Add. ex. 2: Aalen-Johansen \& Competing risk

Assume only two competing risks with states 0 for alive, 1 for death by cause 1 and 2 for death by cause 2 . Then the competing risk model estimator of the prob. of staying in state 0 at time t after starting in state 0 at $t=0$ equals (3.69)

$$
\hat{P}_{00}(t)=\prod_{s \leq t}\left[1-\frac{d N_{01}(s)+d N_{02}(s)}{Y_{0}(s)}\right]=\prod_{s \leq t}\left[1-\frac{d N_{0 \bullet}(s)}{Y_{0}(s)}\right]
$$

and the estimator of the probability of having moved to state j is given by (3.70)

$$
\hat{P}_{0 h}(t)=\int_{s}^{t} \hat{P}_{00}(s-) \frac{d N_{0 h}(s)}{Y_{0}(s)}
$$

Add. ex. 2: Aalen-Johansen \& Competing risk, II

An estimated transition matrix is then given as the 3×3

$$
\mathbf{P}^{\star}(0, t)=\left[\begin{array}{ccc}
\hat{P}_{00}(t) & \hat{P}_{01}(t) & \hat{P}_{02}(t) \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

since states 1 and 2 are absorbing.
We want to show that $\mathbf{P}^{\star}(0, t)$ is identical to the Aalen-Johansen estimator, with event times $t_{1}<t_{2}<\cdots t_{k} \leq t<t_{k+1}$

$$
\hat{\mathbf{P}}(0, t)=\hat{\mathbf{P}}\left(0, t_{1}\right) \times \hat{\mathbf{P}}\left(t_{1}, t_{2}\right) \times \cdots \times \hat{\mathbf{P}}\left(t_{k-1}, t_{k}\right)
$$

where

Add. ex. 2: Aalen-Johansen \& Competing risk, III

But for $t_{1} \leq t<t_{2}$ we have $\hat{P}_{00}\left(t_{1}-\right)=1$ and

$$
\begin{aligned}
& \hat{P}_{00}(t)=1-\frac{d N_{0 \bullet}\left(t_{1}\right)}{Y_{0}\left(t_{1}\right)} \\
& \hat{P}_{0 h}(t)=\hat{P}_{00}\left(t_{1}-\right) \frac{d N_{0 h}\left(t_{1}\right)}{Y_{0}\left(t_{1}\right)}=\frac{d N_{0 h}\left(t_{1}\right)}{Y_{0}\left(t_{1}\right)}
\end{aligned}
$$

thus $\mathbf{P}^{\star}\left(t_{1}\right)=\hat{\mathbf{P}}\left(0, t_{1}\right)$. Furthermore, if $\mathbf{P}^{\star}\left(t_{k-1}\right)=\hat{\mathbf{P}}\left(0, t_{k-1}\right)$,
$\hat{\mathbf{P}}\left(0, t_{k}\right)=\hat{\mathbf{P}}\left(0, t_{k-1}\right) \times \hat{\mathbf{P}}\left(t_{k-1}, t_{k}\right)=\hat{\mathbf{P}}\left(0, t_{k}-\right) \times \hat{\mathbf{P}}\left(t_{k}-, t_{k}\right)=$
$\left[\begin{array}{ccc}\hat{P}_{00}\left(t_{k}-\right) & \hat{P}_{01}\left(t_{k}-\right) & \hat{P}_{02}\left(t_{k}-\right) \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \times\left[\begin{array}{ccc}1-\frac{d N_{0 \bullet}\left(t_{k}\right)}{Y_{0}\left(t_{k}\right)} & \frac{d N_{01}\left(t_{k}\right)}{Y_{0}\left(t_{k}\right)} & \frac{d N_{02}\left(t_{k}\right)}{Y_{0}\left(t_{k}\right)} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Add. ex. 2: Aalen-Johansen \& Competing risk, IV

Multiplying out this gives, $t_{k} \leq t<t_{k+1}$,

$$
\hat{P}_{00}\left(t_{k}-\right)\left(1-\frac{d N_{0 \bullet}\left(t_{k}\right)}{Y_{0}\left(t_{k}\right)}\right)=\prod_{s \leq t}\left[1-\frac{d N_{0}(s)}{Y_{0}(s)}\right]=\hat{P}_{00}\left(t_{k}\right)=\hat{P}_{00}(t)
$$

and
$\hat{P}_{00}\left(t_{k}-\right) \frac{d N_{0 h}\left(t_{k}\right)}{Y_{0}\left(t_{k}\right)}+\hat{P}_{0 h}\left(t_{k}-\right)=\int_{0}^{t_{k}} \hat{P}_{00}(s-) \frac{d N_{0 h}(s)}{Y_{0}(s)}=\hat{P}_{0 h}\left(t_{k}\right)$,
For $g>1$ we will still have $\hat{P}_{g h}(t)=I(g=h)$.
Hence the matrix $\mathbf{P}^{\star}(t)$ consisting of ABG formulas (3.69) and (3.70) in the first line and furthermore one along and zeros outside the diagonal equals the Aalen-Johansen-estimator $\hat{\mathbf{P}}(t)$ for competing risks.

Add. ex. 2: Aalen-Johansen \& Illness-Death, I

The formulas for the transition probabilities for the illness-death setting (ID) are given in (3.74-3.76) in ABK (well, some of them). They can also be written

$$
\begin{aligned}
& \hat{P}_{00}(0, t)=\prod_{u \leq t}\left[1-\frac{d N_{0 \bullet}(u)}{Y_{0}(u)}\right] \\
& \hat{P}_{11}(0, t)=\prod_{u \leq t}\left[1-\frac{d N_{12}(u)}{Y_{1}(u)}\right] \\
& \hat{P}_{01}(0, t)=\int_{0}^{t} \hat{P}_{00}(0, u-) \frac{d N_{01}(u)}{Y_{0}(u)} \hat{P}_{11}(u, t) \\
& \hat{P}_{02}(0, t)=\int_{0}^{t} \hat{P}_{00}(0, u-) \frac{d N_{02}(u)}{Y_{0}(u)}+\int_{0}^{t} \hat{P}_{01}(0, u-) \frac{d N_{12}(u)}{Y_{1}(u)} \\
& \hat{P}_{12}(t)=1-\hat{P}_{11}(t)
\end{aligned}
$$

We want to verify that these transition probabilities are the same as those obtained with the Aalen-Johansen estimator

$$
\hat{\mathbf{P}}(0, t)=\hat{\mathbf{P}}\left(0, t_{1}\right) \times \hat{\mathbf{P}}\left(t_{1}, t_{2}\right) \times \cdots \times \hat{\mathbf{P}}\left(t_{k-1}, t_{k}\right)
$$

Add. ex. 3: Aalen-Johansen \& ID, II

The ID-transition probabilities on matrix form becomes, since death is absorbing and $\hat{P}_{22}(t)=1$,

$$
\mathbf{P}^{\star}(0, t)=\left[\begin{array}{ccc}
\hat{P}_{00}(0, t) & \hat{P}_{01}(0, t) & \hat{P}_{02}(0, t) \\
0 & \hat{P}_{11}(0, t) & \hat{P}_{12}(0, t) \\
0 & 0 & 1
\end{array}\right]
$$

We may proceed as for the competing risk situation

- First we note that $\mathbf{P}^{\star}(0,0)=\mathbf{I}=\hat{\mathbf{P}}(0,0)$
- Assuming that $\mathbf{P}^{\star}\left(0, t_{k-1}\right)=\hat{\mathbf{P}}\left(0, t_{k-1}\right)$ we want to establish that $\mathbf{P}^{\star}\left(0, t_{k}\right)=\hat{\mathbf{P}}\left(0, t_{k}\right)$

Since both matrices can change at event times t_{k} it is sufficient to consider only these.

Add. ex. 2: Aalen-Johansen \& ID, III

As for competing risk $\hat{\mathbf{P}}\left(0, t_{k}\right)=\hat{\mathbf{P}}\left(0, t_{k-1}\right) \times \hat{\mathbf{P}}\left(t_{k-1}, t_{k}\right)=$
$\left[\begin{array}{ccc}\hat{P}_{00}\left(0, t_{k-1}\right) & \hat{P}_{01}\left(0, t_{k-1}\right) & \hat{P}_{02}\left(0, t_{k-1}\right) \\ 0 & \hat{P}_{11}\left(0, t_{k-1}\right) & \hat{P}_{12}\left(0, t_{k-1}\right) \\ 0 & 0 & 1\end{array}\right] \times\left[\begin{array}{ccc}1-\frac{d N_{0} \bullet\left(t_{k}\right)}{Y_{0}\left(t_{k}\right)} & \frac{d N_{01}\left(t_{k}\right)}{Y_{0}\left(t_{k}\right)} & \frac{d N_{02}\left(t_{k}\right)}{Y_{0}\left(t_{k}\right)} \\ 0 & 1-\frac{d N_{12}\left(t_{k}\right)}{Y_{1}\left(t_{k}\right)} & \frac{d N_{12}\left(t_{k}\right)}{Y_{(}\left(t_{k}\right)} \\ 0 & 0 & 1\end{array}\right]$
We only need to verify for component $(1,1): \hat{P}_{00}\left(0, t_{k}\right)$, component $(1,3): \hat{P}_{02}\left(0, t_{k}\right)$ and component (2,2): $\hat{P}_{11}\left(0, t_{k}\right)$
since the probabilities over each row will sum to 1 .
For component $(1,1)$ we get

$$
\hat{P}_{00}\left(0, t_{k-1}\right)\left(1-\frac{d N_{0 \bullet}\left(t_{k}\right)}{Y_{0}\left(t_{k}\right)}\right)=\prod_{0<s \leq t_{k}}\left[1-\frac{d N_{0 \bullet}\left(t_{k}\right)}{Y_{0}\left(t_{k}\right)}\right]=\hat{P}_{00}\left(t_{k}\right)
$$

Add. ex. 2: Aalen-Johansen \& ID, IV

Similarly for component (2,2):

$$
\hat{P}_{11}\left(0, t_{k-1}\right)\left(1-\frac{d N_{12}\left(t_{k}\right)}{Y_{1}\left(t_{k}\right)}\right)=\prod_{0<s \leq t_{k}}\left[1-\frac{d N_{12}\left(t_{k}\right)}{Y_{1}\left(t_{k}\right)}\right]=\hat{P}_{11}\left(0, t_{k}\right)
$$

Then component $(1,3)$ becomes

$$
\begin{aligned}
& \hat{P}_{00}\left(0, t_{k-1}\right) \frac{d N_{02}\left(t_{k}\right)}{Y_{0}\left(t_{k}\right)}+\hat{P}_{01}\left(t_{k-1}\right) \frac{d N_{12}\left(t_{k}\right)}{Y\left(t_{k}\right)}+\hat{P}_{02}\left(t_{k-1}\right) \\
& \quad=\int_{0}^{t_{k-1}} \hat{P}_{00}(0, u-) \frac{d N_{02}(u)}{Y_{0}(u)}+\hat{P}_{00}\left(t_{k-1}\right) \frac{d N_{02}\left(t_{k}\right)}{Y_{0}\left(t_{k}\right)} \\
& \quad+\int_{0}^{t_{k-1}} \hat{P}_{01}(0, u-) \frac{d N_{12}(u)}{Y_{1}(u)}+\hat{P}_{01}\left(t_{k-1}\right) \frac{d N_{12}\left(t_{k}\right)}{Y\left(t_{k}\right)} \\
& \quad=\int_{0}^{t_{k}} \hat{P}_{00}(0, u-) \frac{d N_{02}(u)}{Y_{0}(u)}+\int_{0}^{t_{k}} \hat{P}_{01}(s, u) \frac{d N_{12}(u)}{Y_{1}(u)}=\hat{P}_{00}\left(0, t_{k}\right)
\end{aligned}
$$

