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Example 3.6: Mating of Drosophila flies 

30 female virgin flies and 40 male virgin flies are put in        
a plastic bowl ("pornoscope") and times (in seconds) on 
initiatings of matings are recorded. 

Two experiments: one experiment with "ebony" flies 
(experiment 1) and one with "oregon" flies (experiment 2)

Let Nh(t) count the number of matings in [0, t ]             
in experiment  h  (h=1 2)
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Assuming random mating, the intensity processes takes the 
multiplicative form

Here  fh(t) and mh(t) are the number of virgin female and male 
flies just before time t  in experiment  h  and             is the 
mating intensity in the experiment

Nelson-Aalen estimators of cumulative mating intensities
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Is the observed difference in mating intensities significant?

4

Two-sample tests

Consider two counting process  N1(t)  and N2(t)  with 
intensity processes of the multiplicative form
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We want to test the null hypothesis
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Introduce the Nelson-Aalen estimators

We will consider the test statistic
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where L(t) is a non-negative predictable weight process
that is zero whenever at least one of the Yh(t) are zero

The test statistic is useful for testing H0 versus                      
"non-crossing hazards" alternatives 

The choice with
gives the logrank test  
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If the null hypthesis holds true, we have
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Thus            is a mean zero martingale (in t0) when the
null hypothesis holds true 
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Predictable variance process under H0 :
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The variance estimator is unbiased under H0

(exercise 3.10) 
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The standardized test statistic

Alternatively we may use the test statistic
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is approximately standard normal under the null hypothesis

which is approximately chi-squared with 1 df under H0
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Using the logrank weights                                        we find 

Example 3.12: Mating of Drosophila flies 
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The test statistic becomes 
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which is highly significant 10

Some of the weight process only apply for survival data

The Harrington-Fleming test is implemented in R      

(default is  ρ = 0 corresponding to the logrank test)
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The test statistic and the variance estimator may be given 
an alternative formulation. This may be useful to obtain a 
better understanding of the test, and it opens for a 
generalization to more than two samples 
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We introduce the weight process

The we may write:
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Note that for the logank test we have:
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where

the "expected" number of events under the null hypothesis
(exercise 3.11)

Therefore the two-sample logrank statistic may be written
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k-sample tests
We now consider k counting process  N1(t), N2(t), …, Nk(t)
with intensity processes of the multiplicative form
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We want to test the null hypothesis
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We introduce  (where  δhj is a Kronecker delta)
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Therefore we only consider the first k – 1 of the                                  
when forming our test statistic
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We introduce the k – 1 dimensional vector
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Then the test statistic takes the form

2 1
0 0 0 0( ) ( ) ( ) ( )TX t t t t−= Z V Z

The statistic is chi-squared distributed with the  k – 1 df
when the null hypothesis holds true 

For the logrank test one may show that 
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This the left-hand side of (*) provides a 
conservative version of the logrank test 16

Stratified tests

We now consider the situation where we have  k counting 
process in each of m strata:

Nhs(t)   for   h = 1, …, k   and s = 1,…., m

with intensity processes of the multiplicative form
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For each stratum s we define similar quantities as above:
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We now obtain the test statistic by aggregating information 
over the m strata:

The statistic is chi-squared distributed with the  k – 1 df
when the null hypothesis holds true 
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Assume that we have a sample of n individuals, and let  
Ni(t) count the observed occurrences of the event of 

interest for individual  i as a function of (study) time t

Regression models

We will consider regression models where the intensity
process for individual i  depends on a vector of
(possibly) time-dependent covariates

1 2( ) ( ( ), ( ),..., ( ))Ti i i ipt x t x t x t=x

( )  ( ))  ( i i it dMdtdN t tλ= +
We have the decomposition

observation signal noise

( )i tλ
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The intensity process for individual i may be given as

( )( )) ( | iii Y t tt αλ = ⋅ x

hazard rate (intensity)at risk indicator

(time-dependency of covariates suppressed  in the notation)

A regression model specifies how the hazard rate depends
on the covariates

We will consider two types of regression models:

• Relative risk regression models (section 4.1)

• Additive regression models (section 4.2) 
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Relative risk regression models

Hazard rate for individual i

0( ) ( , () )| )( i it r ttα α= ⋅ β xx

hazard ratio (relative risk)baseline hazard

( ) ( )1 1( , ( )) exp ( ) exp ( ) ( )T
i i i p ipr t t x t x tβ β= = + +β x β x L

We assume                    , so the baseline hazard            is the 
hazard for an individual  with all covariates equal to zero

( , ) 1r =β 0 0( )tα

The common choice of relative risk function is

which gives Cox's regression model

is the hazard ratio for one unit's increase in the j-th
covariate, keeping the others constant (exercise 1.5)

jeβ
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Additive regression models

0 1 1( | ) ( ) ( ) ( ) ( ) ( )i i p ipt t t x t t x tα β β β= + + +x L

baseline hazard excess risk at time t per 
unit's increase of xip(t)

Hazard rate for individual i

Note that the are regression functions

The additve regression model is a flexible nonparametric
model that allows the effect of covatiates to change
over time

However, the model does not constrain the hazard to 
be non-negative

( )'sj tβ
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We assume that the intensity processes depend on the 
covariate processes             

A note on covariates

Throughout we will assume that the covariate processes              
are predictable

1 2( ) ( ( ), ( ),..., ( )) 1,....,T
i i i ipt x t x t x t i n= =x

This implies that: 

• fixed covariates should be measured in advance               
(i.e. at time zero) and remain fixed throughout the study

• the values at time t of time-dependent covariates
should be known "just before" time  t

You should never let covariates depend on 
information from the future! 24

It is useful to distinguish between external (or exogenous) 
and internal (or endogenous) covariates 

Examples of external covariates are:
• Fixed covariates
• Defined time-dependent covariates: the complete 

covariate path is given at the outset of the study                 
(e.g. a person's age at study time t )

• Ancillary time-dependent covariates: the path of a 
stochastic process that is not influenced by the event 
being studied (e.g. observed level of air pollution)

Time-dependent covariates that are not external,                    
are called internal 

One example is biochemical markers measured for the 
individuals during follow-up

Interpretation of regression analyses with internal        
time-dependent covariates is not at all straightforward!


