Stochastic processes in continuous time
Motivating example: The Nelson-Aalen estimator

We have right-censored survival data (T.,D,); i =1,2,...n
where the uncensored survival times T, are iid with
hazard rate aft) ; cf. pages 30-31

The aggregated counting process
n .
=Y H{T;<t,D;=1}
i=1
has intensity process
Alt)=o()Y (1)

where Y(1) =Y/, I{I; >} is the number of individuals
at risk "just before" time t

We make no assumptions on the form of the hazard oft)
and we want to estimate the cumulative hazard

t
A(t) = / o(s)ds
Jo
We have the decomposition
dN(t)=a(t)Y(t)dt +dM(r)
Assuming for now that Y(t) > 0, this gives

AN _ o+ MO
Y(©) Y(©)

By integration we obtain

cdN(s) _ cdM(s)
J;Y(s) —_([a(s)ds+£ Y

The Nelson-Aalen estimator is given by

dN(s)

At) = jY()

(a sum over the jump times WNf

We have that

dm (s)

At) = At) + j

To derive the statistical properties of the Nelson-Aalen
estimator (and other estimators and test statistics),

we need study stochastic integrals (and other stochastic
processes in continuous time)
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Fig. 3.1 Nelson-Aalen estimates for the time between first and second births. Lower curve: first
child survived one year; upper curve: first child died within one year.
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Some general properties of stochastic processes

Unless otherwise stated, we will consider time-continuous
stochastic processes defined on a finite time interval [0, 7]

A stochastic process X = {X(¢); 1 € [0,7]} is adapted
to a history {.7} if attime t we know the value of X(s)
forall s<t (possibly apart from unknown parameters)

A realization of X is a function of t and is called a sample path

Unless otherwise stated, we will consider stochastic
processes with sample paths that are right-continuous
and have left-hand limits (cadlag)

Arandom variable T > 0 is a stopping time if we at time t know
whether T<t or T >t
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Martingales in continuous time

A stochastic process M = {M(t);t € [0,7]} is a martingale
relative to the history {.%} if it is adapted to the history and
satisfies the martingale property:

E(M(1)| ) = M(s) forallt >s

Example:
Let N(t) be a Poisson process with intensity A

Denote by .7 the information on all events that happen in [0,t ]
Then M(r)=N(r)— At is a martingale (cf. page 53)

Heuristically, M is a martingale provided that
E(dM(r)| Fi-) =0

where dM(t) is the increment of M over [t,t+dt), and
Z,_ is the history "just before" time t

The properties of continuous time martingales parallel
those of discrete time martingales

We will assume throughout that M(0)=0

Then EM(r)=0 and M is a mean zero martingale

A martingale has uncorrelated increments, i.e.
Cov(M(t) — M(s),M(v) —M(u)) =0

forall 0<s<r<u<v<rt

Variation processes

The predictable variation process (M) and the optional
variation process [M] of a time-continuous martingale M are
obtained as limits of the discrete time variation processes

Partition [0,t] into n time intervals each of length t /n :

A t
Nn—oo

(M) (1) = Tim Y Var(AM|Z_1y/n)
=1

Informally, the last expression gives:

d(M)(1) = Var(dM(1)| Z:-) 8




Example:

N(t) is a Poisson process with intensity A

.7 is the information on all events that happen in [0,t ]
M(t1)=N(1)— At is a martingale

We have dM (t) = dN(t) - A dt
Hence
d(M)(t)=Var@M @) ]./Z) =Var(dN@)-Adt| /)
=Var(dN(t) | 4Z) = E@AN(t) | /-) = Adt

By integration this gives

(M) (t) = At

As for discrete time martingales we have that

M? — [M] is a mean zero martingale

M? — (M) is a mean zero martingale

From this we obtain:
Var (M(1)) = E (M(1)2) = E(M)(t) = E[M](1)

For two martingales M, and M,, we may define the
predictable covariation process (M,,M,) and the

optional covariation process [M,,M,] , see exercise 2.5
and page 50
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Stochastic integrals

Stochastic integrals are the continuous time analogue to
transformations for discrete time martingales

Let M={M(t);t<[0,7]} be a martingale and

H = {H(t);t € [0,7]} a predictable process, which
intuitively means that for any time t we know the
value of H(t) "just before" t (a sufficient condition for
predictability is that H is adapted and left-continuous)

We will define the stochastic integral
t

I(t)= [ H(s)dM(s)

0
In general it is quite intricate to define a stochastic
integral (cf. the 1t6 integral), but for the situations we
will consider it may be defined as a limit of
transformations of discrete time martingales
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We partition [0,t] into n time intervals each of length t /n

Define  H,=H((k—1)t/n)
AMe= Mkt /n) —M((k—1)t /n)

AT

y

o
>
=z {

Then

N—oo

4 n
I(t) = / H(s)dM(s) = lim Y HAMj
. O k:l
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A stochastic integral

1= /O " H(s)dM(s)

has similar properties as a transformation for discrete time
martingales:

. I(t)—/OIH(s)dM(s) is a mean zero martingale
. (l)(t)=<deM>(t)=jH2(s)d<M>(s)
. [I](t)=[IHdM](t)=jH2(s)d[M](s)

For results on covariance processes for two stochastic

integrals, see exercise 2.8 and page 51
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Counting processes

A counting process N = {N(¢);1 € [0,7]} is a stochastic
process with sample paths that are right-continuous step
functions with steps of size +1

We assume that the counting :
process is adapted to the z-

history {.7}

The intensity process A() w.r.t the history {.7}
is given informally by

A)dr = P(dN(1) = 1| Z_) = E(dN(1)| Z_)
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Then, as seen earlier, the process

M) =N~ /0 "A(s)ds

iS @ mean zero martingale

The optional variation process of M(t) becomes

[M] (1) = lim i(AMk)z =lim Zn:(A N ) = N()
k=1 "%k

n—oo

For the predictable variation process, note that
d(M)(t) = Var(dM(t)|.%:—) = Var(dN(t) — A(t)dt| F-)
= Var(dN(t)| Z—) = A(t)dt{1 — A(t)dt} ~ A(t)dt

This motivates the important relation

M) () = [ A)as -

When considering two counting processes N, (t) and N,(t)
adapted to the same history {.%} , we will assume that they
do not jump at the same time

Then one may show that the corresponding martingales
M, (t) and M,(t) are orthogonal, which means that

(My,Mr)(1) =0 foralls
[My,M](t) =0 forallz

(exercise 2.10)

16




Stochastic integrals for counting process martingales

Most stochastic integrals we will encounter are relative to
counting process martingales

A stochastic integral relative to a counting process integral
is simple to understand:

~ ~ 4 A J/
_ z H(T}) an ordinary integral
= / (pathwise)

a sum over the
jump times
T.<T,< ...
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For a stochastic integral relative to a counting process
martingale, the variance processes take the form

</ H"’M> 0= [ #n

{ / HdM} (1) = /U { H?(s)dN(s)

Example: For the Nelson-Aalen estimator, we have

A - A =[ 21

Y(s)

Thus A-A is amean zero martingale with optional
variation process

~ cdN
[A-Alo= { Yz((ss))

Note that [A— A] (t) is an unbiased estimator for the
variance of the Nelson-Aalen estimator

The Doob-Meyer decomposition

An adapted process X = {X(¢);7 €[0,7]} is a submartingale
if it satisfies

E(X(1)|-%s) > X(s) forallz >z
The Doob-Meyer decomposition states that any
submartingale can be decomposed uniquely as
X=X"+M

where X* is a nondecreasing predictable process,
denoted the compensator of X, and M is a mean
zero martingale

Heuristically we have
dX*(1) = E(dX(1)| Fi-)
dM(t) =dX(t)—E(dX ()| F-) 19

Examples:

A counting process N(t) is a submartingale, and we
have the decomposition

N(t) =j/1(s)ds+ M (t)

W_/
compensator

M2(t) is a submartingale, and we have the decomposition

M?(t) =(M)(t) + martingale
W_/
compensator
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