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Assume that we have a sample of n individuals, and let  
Ni(t) count the observed occurrences of an event of 
interest for individual  i as a function of (study) time t

Relative risk regression models

where is a vector
of (possibly) time-dependent covariates

1 2( ) ( ( ), ( ),..., ( ))Ti i i ipt x t x t x t=x

We assume that the intensity process of Ni(t) may be given as

( )( )) ( | iii Y t tt αλ = ⋅ x

hazard rate (intensity)at risk indicator

The hazard rate for individual  i takes the form

0( | ) ,) ( ( ))( ii t rt tαα = xx β

hazard ratio (relative risk)baseline hazard
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We assume                    , so the baseline hazard            is the 
hazard for an individual  with all covariates equal to zero

( , ) 1r =β 0 0( )tα

( ) ( )1 1( , ( )) exp ( ) exp ( ) ( )T
i i i p ipr t t x t x tβ β= = + +β x β x L

The common choice of relative risk function is

which gives Cox's regression model

is the hazard ratio for one unit's increase in the
j-th covariate, keeping all other covariates constant

jeβ

Ordinary ML-estimation does not work for the relative risk 
regression models (due to the nonparametric baseline)
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We estimate β by maximizing the partial likelihood

where are the observed event times 

and                                      is  the risk set at Tj

The maximum partial likelihood estimator       enjoys                          
"the usual properties" of ML-estimators

Thus        is approximately multivariate normally distributed
around the true value of with a covariance matrix that
may be estimated by             , where

is the observed information matrix
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To test the null hypothesis                    , we may use the 
Wald test statistic 
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which is approximately standard normally distributed 
under the null hypothesis

To obtain a confidence interval for the hazard ratio                              
we transform the limits of the standard confidence interval 
for         to get the 95% confidence interval :
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We may use the likelihood ratio statistic to test a composite 
null hypothesis, where on want to test the hypothesis that  r  
of the regression coefficients are zero (or equivalently, after 
a reparameterization, that there are r   linear restrictions 
among the regression coefficients) 

and it is approximately chi-squared distributed        
with r df under the null hypothesis 

If         is the maximum partial likelihood estimator 
under the null hypothesis, the likelihood ratio test 
statistic takes the form 
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We may estimate the cumulative baseline hazard

0 0

0

( ) ( )
t
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by the Breslow estimator

This is a generalization of the Nelson-Aalen estimator
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Stratified models

Note that the effects of the covariates are assumed to 
be the same accross strata, while the baseline hazard
may vary between strata

So far we have assumed a common baseline hazard for 
all individuals, i.e.

0( | ) ,) ( ( ))( ii t rt tαα = xx β

When this is not a realistic assumption, one may adopt a 
stratified version of the model

Then the study popolation is grouped into k strata, and 
for an individual in stratum s we assume that the hazard
takes the form:

0( | ,stratu ( , (m () ) ))ii st s rt tαα = β xx
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We now estimate β by maximizing the partial likelihood

where are the observed event times in 

stratum s and         is  the risk set in this stratum at time  Tsj

The maximum partial likelihood estimator       enjoys                           
similar properties as for the situation without stratification
and statistical test may be performed as before 
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We may estimate the stratum-specific cumulative
baseline hazards
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by the Breslow estimators

As before these provide the basis for estimating
cumulative hazards and survival functions for given 
values of fixed covariates (or given paths of external
time-varying covariates)
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Assumptions for Cox regression

We consider a Cox regression model with fixed covariates:

0 exp() )| )(( Tttα α= βx x
Note that the model assumes:

1) Log-linearity:

2) Proportional hazards: 

0log{ ( | )} log{ ( )} Tt tα α= +x β x
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We will indicate how these assumptions may be checked
(this material is not in the ABG-book, cf page 134)
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We will check log-linearity for a numeric covariate,                       
say covariate 1, assuming that log-linearity is ok for                        
the remaining covariates

A simple way to do this is as follows:

1

02 2 2( )( | ,group ) exp( )g Teg tt βαα =x β x

and2 2 3( , ,..., )Tpx x x=x
2 2 3( , ,..., )Tpβ β β=β

Check of log-linearity

• First we make a categorical variable by grouping  into k 
groups according to the value of covariate 1

• Then we fit a model with separate effects for each group:

11 1and are the effects og groups0  2,...,g g kβ β ==

12

• Then we plot the estimates         versus a representative 
value         for each group (e.g. midpoint or group mean) 
and see if we get a (fairly) straight line relationship

1̂gβ
1gx

Melanoma data: 
Checking log-
linearity by 
grouping tumor 
thickness in a 
model with sex 
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A more advanced method is to fit a penalized smoothing 
spline for the effect of  covariate  1 :

and see if the spline estimate becomes fairly linear

20 21( | ) exp (( ) }){ Ts xttα α= +x β x
1( )s x

Melanoma data: 
Checking log-
linearity by using a 
spline for tumor 
thickness in a 
model with sex and 
ulceration as the
other covariates

0 5 10 15

-2
-1

0
1

2
3

thickn

P
ar

tia
l f

or
 p

sp
lin

e(
th

ic
kn

)

14

When the effect of a numeric covariate is not log-linear, we
may transform the covariate or use a grouped version of it                                
(for "advanced" use we may work with splines)

For the melanoma data, the plots indicate that we may use
log-thickness as covariate (and then log2 is a good choice)

Melanoma data: 
Checking log-
linearity by using a 
spline for log2  of
tumor thickness in a 
model with sex and 
ulceration as the
other covariates
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Graphical check of proportional hazards
We will check proportionality for one covariate, say covariate 1, 
assuming that poportionality is ok for the remaining covariates

If proportionality is ok for covariate 1, we have:

1 1
0 2 2( | ) exp(( ) )Txt et βαα =x β x

where and  

2 202( | ,stratum ) exp( )( )s
Tt s tαα =x β x

2 2 3( , ,..., )Tpx x x=x 2 2 3( , ,..., )Tpβ β β=β

To check the assumption, we make k strata based on the
value of (after grouping a numerical covariate): 1x

If proportionality is ok, we have

1 1(s
0

tratum )
0 ( )( ) x s

s ett βα α= 16

Thus if proportionality is ok, we have the following
relation between the cumulative hazards

1 1(stratum
0 0

)( )( ) x s
sA t eA t β=

which implies

0 1 10log{l ( )}og ( ) (stratum )s A tA t x sβ= +

To check proportionality, we may fit a stratified Cox 
model and plot 

0
ˆlog ( ) versus time for each stratumsA t t s

The plots should be (fairly) parallel if proportionality is ok
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Melanoma data: Checking proportionality of tumor 
thickness in a model with sex and ulceration as the
other covariates
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Test of proportional hazards

One way to obtain a formal test for proportional hazard is         
to fit a model of the form

{ }11 1 12 1 1 20( )

( | )
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β β β β
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for a known function g(t), e.g. g(t) = log t

We then test the null hypotesis that one or all of 2 0jβ =

chisq p
factor(sex)2                  0.230       0.6312
log2thick                       4.022       0.0449
factor(ulcer)2                0.956       0.3283
GLOBAL                       8.773       0.0325
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Melanoma data: Plots that indicate possible time 
dependent effects of the covariates
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Graphical check of global model fit 

One way of preforming a global model check is by means of
the grouped martingale residual processes described in 
section 4.1.3 in the ABG-book (which is not part of the
curriculum)

Here we describe another graphical check for survival data 
that may easily be implemented in R

The check is performed by grouping the individuals into k
groups according to the prognostic index

ˆˆ T
i iη = β x

and then compare the Kaplan-Meier estimates for these
groups with the fitted survival curves obtained from the
fitted Cox model (computed for the mean value of the
prognostic index in each group)
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Illustration for melanoma data with sex, log tumor thickness
and ulceration as covariates:
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