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Stochastic processes in continuous time

Motivating example: The Nelson-Aalen estimator

We have right-censored survival data                                  
where the uncensored survival times  Ti are iid with 
hazard rate α(t) ; cf. pages 30-31                              
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The aggregated counting process 

has intensity process

where                                     is the number of individuals 

at risk "just before" time t 2

We make no assumptions on the form of the hazard α(t)  
and we want to estimate the cumulative hazard

We have the  decomposition

Assuming for now that Y(t) > 0, this gives
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By integration we obtain
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To derive the statistical properties of the Nelson-Aalen 
estimator (and other estimators and test statistics),                   
we need study stochastic integrals (and other stochastic 
processes in continuous time)                          
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The Nelson-Aalen estimator is given by
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We have that
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Unless otherwise stated, we will consider time-continuous 
stochastic processes defined on a finite time interval  [0, ]τ

A stochastic process                                 is adapted
to a history           if at time t we know the value of X(s)             
for all           (possibly apart from unknown parameters)
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s t≤

A realization of  X  is a function of t and is called a sample path

Unless otherwise stated, we will consider stochastic 
processes with sample paths that are right-continuous 
and have left-hand limits (cadlag)

A random variable T > 0 is a stopping time if we at time t know 
whether orT t T t≤ >

Some general properties of stochastic processes

6

Martingales in continuous time

A stochastic process                                   is a martingale 
relative to the history          if it is adapted to the history and 
satisfies the martingale property:
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Example: 
Let  N(t)  be a Poisson process with intensity λ
Denote by         the information on all events that happen in [0,t ] 
Then                            is a martingale (cf. page 53) 
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Heuristically, M is a martingale provided that 

where dM(t) is the increment of M  over  [ t, t + dt ), and
is the history  "just before"  time  tt−FFFF
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We will assume throughout that M(0)=0

Then                 , and M  is a mean zero martingale  

A martingale has uncorrelated increments, i.e.

for all 

The properties of continuous time martingales parallel 
those of discrete time martingales
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Partition [0,t] into n  time intervals each of length t /n :

Variation processes

The predictable variation process           and the optional 
variation process of a time-continuous martingale M are 
obtained as limits of the discrete time variation processes

M
[ ]M

kM∆

Then

Informally, the last expression gives:



We have 
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Example: 

N(t)  is a Poisson process with intensity λ
is the information on all events that happen in [0,t ] 

is a martingale
tFFFF

( ) ( )dM t dN t dtλ= −

Hence 

( ) Var( ( ) | )F −= td M t dM t

Var( ( ) | )tdN t −= F E( ( ) | )tdN t −= F dtλ=

By integration this gives 

( )M t tλ=

Var( ( ) | )Fλ −= − tdN t dt
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As for discrete time martingales we have that

From this we obtain:

For two martingales M1 and M2, we may define the 

predictable covariation process                  and the         

optional covariation process                 , see exercise 2.5      

and page 50

1 2,M M

[ ]1 2,M M
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Stochastic integrals
Stochastic integrals are the continuous time analogue to  
transformations for discrete time martingales

Let                                    be a martingale and                      
a predictable process, which           

intuitively means that for any time t  we know the             
value of H(t)  "just before"  t  (a sufficient condition for 
predictability is that H is adapted and left-continuous)

We will define the stochastic integral 

In general it is quite intricate to define a stochastic 
integral (cf. the Itô integral), but for the situations we 
will consider it may be defined as a limit of 
transformations of discrete time martingales 
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We partition  [0,t] into n  time intervals each of length t /n 

kM∆

kH

Define

Then
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A stochastic integral 

has similar properties as a transformation for discrete time 
martingales:

• is a mean zero martingale
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For results on covariance processes for two stochastic 

integrals, see exercise 2.8 and page 51
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Counting processes

A  counting process                                  is a stochastic 
process with sample paths that are right-continuous step 
functions with steps of size +1     

We assume that the counting 
process is adapted to the 
history { }tFFFF

The intensity process λ(t)   w.r.t the history                             
is given informally by
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Then, as seen earlier,  the process

is a mean zero martingale 

The optional variation process of M(t)  becomes
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=

= ∆∑

For the predictable variation process, note that

This motivates the important relation
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When considering two counting processes N1(t) and N2(t)  
adapted to the same history          , we will assume that they 
do not jump at the same time
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Then one may show that the corresponding martingales   
M1(t)  and M2(t)  are orthogonal, which  means that

(exercise 2.10)
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Stochastic integrals for counting process martingales

Most stochastic integrals we will encounter are relative to 
counting process martingales

A stochastic integral relative to a counting process integral            
is simple to understand: 

a sum over the 
jump times 
T1<T2< …..

an ordinary integral 
(pathwise)
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For a stochastic integral relative to a counting process 
martingale, the variance processes take the form
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Example: For the Nelson-Aalen estimator, we have

Thus             is a mean zero martingale with optional 
variation process

ˆ −A A
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Note that                    is an unbiased estimator for the 
variance of the Nelson-Aalen estimator  

ˆ ( ) − A A t
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The Doob-Meyer decomposition

An adapted process                                 is a submartingale 
if it satisfies 

The Doob-Meyer decomposition states that any 
submartingale can be decomposed uniquely as

where X* is a nondecreasing predictable process, 
denoted the compensator of X, and M  is a mean 
zero martingale                                     

Heuristically we have
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Examples:

A counting process  N(t)  is a submartingale, and we 
have the decomposition

0

( ) ( ) ( )λ= +∫
t

N t s ds M t

compensator

M2(t)  is a submartingale, and we have the decomposition

2( ) ( ) martingale= +M t M t

compensator


