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How can the
different patterns
be interpreted?

We need to 
distinguish
between the
individual hazards
and the
population hazard

Heterogeneity in survival analysis

• Differences between individuals are of two kinds:

– those observed through covariates

– those that are unobserved

• The latter ones are usually disregarded in                       
survival analysis

• This may lead to distortions as explained in the                  
frailty theory 

• There is a large literature on frailty theory, but we will
review just a few basic issues
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Population hazard and individual hazard 

• We will  distinguish between the population hazard rate 
and the individual hazard rates

• The population hazard rate is influenced by selection: 
those with highest risk experience the event early

• The shape of the population hazard may be entirely 
different from that of the individual hazards

• Hence the population hazard can not be interpreted as 
giving information on individual development in risk
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The proportional frailty model

We assume that the heterogeneity between individuals
may be described by a frailty variable  Z

The frailty variable is a non-negative random variable, 
with large values of Z corresponding to "frail" individuals

It is common to assume that the frailty has a multiplicative
effect on the hazard, i.e.
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( | ) ( )t Z tZα α= ⋅

Here is the individual baseline hazard
(corresponding to Z=1) and                 is the individual
hazard for an individual with frailty Z

Note that the frailty is not observed

( )tα
( | )t Zα
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The most common choice of frailty distribution is the 
gamma distribution with density (z > 0)

1( ) exp( )
( )

f z z z
η

ην ν
η

−= −
Γ

It is well known that the gamma distribution has 
mean η /ν and variance η /ν2

We will often assume that the frailties have mean  equal to 1

For the gamma distribution this implies that η = ν

Then the variance becomes  δ = ν−1
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Gamma distributions with mean 1 for some values of the variance δ
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Laplace transform

The Laplace transform is a convenient tool to study the
multiplicative frailty model

For a positive random variable Z the Laplace transform
is given by

( ) E( )c Zc e−=L

The Laplace transform is closely related to the moment 
generating function

( ) E( )s Zs e=M
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It is well known that for the gamma distribution with            
mean η /ν and variance η /ν2 , the moment generating 
function takes the form                                     

1
( )

1 /
s

s

η

ν
 =  − 

M

Thus the Laplace transform becomes

( ) ( )c c= −L M

In particular for the gamma distribution with mean 1 (i.e. η = ν) 
and variance δ = ν−1 the Laplace transform takes the form   

1
( )

1 /
c

c

ν

ν
 =  + 

L

1

1 /c

η

ν
 =  + 

( )1 /c
νν −= + ( ) 1/

1 c
δδ −= +



Population survival function

( ) ( )S t P T t= >
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Consider a population where the heterogeneity is 
described by the proportional frailty model

Let T  be the survival time of a randomly selected 
individual from the population

Then  

where

The population survival function is given by

( | ) ( | )S t Z P T t Z= >

0( ) ( )tA t u duα∫=

E{ ( | )}P T t Z= >

( )E( )ZA te−= ( ( ))A t=L

exp{ ( )}Z A t= −

E{ ( )}I T t= >

( )E E{ ( ) | }I T t Z= >
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If frailty is gamma distribution with mean 1 and variance δ 

the population survival function becomes

( ) ( ( ))S t A t=L { } 1/
1 ( )A t

δδ −= +
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The population hazard becomes

( ( ))
( )

( ( ))

A t
t

A t
α ′−= L

L

( ( ))

( ( ))

d

dt
A t

A t

−
=

L

L

If frailty is gamma distribution with mean 1 and variance δ 

the population hazard rate is given by

( ( ))
( ) ( )
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A t
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A t
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One sees that the population hazard is "pulled down" 
with a strength determined by δ



Estimating frailty

• For survival data where only a single event is available
for each individual, the frailty effect is not identifiable
unless we assume a specific form of the individual
baseline hazard rate α(t)

• Frailty models for survival data may be speculative,                 
but the are useful for understanding why the population
hazard may have different shapes

• Estimation of frailty is more relevant for clustered
survival data and recurrent event data (repeated events)
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Examples of clustered survival data

Examples 1.9 and 7.2: Duration of amalgam fillings in teeth for 32 patients 
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Example: Litter-matched rats

The data consist of 50 litters of female rats with 3 rats in 
each litter

One rat in each litter received a potentially tumorgenic
treatment, the other two were controls

The time (in weeks) until tumor occurrence was observed
for each rat

Cencoring was due to death without tumor or end of study
(at 104 weeks when the rats still alive were sacrificed)

Data for 6 of
the 50 litters
(T is occurrence of
tumor, D is death
or sacrifice, i.e. 
censoring) 

To handle the dependence, we will assume that                   
the units in the i-th cluster share the same frailty Zi

The uncensored survival times of the units in  the                   
i-th cluster are denoted 
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( 1,..., )ij iT j n=

Assume that we have data from m  independent clusters

In the i-th cluster there are  ni units 

are dependent  survival times1,...., ii inT T

We will assume that given Zi , the  survival times                  
are independent and have hazard rates              ,               

where           may depend on covariates (for the clusters 
and/or the units) 

1,...., ii inT T ( )iji tZ α⋅

A shared frailty model for clustered survival data

( )ij tα
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In the i-th cluster we observe censored survival times           

and censoring indicators   
ijT%

The frailty variables                   for the m clusters are
assumed to be independent and identically distributed
(e.g. gamma distributed)

1,...., mZ Z

( 1,..., )ij iD j n=

It is common to assume  E( ) 1iZ =

We will derive the marginal likelihood for the data           
(i.e. the likelihood based on the distribution of the 
observable data)
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Data for the  i-th cluster (in addition there may be covariates)

{ }, ; 1,....,i ij i iH T D j n= =%

Conditional in frailty, the likelihood contribution for            
the  i-th cluster becomes (cf. chapter 5)

( ) ( ){ }
1

( | ) ( ) exp ( )
i ij

n D

i i i ij ij i ij ij
j

P H Z Z T Z A Tα
=

∏= −% %

where
0

( ) ( )
t

ij ijA t u duα∫=

Note that

( ){ } ( )
1

( | ) ( ) exp
i ij

i

n D D
i i ij ij i i i

j
P H Z T Z Z Vα •

=
∏= ⋅ −%

1
( )

in

i ij ij
j

V A T
=
∑= %where                       and                                    

1

in

i ij
j

D D•
=
∑=
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We obtain the contribution to the likelihood for the  i-th
cluster by integrating over the frailty distribution: 

( ){ } ( ){ }
1

( ) ( ) exp
i ij

i

i

n D D
i ij ij Z i i i

j
P H T E Z Z Vα •

=
∏= ⋅ −%

Remember the Laplace transform: ( ) ( )c Zc E e−=L

Note that the r -th derivative becomes:

( ) ( ) ( 1) E( )r r r c Zc Z e−= −L

Hence we may write

( ){ } ( )

1
( ) ( ) ( 1) ( )

i ij
i i

n D D D
i ij ij i

j
P H T Vα • •

=
∏= ⋅ −% L
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The total likelihood is given by

1
( )

m

i
i

L P H
=
∏=

so the log-likelihood becomes

( ) { }( )

1 1
log log ( ) log ( 1) ( )

i
i i

nm D D
ij ij ij i

i j
L D T Vα • •

= =
∑ ∑
 = + −  

% L

If             is given a parametric specification, the log-
likelihood may be maximized with respect to the
parameters of (which may include parameters for 
the baseline hazard and regression coefficients) and the
parameters of the frailty distribution

( )ij tα

( )ij tα

Standard ML-results apply
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Example 7.2: Duration of amalgam fillings

Each person is a cluster, and the fillings are the units 

We fit a gamma frailty model (where the frailties have 
mean 1 and variance δ ) with no covariates, assuming a 
Weibull baseline hazard:

1( )( | )i
k

i itZt Z btZαα −= ⋅ = ⋅

ML-estimates (with standard errors):

ˆlog( ) 4.21 (0.25)

ˆ 0.43 (0.10)

ˆ 0.85 (0.31)

b

k

δ

= −

=

=
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The R library "parfm" may be used to fit frailty models with
parametric baseline hazard

Default is a Weibull baseline parameterized as 1( )t tρα λρ −=

When using a gamma frailty, it is assumed to have mean 1 
and variance θ (corresponding to δ above)

See the documentation for other baseline hazards and 
frailty distributions

A detailed description of the package is given in a paper at 
http://www.jstatsoft.org/v51/i11/
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Each litter is a cluster, and the rats are the units 

We fit a gamma frailty model (where the frailties have 
mean 1 and variance θ ) with treatment as covariate, 
assuming a Weibull baseline hazard:

1( ) exp| () )( iji iij i ijZ Zt xZ tt ρα α λρ β−= ⋅ = ⋅

ML-estimates (with standard errors):

ˆˆ 3.93 (0.57) 0.020 (0.009)

ˆ ˆ0.91 (0.32) 0.49 (0.47)

ρ λ

β θ

= =

= =

Example: Litter-matched rats

Here               if rat  j in litter i is treated,              otherwise           1ijx = 0ijx =
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Testing 
0 : 0 vs : 0AH Hδ δ= >

We will use the likelihood ratio test, to test if the there is 
an effect of frailty 

This corresponds to testing if the frailty variance δ (or θ ) is 0

The usual properties for the likelihood ratio test do not apply 
in this situation, since the null hypothesis is at the boundary 
of the parameter space

One may show that in such situations two times the 
difference in log-likelihoods is approximately distributed as

To get the correct P-value, we should therefore 
simply halve the  P-value we obtain from the usual 
likelihood ratio test

1 12 2
0 12 2

χ χ+
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Example: Litter-matched rats

The log-likelihood for the model with frailty is  -83.423

The model without frailty has log-likelihood -84.277

The likelihood ratio statistic takes the value 
2*(-83.423 +84.227) =1.608

The P-value becomes 
0.5*0.2048=0.102

Thus there is not a significant litter effect for the rat data
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Recurrent event data

For each of m individuals we are observing repeated 
occurrences of an event (e.g epileptic seizures, heart attacks)

Data for one individual (events marked with x):

0 2 4 6 8 100 1 2 3 4 5 6 7 8 9 10

For modelling one may use global time (time since start) or 
recurrence time (time since last event)

global time

recurrence time
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When using recurrence time to model recurrent event 
data, a much used model is a renewal process where 
the times between events for an individual are 
assumed iid

Then the data may be treated as clustered survival 
data with one cluster for each individual 
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Example of clustered data from recurrent events

Examples 1.11 and 7.1:  Movements of the small bowl
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We fit a gamma frailty model for the recurrence times 
(where the frailties have mean 1 and variance δ ) with 
no covariates, assuming a Weibull baseline hazard:

1( )( | )i
k

i itZt Z btZαα −= ⋅ = ⋅

ML-estimates (with standard errors):

ˆlog( ) 10.0 (1.0)

ˆ 2.28 (0.22)

ˆ 0.15 (0.12)

b

k

δ

= −

=

=

To test                                           we may use the     
one-sided likelihood ratio test

Twice the difference in log-likelihoods becomes 2.58 
corresponding to a P-value of 5.4 % 

0 : 0 vs : 0AH Hδ δ= >


