
STK 4060-9060 Spring 2022

Time Series: the Oblig

This is The Oblig, the mandatory assignment, for STK 4060-9060, Time Series, Spring

2022. It is made available at the course website Tuesday April 19, and the submission

deadline is Tuesday May 2, 13:58, via the Canvas system. Reports may be written in

nynorsk, bokmål, riksmål, English, or Latin, should preferably be text-processed (for in-

stance with TeX or LaTeX), and must be submitted as a single pdf file. The submission

must contain your name, the course, and assignment number.

The Oblig set contains three exercises and comprises five pages (in addition to the present

introduction page, ‘page 0’, and the last page is a brief Appendix).

It is expected that you give a clear presentation with all necessary explanations, but

write concisely (in der Beschränkung zeigt sich erst der Meister; brevity is the soul of wit;

kratkostь – sestra talanta). Remember to include all relevant plots and figures. These

should preferably be placed inside the text, close to the relevant subquestion.

For a few of the questions setting up an appropriate computer programme might be part

of your solution. The code ought to be handed in along with the rest of the written

assignment; you might place the code in an appendix.

All aids, including collaboration, are allowed, but the submission must be written by you

and reflect your understanding of the subject. If we doubt that you have understood the

content you have handed in, we may request that you give an oral account.

Application for postponed delivery: If you need to apply for a postponement of

the submission deadline due to illness or other reasons, you have to contact the Student

Administration at the Department of Mathematics (email: studieinfo@math.uio.no) well

before the deadline.

The mandatory assignment in this course must be approved, in the same semester, before

you are allowed to take the final examination.

Complete guidelines about delivery of mandatory assignments, along with a ‘log

on to Canvas’, can be found here:

www.uio.no/english/studies/admin/compulsory-activities/mn-math-mandatory.html

Enjoy [imperative pluralis].

Nils Lid Hjort
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1. The ACF

The autocorrelation and covariance functions are fundamental tools for station-

ary time series. This exercise points to a certain type of danger when the empirical ACF

is applied to a series which is not stationary.

(a) Explain what is meant by a stationary time series.

(b) Let x1, . . . , xn be a stationary time series, with finite variance Varxt = σ2. Define the

covariance function γ(h) and autocorrelation function ρ(h), for values h = 0, 1, 2, . . ..

For the case of independence, when the xt are i.i.d., what are the values of γ(h) and

ρ(h)?

(c) Then define the empirical ACF, ρ̂(h), and the empirical covariance function, γ̂(h).

Carry out a very simple illustration, where you simulate x1, . . . , xn i.i.d. N(0, σ2),

with σ = 0.77, for n = 100. You do not need to show me a figure of this time

series, but report values you find, for γ̂(h) and for ρ̂(h), for h = 0, 1, 2, 3. These can

of course be found from scratch, so to to speak, but it’s simpler to use versions of

acf(x)$acf[1:5] and acf(xx,"covariance",lag=10)$acf.

(d) Then change the setup above slightly, to include a modest linear trend function;

specifically, consider the model xt = βt + wt, for t = 1, . . . , n, with the wt being

i.i.d. N(0, σ2) with σ = 0.77, and with β = 0.05. Here βt is seen as a deterministic

trend, so the randomness lies with the wt. Find the variance of xt, and also the

correlations ρ(1), ρ(2), ρ(3) for observations at positions 1 and 2 and 3 apart. Then

illustrate this with a simulation: generate x1, . . . , xn, with n = 100, and include figures

in your report, with the xt series, and its ACF.

(e) The empirical ACF for your xt with trend does not at all look like the real underlying

ρ(1), ρ(2), . . .. Explain what has happened.

(f) Then apply some mathematics, to explain this phenomenon in some detail. Suppose

xt = mt + wt, with mt deterministic and the wt being i.i.d. N(0, σ2), for some σ.

Find expressions for the expected values of γ̂(0), γ̂(1), γ̂(2). For the specific case of

xt = βt+wt, as above, perhaps with a small β, and n = 100, see what these expectation

formulae amount to, and comment on your findings.

(g) This little illustration demonstrates that matters may be incorrectly interpreted if one

applies ACF and similar tools to series which are not stationary. A typical trick is to

‘detrend first’, and then work with the detrended series, say x∗
t = xt − m̂t. Do this

with your simulated data from point (c): estimate the trend βt (assuming here, for

simplicity, that you as the statistician in charge know that the trend is linear), and

give ρ̂∗(h) for h = 0, 1, 2, 3, for the detrended time series. Comment on what you find.
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2. The MA(2) model

Consider the moving average of order 2 model, the MA(2), for simplicity here

taken to have mean zero, and then defined by

xt = wt + θ1wt−1 + θ2wt−2, (∗)

in terms of i.i.d. zero-mean variables wt, with variance σ2

w. Here θ1, θ2 are parameters of

the model, and since it’s useful for formulae to come, we also let θ0 = 1. To have a clear

stationary structure, we take equation (*) to hold for all t = 1, . . . , n, with x1 and x2 then

involving not only w1 but also appropriate w0, w−1.

(a) For the variance γ(0) and covariances γ(1), γ(2), . . ., show that

γ(0) = (θ2
0
+ θ2

1
+ θ2

2
)σ2

w, γ(1) = (θ0θ1 + θ1θ2)σ
2

w, γ(2) = θ0θ2σ
2

w,

with γ(h) = 0 for h = 3, 4, . . .. Show also that the correlations become

ρ(1) =
θ0θ1 + θ1θ2
1 + θ2

1
+ θ2

2

, ρ(2) =
θ0θ2

1 + θ2
1
+ θ2

2

.

(b) Simulate a reasonable number of (θ1, θ2), from any distribution around zero, and then

show a figure of the resulting (ρ(1), ρ(2)). Comment on what you find.

(c) Simulate x1, . . . , xn from such an MA(2) process, with zero mean, taking (θ1, θ2) =

(0.66, 0.55), σw = 0.88, and n = 250. Compute ρ̂(1), ρ̂(2), e.g. via the ACF. Then

match these empirical values with the theoretical ones, and solve the equations, to

provide estimates of (θ1, θ2). Also estimate the σw. – If this has gone well, your

estimates should be reasonably close to the real values used in the simulation.

(d) Using the same simulated dataset as for (c), attempt to estimate the parameters using

maximum log-likelihood.

(e) The general formula for the spectral density, in terms of the sequence of covariances

γ(h), has the form

f(ω) =

∞∑

h=−∞

γ(h) exp(−2πihω).

Show that this can be expressed as

f(ω) = γ(0) + 2

∞∑

h=1

γ(h) cos(2πhω).

Use this to work out a formula for the spectral density of an MA(2) process. Display

this f(ω), on the [− 1

2
, 1

2
] window, again for the case of (θ1, θ2) = (0.66, 0.55) and

σ2 = 0.88.

(f) From the same simulated dataset of (c), attempt to estimate the spectral density non-

parametrically. Use this to formulate ideas for have you can estimate the parameters

of the model in a third way.
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3. Beer sales in Sambandsstatene

Some people drink beer. The datafile beerdata, available at the course website, has

two columns, say time and xx, with the latter providing monthly beer sales, in millions

of barrels, in Sambandsstatene, with time running from January 1975 to December 1990.

Read the data into your computer (see the Appendix here, for a few R things), so that you

can work with various aspects of the time series xt, with t = 1, 2, . . . , n, over n = 16 · 12 =

192 months.
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Monthly beer sales in Sambandsstatene, in millions of barrels, from January 1975
to December 1990; the red line in the middle represents yearly averages.

(a) Use the data to compute y1, . . . , y16, the yearly averages, i.e. averaged over the year’s

twelve months, from 1975 to 1990. Construct a version of the figure here.

(b) We start out working with these averages, before we return to the full beer sales time

series. Clearly these annual averages avei increase over time i. Fit two simple models,

(i) with a linear trend, and (ii) with a quadratic trend. So far we do not worry about

dependence between the averages. In detail, model (i) takes avei = β0 + β1i + ε1,i,

with the ε1,i being i.i.d. N(0, σ2

1
), and model (ii) uses avei = β0 + β1i + β2i

2 + ε2,i,

with the ε2,i being i.i.d. N(0, σ2

2
). These two models can be fitted from scratch, but

since we so far ignore dependence, they are familiar linear regression models, and may

be fitted using lm; see the brief Appendix. Argue that the quadratic trend model is

best here.

(c) For the detrended series of averages, say ave∗i = avei − m̂i, with m̂i = β̂0 + β̂1i+ β̂2i
2,

give a plot of both ave∗i and its ACF. Comment on what you find here.
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(d) These findings and some diagnostic plots might indicate that a model with quadratic

trend and AR(1) type residuals would do a good job. This model uses

avei = β0 + β1i+ β2i
2 + σεi for i = 1, . . . , 16,

with the εi being standard normal, but with AR(1) dependence structure cov(εi, εj) =

ρ|j−i|. Try to fit this model, either by fitting the ave∗i = avei − m̂i to a zero-mean

AR(1), or by using a full log-likelihood. Comment on what you find.

(e) We now return to the full time series xt, but keeping in mind what we’ve learned

about the trend over years. Let st = timet − 1975, where timet is the first column in

the beerdata; it starts at 0 (for Jan 1970) and ends at 15.917 (for Dec 1990). Argue

why the model

xt = γ0 + γ1st + γ2s
2

t +A cos(2πt/12 + φ) + wt for t = 1, . . . , n

might be a good one, with an amplitude A and phase φ, and error terms wt with zero

mean. Show that this model can alternatively be represented as

xt = γ0 + γ1st + γ2s
2

t + a cos(2πt/12) + b sin(2πt/12) + wt for t = 1, . . . , n.

(f) Assume first that the wt above are simple i.i.d. N(0, σ2

w). Then the model is a sim-

ple linear regression model. Fit the model, perhaps using lm in R. Plot the fitted

expectation curve

m̂t = γ̂0 + γ̂1st + γ̂2s
2

t + â cos(2πt/12) + b̂ sin(2πt/12)

on top of the data, and comment on the fit.

(g) Using this model, predict the January and July beer sales, for the next year, i.e. 1991.

Give also 90 percent prediction intervals.

(h) Do some diagnostic checks and plots for the detrended series x∗
t = xt−m̂t. Use this to

suggest perhaps better time series models than the one of point (f). If you have time,

use any models you invent to again predict beer sales for January and July 1991.
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Appendix: a few R things

The beerdata can be read into your computer as follows:

beer <- matrix(scan("beerdata",skip=4),byrow=T,ncol=2)

time <- beer[ ,1]

xx <- beer[ ,2]

followed by plot(time,xx,type="o") etc.

To fit a linear model, of the type x = β0 + β1z1 + β2z2 + ε, one may use lm(x ∼ z1 +

z2). You may also use summary(lm(x ∼ z1 + z2)), etc.

To find the annual averages, for the beer sales data, there are several tricks, of course. I

used something like ind3 <- 3 + 12*(0:15) followed by xx[ind3]; this gives me the beer

sales figures for the month March. Similar tricks give me other subsets of the xx series,

from which I then can compute averages and other quantities.

Solving three equations with three unknowns (or seven equations with seven unknowns,

for that matter): Suppose g1, g2, g3 are functions of (u1, u2, u3), and that we need to solve

g1(u1, u2, u3) = a1, g2(u1, u2, u3) = a2, g3(u1, u2, u3) = a3.

My default way of doing this in R, if the equations are hard to solve with pen on paper, is

to define the g1, g2, g3 functions, and then programme the function

Q(u) = (g1(u)− a1)
2 + (g2(u)− a2) + (g3(u)− a3)

2.

I then use mlm(Q,starthere) to minimise Q. If the minimum is zero, I’ve solved my three

equations.
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