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Assume that we have a sample of n individuals, and let  
Ni(t) count the observed occurrences of an event of 

interest for individual  i as a function of (study) time t

Regression models

where is a vector of
(possibly) time-dependent covariates
(the time-dependency of the covariates is suppressed                
in the above notation)
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We assume that the intensity process of Ni(t) may be given as
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hazard rate (intensity)at risk indicator
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Throughout we will assume that the covariate processes              
are predictable

This implies that: 

• fixed covariates should be measured in advance               
(i.e. at time zero) and remain fixed throughout the study

• the values at time t of time-dependent covariates
should be known "just before" time  t

For the time-dependent covariates it  is useful to 
distinguish between external (or exogenous) and            
internal (or endogenous) covariates 

In most of our applications, we will restrict attention to 
fixed covariates
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Examples of external time-dependent covariates are:

• Defined time-dependent covariates: the complete 
covariate path is given at the outset of the study                 
(e.g. a person's age at study time t )

• Ancillary time-dependent covariates: the path of a 
stochastic process that is not influenced by the event 
being studied (e.g. observed level of air pollution)

(Fixed covariates are also external)

Time-dependent covariates that are not external,                    
are called internal 

One example is biochemical markers measured for the 
individuals during follow-up
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Relative risk regression models

Assume that the hazard rate for individual i takes the form

0( | ) ,) ( ( ))( ii t rt tαα = xx β

hazard ratio (relative risk)baseline hazard

We assume                    , so the baseline hazard            is the 
hazard for an individual  with all covariates equal to zero

( , ) 1r =β 0 0( )tα

We make no assumptions of the form of the baseline hazard

Thus the model contains a nonparametric part (the baseline 
hazard) and a parametric part (the relative risk function)

We say that the model is semiparametric
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The common choice of relative risk function is

which gives Cox's regression model

Thus         is the hazard ratio for one unit's increase in      
the j-th covariate, keeping all other covariates constant

jeβ

Consider two individuals, indexed 1 and 2, and assume
that all components of and             are equal,   
except the j-th component where
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Then:

6

1

( , ( )) {1 ( )}
p

i j ij
j

r t x tβ
=

= +∏β x

Other possible choices of the relative risk function are:

• The additive risk function:

• The excess relative risk function:
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Cox regression is the only relative risk regression
model implemented in R
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Partial likelihood and estimation of  β

Ordinary ML-estimation does not work for the relative risk 
regression models (due to the nonparametric baseline)

Instead we have to use a partial likelihood

We will se how this may be derived

The intensity process of Ni(t) is given as
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The intensity process of the aggregated counting process

takes the form (assuming no joint events)
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We consider the conditional probability of observing an 
event for individual i at time t , given the past and given 
that an event is observed at time t :
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Then the intensity process of Ni(t) may be factorized as
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We obtain the partial likelihood by multiplying together the
conditional probabilites over all observed event times                    

(thereby disregarding the information on the
regression coefficients contained in the aggregated process)

Then, if ij is the index of the individual who experiences an 

event at  Tj , the partial likelihood becomes

where is the risk set at Tj 10

We will show (later) that the maximum partial likelihood 
estimator       enjoys "the usual properties" of ML-estimators

Thus        is approximately multivariate normally distributed
around the true value of with a covariance matrix that
may be estimated by             , where

is the observed information matrix

For general relative risk functions it may be better to use 
the expected information matrix. But as this coincides with 
the observed information matrix for Cox regression, we 
will not go into these details (cf. section 4.1.5)
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To test the null hypothesis                    , we may use the 
Wald test statistic 
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which is approximately standard normally distributed 
under the null hypothesis

To obtain a confidence interval for the hazard ratio                              
we transform the limits of the standard confidence interval 
for         to get the 95% confidence interval :
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To test the simple null hypothesis for a 
specified value of        (typically            ) we may apply           
the usual likelihood based tests statistics:

0 0:H =β β

0β 0 =β 0

• The likelihood ratio test statistic:

• The score test statistic:

where is the vector of score functions

• The Wald test statistic:
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All the test statistics are approximately chi-squared 
distributed with p df under the null hypothesis 
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All the tests may be generalized to a composite null 
hypothesis, where on want to test the hypothesis that  r  of 
the regression coefficients are zero (or equivalently, after a 
reparameterization, that there are r   linear restrictions 
among the regression coefficients) 

and it is approximately chi-squared distributed        
with r df under the null hypothesis 

In particular if         is the maximum partial likelihood 
estimator under the null hypothesis, the likelihood 
ratio test statistic takes the form 
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Estimation of cumulative hazards and 
survival probabilities

We will estimate the cumulative baseline hazard

We take the aggregated counting process
as our starting point
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Its intensity process is given by

If we had known β, this would have been an 
example of the multiplicative intensity model

For a given value of β , we may therefore estimate

by
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0( )A t

Since is unknown, we replace it by       to obtain the
Breslow estimator:

If all covariates are fixed, the cumulative hazard
corresponding to an individual with a given covariate
vector is0x

and it may be estimated by

For a given path of an external
time-dependent covariate, the cumulative hazard

may be estimated by



The corresponding survival function is given by 

and it may be estimated by

Alternatively we may use (as is done in R):

{ }0 0
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The estimators of the cumulative hazards and survival
functions are approximately normal and their variances
may be estimated as described in section 4.1.6    
(which is not part of the curriculum)
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For practical purposes there is little difference between 
the two estimators


