2πt/ω + φ) + εt for t = 1, . . . , n,

with different natural assumptions for the the εt. We will do fuller time series versions of this

later, but on this occasion we make life simple by taking the εt i.i.d. N(0, σ2). The model has three

parameters for the mean, including the crucial cycle length parameter ω, and so far one for the

variability. It turns out that estimation of ω can be carried out with remarkable precision.

(a) Simulate such a dataset, for say n = 200, and with values you choose yourself for atrue, φtrue,

σtrue, and take ωtrue = 7 (think about seven days a week). First take ωtrue to be known, and

estimate the parameters a, φ. You may use the trick of Example 2.10 in the book, to convert

the problem to linear regression in cos(2πt/ωtrue) and sin(2πt/ωtrue); or why not attack the

problem directly, minimising

Qn(a, φ) =

n∑
t=1

{xt − a cos(2πt/ω + φ)}2

by throwing it to the clever nlm minimisation algorithm. Check that these two computational

methods give the same answers.

(b) For the case of (a, φ) known, making cycle length ω the single unknown parameter in the

mean function, let φ̂ be the minimiser of Qn(ω) =
∑n
t=1{xt − a cos(2πt/ω + φ)}2. Attempt

to prove the miraculous result that

n3/2(ω̂ − ω)→d

√
6

2π
ω2σ

a
N(0, 1).

This means that the variance of ω̂ is surprisingly small. I haven’t seen this in the literature,

and I might write up a paper about such themes.

(c) Then estimate also ω from your simulated dataset, using the profiled log-likelihood function

`prof(ω) = max{`(a, φ, σ, ρ) : over all a, φ, σ}.

You might find that the cycle length ω is rather sharply estimated, with good precision.

(d) How can you set approximate 90 percent confidence intervals for the parameters? Play with

your code a bit, setting different values for (a, φ, ω, σ), and also n. Check how your estimates

work.

13



(e) Try to extend your model and estimation schemes to the case where there also is an auto-

correlation parameter.

14. Annual mean temperature at New Haven

Fin the dataset nhtemp of annual average temperature at New Haven, from 1912 to 1971, and

then please translate these to the Celsius scale; this is xt = (xt,F − 32)/(5(9), I think. Writing

t = 1, 2, . . . , 60 for these years, let for numerical convenience zt = yrt − ȳr, travelling through

1912− ȳr, . . . , 1971− ȳr, with ȳr the averaige of these n = 60 year. It is easiest and best to write

down and work with models in terms of such a zt, rather than with the high numbers 1912-1971.
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Figure 0.4: Annual average temperature at New Haven, 1912 to 1971, with prediction and 90 percent confidence for

5 years before and 5 years after.

(a) Fit first the two simple classical models M0, where xt = β0 + σεt, and M1, where xt =

β0 + β1zt + σεt, where the ε are i.i.d. and standard normal. Trusting model M1, what is a

confidence interval for β1? Give an interpretation of this result.

(b) Then go to modelM2, which takes xt = β0+β1+σεt, now with correlations corr(εs, εt) = ρs−t.

Fit this four-parameter model to data. Find a confidence interval for ρ. Find also AIC scores

aic0, aic1, aic2, and comment.

(c) For fun & profit, investigate one more model, namely the four-parameter model xt = β0 +

β1zt + σεt, where the εt now are taken i.i.d. from the tν , the t distributiion with degrees of

freedom ν. The point is that this allows fatter tails than the normal, with outcomes say 2

standard deviations away from the mean less strange than under normal conditions. Fit the

model, and find the AIC score.

(d) Go 5 years into the future, and also 5 years into the past, to provide both a point estimate

and a 90 percent prediction interval for the average temperature at New Hanven, for the

14



years 1907 and 1976. Try to construct a version of Figure 0.4. Play with your code to learn

a bit more.

15. The AR(p) model: definition, presentation, backshift polynomials, estimation

Consider a stationary zero-mean time series model for x1, . . . , xn, with the autoregressive property

that

xt = φ1xt−1 + φ2xt−2 + φ3xt−3 + wt for t = 4, 5, . . . , n. (0.4)

Here the wt are seen as i.i.d. white noise terms, with mean zero and variance σ2
w. We call this an

AR(3) model. The parameters in play are φ = (φ1, φ2, φ3)t for the autoregressive structure and σ2

for the variability level. It will be clear how to generalise to any AR(p) model, with p ≥ 1.

(a) It is useful to simulate a few time series realisations from such a model, with different sets of φ

parameters. One way is as follows: construct a longer chain, say x−50, x−49, . . . , x0, x1, . . . , xn,

with an extra burn-in phase, starting at perhaps even strange values, and then letting (0.4)

decide on the rest. After this, trusting that the chain has reached its equilibrium after the

burn-in, discard this burn-in portion, and consider (x1, . . . , xn) a sample from the AR(3).

– Now do this, with say n = 250, and these two choices for φ: (i) (0.60, 0.30, 0.05); (ii)

(0.30, 0.40, 0.50).

(b) You are supposed to learn from simple simulations above that not all φ1, φ2, φ3 are OK, but

OK means stationarity and stability; not-OK might mean explosions and eruptions. We shall

find a clear criterion for OK-ness below. Start by showing that

φ(B)xt = (1− φ1B − φ2B2 − φ3B3)xt = wt for all t,

where B is the backshift operator, with Bxt = xt−1, B2xt = B(xt−1) = xt−2, etc.

(c) Then we allude to a general stationarity lemma (not made precise here, and not proven): for

any zero-mean stationary sequence, with finite variance, it can be presented in the form

xt =

∞∑
j=0

ψjwt−j = ψ0wt + ψ1wt−1 + ψ2wt−2 + · · · ,

where the wt are i.i.d. zero mean white noise variables with some variance σ2
w. Note that

this somehow requires an infinite past; that xt is a function of all these ws for s ≤ t; but

that xt is not allowed to depend on the future. – Show that xt has variance (
∑∞
j=0 ψ

2
j )σ2

w,

so convergence of this series is assumed. Find also expressions for γ(1) = cov(xt, xt+1) and

γ(2) = cov(xt, xt+2).

(d) Show that ψ(B)wt = xt, for all t, where ψ(B) = ψ0+ψ1B+ψ2B
2+· · · is the psi representation

infinite-degree polynomial. Show from this that

φ(B)ψ(B)wt = wt, ψ(B)φ(B)xt = xt,

for all t. Consider φ(z) = 1 − φ1z − φ2z2 − φ3z3 and ψ(z) =
∑∞
j=0 ψjz

j , and note that the

natural domain for z, inside which there is convergence of the power series, is |z| ≤ 1, the

unit circle in the complex plane. Argue that we need to have

ψ(z)φ(z) = 1 for all z with |z| ≤ 1.

15



A criterion for OK-ness is clearly that φ(z) 6= 0 for |z| ≤ 1; all the roots, of this 3rd order

polynomial, need to lie outside. This is actually a necessary and sufficient condition for (0.4)

to determine a well-defined stationary mean-zero process.

(e) In principle, the φ determines all the ψj , via the equation above. At least for z small, show

that

ψ(z) =
1

1− φ1z − φ2z2 − φ3z3

= 1 + (φ1z + φ2z
2 + φ3z

3) + (φ1z + φ2z
2 + φ3z

3)2 + (φ1z + φ2z
2 + φ3z

3)3 + · · ·

= 1 + φ1z + (φ2 + φ21)z2 + (φ3 + 2φ1φ2 + φ3)z3 + · · · .

Equating coefficients, perhaps aided by computer algebra code, will then give us all ψj , from

φ1, φ2, φ3.

(f) Let as elsewhere in the course γ(h) = cov(xt, xt+h), with correlation ρ(h) = corr(xt, xt+h).

Multiply the start equation xt − φ1xt−1 − φ2xt−2 − φ3xt−3 − wt = 0 with xt−h, to get

xt−hxt − φ1xt−hxt−1 − φ2xt−hxt−2 − φ3xt−hxt−3 − xt−hwt = 0.

First, for h = 0, deduce that

γ(0)− φ1γ(1)− φ2γ(2)− φ3γ(3) = σ2
w,

important in its own right; if we manage to estimate the φ, via the empirical γ(h), we also

manage to estimate σw. Secondly, show that

γ(h)− φ1γ(h− 1)− φ2γ(h− 2)− φ3γ(h− 3) = 0,

ρ(h)− φ1ρ(h− 1)− φ2ρ(h− 2)− φ3ρ(h− 3) = 0,

valid for h = 1, 2, . . .. These are called the Yule–Walker equations (and though modern in

outlook and use, they’re astoundingly old, in essence from these two scholars’ papers from

1927 and 1931). From this find

ρ(1)− φ1ρ(0)− φ2ρ(1)− φ3ρ(2) = 0,

ρ(2)− φ1ρ(1)− φ2ρ(0)− φ3ρ(1) = 0.

and find from these equations ρ(−2), ρ(−1) expressed via the φ. We may then use the

recurrence relations above to read off, or to find values, for say ρ(1), . . . , ρ(100).

(g) From equations above, show that

γ(0)φ1 + γ(1)φ2 + γ(2)φ3 = γ(1),

γ(1)φ1 + γ(0)φ2 + γ(1)φ3 = γ(2),

γ(2)φ1 + γ(1)φ2 + γ(0)φ3 = γ(3),

or in matrix form

Γ3φ = γ3, or φ = Γ−13 γ3.

Here Γ3 is the 3 × 3 matrix with elements γ(j − k) for j, k = 1, 2, 3 and γ3 the 3 × 1 vector

with elements γ(1), γ(2), γ(3).
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(h) Argue that all of this leads to the estimator

φ̂ =

φ̂1φ̂2
φ̂3

 =

γ̂(0) γ̂(1) γ̂(2)

γ̂(1) γ̂(0) γ̂(1)

γ̂(2) γ̂(1) γ̂(0)


−1γ̂(1)

γ̂(2)

γ̂(3)

 ,

where

γ̂(h) = n−1
n∑

t=h+1

(xt − x̄)(xt−h − x̄).

The estimation for the AR(3) process is completed by setting

σ̂2
w = γ̂(0)− φ̂1γ̂(1)− φ̂2γ̂(2)− φ̂3γ̂(3).

(i) (xx briefly. using appendix. need
√
n(γ̂ − γ). then read off

√
n(φ̂− φ). also need σ2

w. xx)

16. Simulating AR(p) processes and estimating their parameters

Set up a simulation scheme, to create x1, . . . , xn of length e.g. n = 250, from a zero-mean AR(3)

model, where you choose your AR parameters φj as you wish. Make sure that the AR polynomial

φ(z) = 1 − φ1z − φ2z2 − φ3z3 is not touching zero for the |z| ≤ 1 unit circle, however, to ensure

stationarity (and so-called causality) – you may use polyroot in R for this, working for any such

AR backshift operator polynomial 1−φ1z− · · · −φpzp. Do the simulation by starting ‘somewhere

in the past’, with a burn-in phase, then throw away the burn-in part afterwards.

For your simulated chain of xt, estimate the φ parameters and also the noise level σw, using

the methods of Exercise 15. Play with your code a bit, to learn how well the estimators work.

17. The MA(q) time series model

The MA(q) model for a zero-mean time series holds that

xt = wt + θ1wt−1 + · · ·+ θqwt−q,

in terms of unobserved i.id. variables wt with mean zero and finite variance, say σ2
w. One sometimes

writes the first term as θ0wt, for notational symmetry, with θ0 = 1.

(a) Consider the MA(1) model, with xt = wt + θwt−1. Show that

γ(0) = (1 + θ2)σ2
w, γ(1) = θσ2

w, γ(2) = 0,

indeed with γ(h) = 0 for h ≥ 2. Show from this that ρ(1) = θ/(1 + θ2), and that |ρ(1)| ≤ 1
2 .

(b) For the MA(2) model, show that

γ(0) = (1 + θ21 + θ22)σ2
w, γ(1) = (θ0θ1 + θ1θ2)σ2

w, γ(2) = θ0θ2σ
2
w,

with γ(h) = 0 for h ≥ 3. Also show that

ρ(1) =
θ0θ1 + θ1θ2
1 + θ21 + θ22

, ρ(2) =
θ0θ2

1 + θ21 + θ22
,

with ρ(h) = 0 for h ≥ 3.

17



(c) We saw that for the MA(1), ρ(1) was constrained to be inside [− 1
2 ,

1
2 ]. For MA(2), check the

possible parameter region for (ρ(1), ρ(2)). – One easy way to do this is to generate say 1000

values or θ1, θ2 from e.g. the standard normal, and plot the resulting (ρ(1), ρ(2)). One then

discovers the allowed parameter region (in a sense without any mathematical analysis), and

may also read off that |ρ(1)| ≤ 1/
√

2, |ρ(2)| ≤ 1/2.

(d) Assume you actually observe x1, . . . , xn, for a reasonably high n, and compute its acf. What

behaviour would you expect this to have, if the model behind the data is an MA(2)?

(e) Simulate an MA(2) process x1, . . . , xn, for say n = 500, with θ1 = 0.66 and θ2 = 0.33.

Compute the autocorrelations ρ̂(1), ρ̂(2) from the data, and equate these to the population

parameters ρ(1), ρ(2), to find autocorrelation based estimators θ̂1, θ̂2. From these also esti-

mate the underlying σw. Repeat the experiment say 1000 times, to check the precision of

these estimators. – The empirical autocorrelations can be computed from scratch, but are

also available via acf(x)$acf[c(2,3)].

(f) Then go on to an MA(3) model, of the type xt = wt + θ1wt−1 + θ2wt−2 + θ3wt−3, where the

wt are i.i.d. with zero mean and variance σ2
w. Show that

ρ(1) =
θ0θ1 + θ1θ2 + θ2θ3
1 + θ21 + θ22 + θ23

, ρ(2) =
θ0θ2 + θ1θ3

1 + θ21 + θ22 + θ23
, ρ(3) =

θ0θ3
1 + θ21 + θ22 + θ23

.

Simulate say 104 values of the MA(3) parameters, then plot ρ(1), ρ(2), ρ(3), to find wondrous

shapes, and read off the implied constraints.

(g) Simulate an AR(3) time series of length n = 500, with zero mean, θ values 0.55, 0.33, 0.11, and

perhaps σw = 1. Then estimate these parameters, by equating the empirical ρ̂(1), ρ̂(2), ρ̂(3)

with their theoretical values.

18. Maximum likelihood estimation for the MA(2) model

Consider an MA(2) model for a zero-mean stationary time series, with the representation xt =

wt + θ1wt−1 + θ2wt−2, in terms of wt being i.i.d. with variance σ2
w. Above we worked with the

correlation fitting estimation method, solving the two equations

ρ̂(1) =
θ0θ1 + θ1θ2
1 + θ21 + θ22

, ρ̂(2) =
θ0θ2

1 + θ21 + θ22
,

where ρ̂(1) and ρ̂(2) are the empirical correlations of orders 1 and 2. After having estimated the

θj we use Varxt = σ2
w(1 + θ21 + θ22) to estimate also σw. – Now we look into ways of finding the

ML estimates. These are expected to have slightly better precision, under model conditions, via

general likelihood theory.

(a) Take xt = wt + θ1wt−1 + θ2wt−2 to be valid for t ≥ 3, supplemented with x2 = w2 + θ1w1

and x1 = w1. Show that this may be written x = Aw, in linear algebra form, where

A = A(θ1, θ2) =



1 0 0 0 0 . . .

θ1 1 0 0 0 . . .

θ2 θ1 1 0 0 . . .

0 θ2 θ1 1 0 . . .

0 0 θ2 θ1 1 . . .

. . .


Note that A is lower triangular, and show that its determinant is 1.
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(b) In addition to assuming that the wt are i.i.d. with zero mean and variance σ2
w, assume their

distribution is normal. Show that x ∼ Nn(0, σ2
wAA

t), and that the log-likelihood function

may be written

`n = `n(θ1, θ2, σw) = −n log σw − 1
2Rn(θ1, θ2)/σ2

w − 1
2n log(2π),

where

Rn(θ1, θ2) = xt(AAt)−1x = xt(At)−1A−1x = zzt =

n∑
t=1

z2t ,

with z = z(θ1, θ2) = A−1x.

(c) Deduce that one way to find the ML estimates is (i) by finding the minimisers (θ̂1, θ̂2) of

Rn(θ1, θ2), and then (ii) letting σ̂2
w = Rn,min/n.

(d) As in a previous exercise, simulate an MA(2) process, with say n = 250, with (θ1, θ2) =

(0.66, 0.33) and σw = 1. Then estimate (θ1, θ2, σw), (i) using the correlation fitting method,

(ii) using ML, following the lines above.

(e) Do a little simulation experiment, to check the extent to which the ML method beats the

correlation fitting method (under model conditions). A very simple seven-minute Nils inves-

tigation appears to indicate (i) that differences are not big, but (ii) slightly more noticeable

for θ2 than for θ1. A bigger investigation would need to look at large-sample theory, and also

at different sample sizes and different parts of the parameter domain.

(f) Above we’ve been in brute force modus, so to speak, using a numerical method with the n×n
matrix A, and needing its inverse to compute z = A−1x. These steps might be made more

clever and faster, using the structure of A. Briefly look into this. Show that AAt is a band

matrix, with elements equal to zero apart from the diagonal and its two diagonal neighbour.

Show also that A−1 is lower triangular, with a certain structure for its columns.

19. The ARMA(p,q) time series model

(xx after all of this: put them together, to form and AR(2,2) process, more generally an MR(p,q)

process. backshift operator, polynomials, estimation, approximate log-likelihood, AIC. i also find

a few real data examples. xx)

20. The spectral domain

Here we gently open the door to the spectral of frequency domain for modelling, interpreting,

analysing classes of time series.

(a) Show first that

xt = A cos(2πωt+ φ) = U1 cos(2πωt) + U2 sin(2πωt),

for U1 = A cosφ, U2 = −A sinφ.

(b) Then do a little transformation-of-variables analysis, going from (U1, U2) in the plane to polar

coordinates U1 = A cosφ, U2 = A sinφ. Find A, φ expressed in terms of U1, U2. First, assume
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U1, U2 are independent N(0, σ2), and work out that A ∼ σ2χ2
2, that φ ∼ unif(− 1

2π,
1
2π), with

these two, length and angle, being independent. Show also the converse, that if (A, φ) are

given these distributions, then indeed U1, U2 are i.i.d. N(0, σ2). It is instructive to ‘verify via

simulations’.

(c) With a given cycle length parameter ω, and with U1, U2 being independent with zero mean

and variance σ2 (perhaps also normal), show that the xt = U1 cos(2πωt) +U2 sin(2πωt) time

series is stationary, with covariance function γ(h) = σ2 cos(2πωh); in particular, the variance

is σ2.

(d) Then consider the interesting time series

xt =

q∑
k=1

{Uk,1 cos(2πωkt) + Uk,2 sin(2πωkt)}, (0.5)

for independent pairs of independent zero-mean Uk,1, Uk,2, with variance σ2
k, and cycle param-

eters ω1, . . . , ωq. Show that its covariance function becomes γ(h) =
∑q
k=1 σ

2
k cos(2πωkh). In

particular, show that the variance is
∑q
k=1 σ

2
k, the sum of the individual variances associated

with the pair (Uk,1, Uk,2) at frequency wk.

(e) Now illustrate the above, in your computer, taking n = 100, then ω1 = 5/n, ω2 = 10/n, ω3 =

15/n, then

x1,t = 1 cos(2πω1t) + 2 sin(2πω1t),

x2,t = 3 cos(2πω2t) + 4 sin(2πω2t),

x3,t = 5 cos(2πω3t) + 6 sin(2πω3t),

and finally xt = x1,t + x2,t + x3,t. Check the values of max(|x1,t|),max(|x2,t|),max(|x3,t|),
and comment. Generalise to the sum of e.g. six such sub-series; the idea here is that rather

complicated time series may be well approximated with those definde in point (d).

21. Spectral representation and the periodogram

For simplicity of presentation of what follows, take the time series length n to be odd. For n even,

just a few modifications are required; see the book’s page 171.

(a) Let x1, . . . , xn be any numbers. By counting unknowns, argue that there must be a repre-

sentation in the form of

xt = x̄+

(n−1)/2∑
j=1

{aj cos(2πtj/n) + bj sin(2πtj/n)}.

(b) In fact these n − 1 equations with n − 1 unknowns can be nicely solved, with the explicit

solutions

aj = (2/n)

n∑
t=1

xt cos(2πtj/n), bj = (2/n)

n∑
t=1

xt sin(2πtj/n).

First verify that this holds, in a simple simulation, where you generate x1, . . . , x99 from some

distribution. Then attempt to prove it.
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(c) Some of the mathematical magic here, leading to the solutions and equations above, involve

the following. For each statement, it is instructive to ‘check it’ numerically (try your own n),

and then attempt to prove it:

(1/n)

n∑
t=1

cos2(2πtj/n) = 1
2 , (1/n)

n∑
t=1

sin2(2πtj/n) = 1
2 ,

as long as j 6= 0 and j 6= n/2. Next, for j 6= k,

n∑
t=1

cos(2πtj/n) cos(2πtk/n) = 0,

n∑
t=1

sin(2πtj/n) sin(2πtk/n) = 0,

and
∑n
t=1 cos(2πtj/n) sin(2πtk/n) = 0 for all j, k.

(d) The scaled periodogram is then defined by P (j/n) = a2j + b2j . These are also called the

fundamental or the Fourier frequencies. – Simulate any time series, of length say n = 99,

then compute and display the P (j/n). Discuss the relation of P (j/n) to the representation

(0.5).

(e) Just a few additional notes on these identities: with m = (n − 1)/2, so that 2m = n − 1,

consider the (n−1)×(n−1) matrix K, where row t has K[t, j] = cos(2πtj/n) for j = 1, . . . ,m

and then K[t,m+ j] = sin(2πtj/n) for j = 1, . . . ,m. Show that the first equations, in point

(a), correspond to

K

(
a

b

)
= x− x̄,

where a = (a1, . . . , am)t and b = (b1, . . . , bm)t. Show that the squared length of each row of

K is m, and that K[t1, ] ·K[t2, ] = − 1
2 , for t1 6= t2.

(f) Then introduce another (n−1)×(n−1) matrix M , with rows M [t, j] = (2/n) cos(2πtj/n) for

t = 1, . . . ,m and M [m+ t, j] = (2/n) sin(2πtj/n) for t = 1, . . . ,m, for j = 1, . . . , n− 1. Show

that K at least partly works as an inverse for K, in that MK is a matrix which has zeroes

upper right and lower left; is equal to the identity matrix Im for lower right, i.e. diagonal

with elements 1 on the diagonal for this m×m submatrix; and finally equal to Im − 2/n for

the upper left m ×m submatrix. [xx finish this suitably. with a few more arguments, this

gives (a, b) in terms of x− x̄. xx]

22. The Discrete Fourier Transform

Related to the (aj , bj) and the scaled periodogram P (j/n) = a2j + b2j of the previous exercise is the

Discrete Fourier Transform, or DFT, discussed here.

(a) As for Exercise 19(e), generate the time series

x1,t = 1 cos(2πω1t) + 2 sin(2πω1t),

x2,t = 3 cos(2πω2t) + 4 sin(2πω2t),

x3,t = 5 cos(2πω3t) + 6 sin(2πω3t),
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Figure 0.5: Discrete Fourier Transform for data generated according to the model of Exercise 22(a).

of length n = 100, with (ω1, ω2, ω3) = (5/n, 10/n, 15/n), followed by xt = x1,t + x2,t + x3,t.

Then the DFT is defined as

d(j/n) = n−1/2
n∑
t=1

xt exp(−2πitj/n) = n−1/2
n∑
t=1

{xt cos(2πtj/n)− xt sin(2πtj/n)},

for j = 0, 1, . . . , n−1, with i =
√
−1 the famous complex imaginative unit number. Compute

the two parts and display them.

(b) Show that

|d(j/n)|2 =
1

n

{ n∑
t=1

xt cos(2πtj/n)
}2

+
1

n

{ n∑
t=1

xt sin(2πtj/n)
}2

.

Compute and display these. This is the periodogram. Show that P (j/n) = (4/n)|d(j/n)|2.

(c) Construct a version of Figure 0.5. I used

P = Mod(2*fft(xx)/nn)^2 ; Fr=0:(nn-1)/nn

plot(Fr,P,type="o",xlab="frequency",ylab="scaled periodogram",lwd=2)

(d) Explain why in this case P (5/n) = 5, P (10/n) = 25, P (15/n) = 61, while P (j/n) = 0 for

the other j.

23. Midnight star gazing

Access the dataset star in the astsa package, with measurements of the magnitude of a certain

star, taken at n = 600 consecutive midnights (a hundred years ago; from Whittaker and Robinson,

1923).
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Figure 0.6: Autocorrelation function, for the star gazing dataset, based on measurements of a certain star’s magni-

tude.

(a) Compute the ACF, and produce a version of Figure 0.6. Note its structure and behaviour,

certainly different from the typical AR(p) and MA(q).

(b) Compute and display the scaled periodogram; it should have a low number of sharp peaks.

Discuss what this might indicate, and fit an appropriate time series model to the data.

24. Spectral representation of an autocovariance function

An important result for the interpretation and analysis of stationary time seires is the following,

with further consequences and insights following. If xt is such a stationary series, with finite

γ(h) = cov(xt, xt+h), then there is a spectral distribution function F on [− 1
2 ,

1
2 ] such that

γ(h) =

∫ 1/2

−1/2
exp(2πiωh) dF (ω) =

∫ 1/2

−1/2
cos(2πωh) dF (ω)

for h = 0, 1, 2, . . .. Details are given in the book’s Appendix C.

(a) Choose e.g. h = 3. Plot and then integrate the functions cos(2πωh) and cos2(2πωh),

over [− 1
2 ,

1
2 ], and show that these integrate to 0 and 1

2 over that interval. Show also that∫ 1
2

− 1
2

cos(2πωh1) cos(2πωh2) dw = 0, for h1 6= h2.

(b) For dF (ω) insert f(ω) dω above, with

f(ω) =

∞∑
h=−∞

γ(h) exp(−2πiωh) = γ(0) +

∞∑
h6=0

γ(h) exp(−2πiωh),

assuming the series converge absolutely, i.e. that
∑
|γ(h)| is finite. Show that this works!,

i.e. that this f(ω) leads to the right γ(h). – This an instance of general spectral or Fourier
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analysis, with various methods and results and inversions. This f(ω) is called the spectral

density for the time series model.

(c) Show that we also have f(ω) = γ(0) + 2
∑∞
h=1 γ(h) cos(2πωh).

(d) Consider an AR(1) process, with ρ(h) = ρh for some ρ ∈ (−1, 1). With φ(z) = 1 − ρz the

characteristic polynomial (of order 1, in this case), show that

|φ(exp(−2πiω)|2 = 1− 2ρ cos(2πω) + ρ2.

Also, show that

f0(ω) =
1− ρ2

|φ(exp(−2πiω))|2
=

1− ρ2

1− 2ρ cos(2πω) + ρ2

has the property that∫ 1/2

−1/2
cos(2φωh)f0(ω) dω = ρh for h = 0, 1, 2, . . . .

Verify that this is a special case of the book’s Property 4.4.

(e) Then consider a general zero-mean AR(1) process, as at the end of Exercise 2, with xt =

ρxt−1 + wt, and the wt being i.i.d. with zero mean and variance σ2
w. We know that γ(0) =

σ2
w/(1− ρ2). Show that

γ(h) =
σ2
w

1− ρ2
ρh =

σ2
w

1− ρ2

∫ 1/2

−1/2
exp(2πiωh)

1− ρ2

1− 2ρ cos(2πω) + ρ2
dω.

Show that implies that the spectral density for the AR(1) is

f(ω) =
σ2
w

|1− ρ exp(−2πiω)|2
=

σ2
w

1− 2ρ cos(2πω) + ρ2
.

Check that this is a special case of Property 4.4 in the book.

25. Footnote: probability densities and characteristic functions

It is useful to see just a few facts regarding so-called characteristic functions for probability distri-

butions. There are certain mathematical parallels to the DFT and the inverse DFT, and also to the

spectral representation of a covariance function and its inverse. These are all instances of general

Fourier Analysis in mathematics. – For a probability density f(x), its characteristic function is

φ(t) = E exp(itX) =

∫
exp(itx)f(x) dx.

(a) For the standard normal density, show that φ(t) = exp(− 1
2 t

2). For the general case of

X ∼ N(ξ, σ2), show that φ(t) = exp(itξ − 1
2σ

2t2).

(b) Show that when f(x) is symmetric around zero, then φ(t) is real.

(c) Then there is a nice inversion theorem, just as we have such for spectral representations of

time series, and for the DFT. A theorem says that if φ(t) is integrable, then the density f

can be found from φ, via

f(x) =
1

2π

∫
exp(−itx)φ(t) dt.

Show that with exp(− 1
2 t

2), one indeed finds f(x) = (2π)−1/2 exp(− 1
2x

2).
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(d) Note that there ought to be cases where f is simple but φ is complicated, but also vice versa.

A case in point is the characteristic function φ(t) = exp(−|t|α), with α ∈ [1, 2]; here the lower

point α = 1 corresponds to a Cauchy density and the upper point α = 2 to a normal, but

anything inside (1, 2) is more difficult. The point is that we nevertheless have an inversion

formula, which can be used numerically, etc. Compute and display the density fα(x) for the

distribution with characteristic function exp(−|t|α), for α = 1.0, 1.1, . . . , 1.9, 2.0.

26. The DFT and the periodogramme

Consider any sequence x1, . . . , xn, and from these define again the Discrete Fourier Transform, now

computed at frequencies ωj = j/n, typically actually for j/n with j = 0, 1, . . . , n− 1.

d(ωj) = (1/
√
n)

n∑
t=1

xt exp(−2πiωjt).

(a) Show that d(ωj) = dc(ωj)− ids(ωj), with the cosine and sine transforms

dc(ωj) = (1/
√
n)

n∑
t=1

xt cos(2πωjt),

ds(ωj) = (1/
√
n)

n∑
t=1

xt sin(2πωjt).

(b) Create any numbers x1, . . . , xn, for say n = 100, perhaps simulated from a simple distribution.

Then compute and display dc(ωj) and ds(ωj), for ωj = 0/n, . . . , (n− 1)/n.

(c) For your set of xt numbers, compute and display also the periodogramme, namely I(ωj) =

|d(ωj)|2; here |z|2 = zz̄ = a2 + b2 for a complex number z = a+ ib, with complex conjugate

z̄ = a− ib. Thus |z|2 is not the absolute value squared, but the squared modulus, for which

one may use Mod in R. Show that

I(ωj) = dc(ωj)
2 + ds(ωj)

2

= (1/n)
{ n∑
t=1

xt cos(2πωjt)
}2

+ (1/n)
{ n∑
t=1

xt sin(2πωjt)
}2

.

(d) Then comes the inverse DFT. For your set of numbers, verify via computations that xt can

be retrieved from the d(ωj), via

xt = (1/
√
n)

n−1∑
j=0

d(ωj) exp(2πiωjt)

= (1/
√
n)

n−1∑
j=0

d(ωj){cos(2πωjt) + i sin(2πωjt)}.

Note the resemblance to the transform and backtransform for densities and characteristic

functions.

(e) Attempt also to prove the inversion formula mathematically. Start from

x∗t =
1√
n

n−1∑
j=0

d(ωj) exp(2πiωjt)

=
1

n

n−1∑
j=0

n∑
t′=1

xt′ exp(−2πiωjt
′) exp(2πiωjt),
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and sort this into t′ = t and t′ 6= t. For z any complex number, different from 1, show

1 + z + z2 + · · ·+ zn−1 =
1− zn

1− z
.

Use this to prove
∑n−1
j=0 exp(2πicj/n) = 0, for any c = ±1,±2, . . ., and show that this leads

to x∗t = xt, thus proving the inverse DFT formula. As a byproduct, congratulations with

having proven that

n−1∑
j=0

cos(2πcj/n) = 0,

n−1∑
j=0

sin(2πcj/n) = 0,

for any non-zero integer c.

(f) Verify, for your x1, . . . , xn numbers, that their periodogramme may be found simply and

quickly, using the Fast Fourier Transform, i.e. without doing dc(ωj) and ds(ωj) from scratch:

show that

peri = Mod( fft(xx) )^2/nn ; Fr = jj/nn

gives the right answer, with jj the numbers 0, 1, . . . , n− 1. Use plot(Fr,peri,type="o").

(g) When you have code for the above, experiment with x1, . . . , xn drawn from a few time series

models, to check how the periodogramme looks like.

27. The Whittle likelihood

Suppose x1, . . . , xn stem from a stationary, Gaussian time series with zero mean and finite variances.

(a) The joint distribution of the data is then multinormal. Show that its log-density can be

written

` = − 1
2 log |Σ| − 1

2x
tΣ−1x− 1

2n log(2π),

where Σ is the n × n matrix with elements γ(i − j). – Using general matrix theory for this

particular form of circular variance matrices, along with the spectral represention γ(h) =∫
exp(2πiωh)f(ω) dω, certain mathematical approximations to the eigenvalues and eigenvec-

tors of Σ are given on the book’s page 185. This again leads to the very useful approximation

`w = −
∑

0<ωj<1/2

{
log f(ωj) +

I(ωj)

f(ωj)

}
,

with ωj = j/n.

(b) In particular, in case there is a parametric model f(ω, θ) for the spectral density, show that

this, almost by definition, leads to the log-likelihood approximation

`w(θ) = −
∑

0<ωj<1/2

{
log f(ωj , θ) +

I(ωj)

f(ωj , θ)

}
.

This is called the Whittle log-likelihood (going all the way back to Peter Whittle’s PhD in

Uppsala 1951, I believe). Its maximiser θ̂ is the the Whittle maximum likelihood estimator,

and one may prove, cf. details in the book’s Appendix C, that

θ̂ ≈d N(θ0, Ĵ
−1
w ),
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with θ0 being the true paramete values, and where Ĵw = −∂2`w(θ̂)/∂θ∂θt is the Hessian

matrix, computed at the Whittle ML position.

28. Whittle ML estimation for MA(q) data

Here we look into estimation of MA(q) process parametes, using the Whittle log-likelihood.

(a) Consider first a simple zero-mean MA(1) procecss, with xt = wt + θwt−1, where the wt

are i.i.d. N(0, σ2
w). We have seen earlier, but please show it again, that γ(0) = (1 + θ2)σ2

w,

γ(1) = θσ2
w, with γ(h) = 0 for h = 2, 3, . . .. Show that

f(ω) = σ2
w{1 + θ2 + 2θ cos(2πω)}.

Generate a dataset of size n = 100 from this model, taking (σw, θ) = (0.77, 0.44). Take first

σw to be known, and compute and display the Whittle log-likelihood `w(θ). Compute the

Whittle ML estimat, and repeat the experiment a few times. Then generalise to the case of

both parameters unknown.

(b) For the MA(2) model, with xt = wt + θ1wt−1 + θ2wt−2, show that

γ(0) = (1 + θ21 + θ22)σ2
w, γ(1) = (θ0θ1 + θ1θ2)σ2

w, γ(1) = θ0θ2σ
2
w.

From this, show that the spectral density can be written

f(ω) = σ2
w{1 + θ21 + θ22 + 2(θ0θ1 + θ1θ2) cos(2πω) + 2θ0θ2 cos(4πω)}.

Choose parameters (σw, θ1, θ2), generate a dataset of size n = 200, and estimate the param-

eters using Whittle ML. Test the hypothesis that θ2 = 0, i.e. that the data come from the

simpler MA(1).

(c) Generalise to MA(3), and further. Try out how the Whittle ML works.

29. Whittle ML estimation for AR(p) data

Here we look into Whittle ML estimation for AR(p) parameters. This can be seen as a viable and

practical alternative to a few other methods, including the Yule–Walker equations looked at in

e.g. Exercises 15, 16.

(a) Consider first a simple zero-mean AR(1) procecss, with xt = ρxt−1 + wt, where the wt are

i.i.d. N(0, σ2
w). We have seen in Exercise 24 that the spectral density can be written

f(ω) =
σ2
w

1− 2 cos(2πω) + ρ2
.

Generate a dataset from such an AR(1) model, compute the periodogram I(ωj), for ωj = j/n,

and use the Whittle log-likelihood to estimate the two parameters. Repeat the experiment a

few times to see the variability of (σ̂w, ρ̂). Test ρ = 0.

(b) Then consider the AR(2) model, with xt = φ1xt−1 +φ2xt−2 +wt, assumed to have the roots

of φ(z) = 1 − φ1z − φ2z2 outside the unit circle. Show that the spectral density may be

written

f(ω) =
σ2
w

|1− φ1 exp(−2πiω)− φ2 exp(−4πiω)|2
,
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and the the denumerator may be written

g(ω) = |1− φ1 cos(2πω)− φ2 cos(4πω) + iφ1 sin(2πω) + iφ2 sin(4πω)|2

= {1− φ2 cos(2πω)− φ2 cos(4πω)}2 + {φ1 sin(2πω) + φ2 sin(4πω)}2.

Take (σw, φ1, φ2) = (1.00, 0.44, 0.11), and display the f(ω) function.

(c) Generate data from the model, with these parameters, and estimate them, using the Whittle

ML method.

30. The spectral density with an impulse function

A few useful facts for the spectral density are as follows.

(a) Note, again, that if z = a+ ib is a complex number, then z̄ = a− ib is its complex conjugate,

and |z|2 = zz̄ = a2 + b2 is its squared modulus. Show that |
∑
j cjzj |2 =

∑
j,k cjckzj z̄k, and

that ∣∣∣∑
j

cj exp(2πiωj)
∣∣∣2 =

∑
j,k

cjck exp(2πi(ωj − ωk)).

(b) Consider a stationary time series xt with covariance sequence γ(h), which then may be

represented as
∫

exp(2πiωh) dF (ω). Show that

Var
(∑

j

cjxj

)
=
∑
j,k

cjck

∫
exp(2πiω(j − k)) dF (ω)

=

∫ ∣∣∣∑ cj exp(2πiωj)
∣∣∣2 dF (ω).

Of course this is nonnegative; a nice mathematical result, going back to Cramér and Wold,

and other probabilists in other branches, is that the nonnegativity of all such variances implies

the existence of a unique measure F on [−π/2, π/2] such that γ(h) =
∫

exp(2πiωh) dF (ω)

for all h; check the book’s Appendix.

(c) Assume xt has spectral density f(ω), and consider the linear filter yt =
∑
ajxt−j . Show that

this yt series has covariances

γ∗(h) =

∫
exp(2πiωh)|A(ω)|2f(ω) dω,

where A(ω) =
∑
j aj exp(−2πiωj) is the so-called impulse function associated with the linear

filter.

(d) To illustrate consider an AR(1) series xt, with xt = ρxt−1 +wt, and then let yt = 0.1xt−1 +

0.8xt+0.1xt+1. Compute and display the |A(ω)| function, and the spectral density function

for yt.

31. The spectral density for the AR(p) model

The spectral density can be expressed as f(ω) =
∑
γ(h) exp(−2πiωh), and can hence be computed,

with a formula or numerically, if the covariance sequence γ(h) is known. This can be done from

first principles for an AR(1), since γ(h) = {σ2
w/(1 − ρ2)}ρh is not too complicated, see Exercise

xx, but is harder for AR(p) for p ≥ 2.
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(a) Consider first the simple case of a white noise sequence wt, with zero mean and variance σ2
2 .

Show that its spectral density is f0(ω) = σ2
w, i.e. constant. Then work with xt =

∑
j ψjwt−j ,

where ψj for j = 0,±1,±2, . . . form a sequence with
∑
j |ψj | <∞, and show that that process

has spectral density

f(ω) = |ψ(exp(−2πiω))|2σ2
w for ω ∈ [− 1

2 ,
1
2 ],

where ψ(z) = 1 + ψ1z + ψ2z
2 + · · · .

(b) For an AR(p) process we have seen in Exercise 15 that xt really can be represented as∑∞
j=0 ψjwt−j , with the coefficients ψj being determined by the equation φ(z)ψ(z) = 1, in

which φ(z) = 1− φ1z − . . .− φpzp and ψ(z) =
∑∞
j=0 ψjz

j . Prove hence that

f(ω) =
σ2
w

|φ(exp(−2πiω))|2
.

(c) For an AR(1) process, with xt = φxt−1 + wt, show, again, that

f(ω) =
σ2
w

1− 2φ cos(2πω) + φ2
.

Draw this curve, over [− 1
2 ,

1
2 ], for a few values of φ.

(d) We’ve seen the form of f for an AR(2) process above. For an AR(3), where φ(z) = 1−φ1z−
φ2z − φ3z3 is assumed never to be zero insider the unit circle, show that f(ω) = σ2

w/g(ω),

with

g(ω) = |1− φ exp(−2πiω)− φ2 exp(−4πiω)− φ3 exp(−6πiω)|2

= {1− φ1 cos(2πω)− φ2 cos(4πω)− φ3 cos(6πω)}2

+{φ1 sin(2πω) + φ2 sin(4πω) + φ3 sin(6πω)}2

Compute and plot this function, for a few values of (φ1, φ2, φ3). To check that the values

you choose are ok, in the sense of leading to a well-defined stationary process with values

not depending on the future, you may use polyroot in R, which gives the roots of a given

polynomial. For example, Mod(polyroot(c(1,0.66,0.44,0.88))) sows that one of the

three roots is inside the unit circle, so the model xt = 0.66xt−1 − 0.44xt−2 − 0.88xt−3 + wt

is not ok.

32. Estimating the spectral density

Suppose x1, . . . , xn are observed, from a stationary time series model, with covariances γ(h) and

spectral density f(ω) =
∑
γ(h) exp(−2πiωh). How can we estimate this f from data, without

further assumptions?

(a) A simple idea is as follows. From the data, compute γ̂(h), for say h = 0, 1, . . . , h0, where h0

is relatively small compared to n; a simple default choice might be h0 = [n1/3]. This is easily

done as say acf$acf[1:(h0+1)], multiplied by var(x). From these, form

f̂(ω) =

h0∑
h=−h0

γ̂(h) exp(−2πiωh) = γ̂(0) + 2

h0∑
h=1

cos(2πhω).

Do this, for some simulated data, e.g. an AR(1) or MA(2) process.
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Figure 0.7: The true spectral density f (red, dashed) along with the estimated f̂ (black, full), for an AR(2) case

with n = 500, φ1 = 0.66, φ2 = −0.44.

(b) Construct a version of Figure 0.7, using simulated data from an AR(2), with n = 500, φ1 =

0.66, φ2 = −0.44 and σw = 1. The task is to draw both the real underlying f(ω) and the

estimated f̂(ω).

33. The periodogramme as an estimate of the spectral density

It is of interest to see that the squared modulus I(ω) = |d(ω)|2 of the DFT can be seen as an

estimate of the spectral density f(ω) =
∑
γ(h) exp(−2πiωh). In particular, the periodogramme

I(ωj) is an estimate of f(ωj) at position ωj = j/n.

(a) Start from the DFT, and show that

d(ω) = (1/
√
n)

n∑
t=1

xt exp(−2πiωt) = (1/
√
n)

n∑
t=1

(xt − x̄) exp(−2πiωt)

Show then that

I(ω) = |d(ω)|2 =
1

n

∑
r,s

(xr − x̄)(xs − x̄) exp(−2πiω(r − s))

=
∑

|h|≤n−1

∑
t≤n−|h|

1

n
(xt − x̄)(xt+h − x̄) exp(−2πiωh),

which is then to be recognised as
∑
|h|≤n−1 γ̂(h) exp(−2πiωh).

(b) Since γ̂(h) is sum over n−h product terms, divided by n, there is a bias involved. Show that

E I(ω) =
∑

|h|≤n−1

(1− |h|/n)γ(h) exp(−2πiωh).
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Figure 0.8: With 1000 simulations from the MA(1) model with σw = 1 and θ = 0.55, for n = 200, the plot shows

the resulting periodogramme pairs (I(ωj1 ), I(ωj2 )), for j1/n
.
= 0.25 and j2/n

.
= 0.35.

(c) Via arguments in the book’s Section 4.3, along with finer technical details in Appendix C,

one may prove the following, valid for growing sample size n. First, E I(ω)
.
= f(ω) and

Var I(ω)
.
= f(ω)2. Second, for fixed ω, with j chosen so that j/n→ ω,

I(ωj,n)→d f(ω)V, with V ∼ Expo(1).

This is convergence in distribution, so

Pr(a ≤ I(ωj,n)/f(ω) ≤ b)→ Pr(a ≤ V ≤ b) =

∫ b

a

exp(−v) dv = exp(−a)− exp(−b)

for all a < b. Use this to construct an approximate 90 percent confidence interval for f(ω).

(d) Third, is is also the case that with ω1 < · · · < ωk different fixed values, we not only have

I(ωj1,n)→d f(ω1)V1, · · · , I(ωjk,n)→d f(ωk)Vk,

where j1/n→ ω1, . . . , jk/n→ ωk, where V1, . . . , Vk are unit exponentials, but these are fully

independent in the limit.

(e) Consider an MA(1) process, xt = wt + θwt−1, for some θ. Show, again, that the spectral

density becomes f(ω) = σ2
w{1 + θ2 + 2θ cos(2πω)}. Then simulate say n = 200 data points,

and compute the periodogramme at j1 and j2, where j1/n
.
= 0.25 and j2/n

.
= 0.35. Do this

say 1000 times, and plot the resuling (I(ωj1), I(ωj2)) in a diagram, as with Figure 0.8 (where

I’ve used θ = 0.55). Check that the two histograms look exponential, with means close to

f(ω1) and f(ω2), and that the correlation between them is low.

34. Estimating the cumulative spectral distribution
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Consider x1, . . . , xn from a stationary time series model, with spectral density f(ω) =
∑
h γ(h) exp(−2πiωh).

We have seen that the periodogramme I(ω) = |d(ω)|2 estimates f(ω), but with noticeable variabil-

ity, also for large n. Some smoothing is required to estimate f(ω) well. It is useful to estimate the

cumulative spectral distribution separately, F (t) =
∫ t
0
f(ω) dω, for 0 ≤ t ≤ 1

2 .

(a) Study the cumulative estimator

F̂ (t) = (1/n)
∑
ωj≤t

I(ωj), for 0 ≤ t ≤ 1
2 ,

again with ωj = j/n. Show that E F̂ (t)
.
= (1/n)

∑
j/n≤t f(ωj), and that this tends to the

cumulative F (t) with increasing n.

(b) Show also that

Var F̂ (t)
.
= (1/n2)

∑
ωj≤t

f(ωj)
2 .

= (1/n)

∫ t

0

f(ω)2 dω.

(c) Using the Lindeberg theorem, from large-sample theory, show that

Zn(t) =
√
n{F̂ (t)− F (t)} →d Z(t) ∼ N(0, τ(t)2), with τ(t)2 =

∫ t

0

f(ω)2 dω.

There is actually full process convergence here, to a Gaußian martingale, i.e. with independent

increments, Var dZ(ω) = f(ω)2 dω.

(d) Simulate an AR(2) process of length say n = 250, for some φ1, φ2, compute the peri-

odogramme and its cumulative sum, and then plot the resulting F̂ (t) alongside the real

F (t). Try with a few other models too.

(e) Look into a kernel smoothing operation, like

f̂(ω) =

∫
Kb(ω − u) dF̂ (u) = (1/n)

∑
ωj

Kb(ω − ωj)I(ωj),

with Kb(v) = b−1K(b−1v) and K e.g. the standard normal kernel. Here b is the bandwidth

parameter, which needs to be such that b→ 0 and nb→∞ as n increases, in order to secure

consistency of f̂ , i.e. f̂(ω)→pr f(ω).

35. A simple state-space model

The following is meant to serve as a simple illustration of the general theory of Ch. 6 (where

sections 6.1, 6.2, 6.3, along with relevant exercises, are our curriculum).

(a) Let xt be a simple zero-mean stationary AR(1) process, with xt = ρxt−1 + wt in terms of a

white noise process wt with variance σ2
w. Recall that

γ(h) = cov(xt, xth) =
σ2
w

1− ρ2
ρh for h = 0, 1, 2, . . . .

Then suppose the xt are not observed, they are ‘hidden’ in a layer below the observations,

which we here take to be yt |xt ∼ N(xt, τ
2); we may think of τ in terms of measurement

error. Find

γ∗(h) = cov(yt, yt+h).
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(b) Assume also that the xt process is normal. Set up the joint multinormal distribution for

(x1, . . . , xn, y1, . . . , yn).

(c) Find expressions for the conditional distribution of the hidden x1, . . . , xn given y1, . . . , yn.

(We will learn certain extra methods and formulae and algorithms in a little while, but here

you may do it ‘brute force’.)

(d) Make an illustration, where you simulate x1, . . . , xn, followed by simulating y1, . . . , yn given

x1, . . . , xn, e.g. takin σw = 1 and a suitable value for τ (which may be played with when you

have the code). In a diagram, put up three curves: (i) the xt; (ii) the yt; (iii) the conditional

means x̂t = E (xt | y1, . . . , yn), which may be seen as the best estimates of the hidden layer

variables.
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