Review class of two-sample test:

Two groups, $j=1,2$, with hazards $\alpha_{j}(t)$, counting processes $N_{j}(t)$, no. at risk $Y_{j}(t)$ and Nelson-Aalen estimators $\hat{A}_{j}(t)=\int_{0}^{t} d N_{j}(s) / Y_{j}(s)$.

Let $L(t)$ be a general predictable weight function and define a general two-sample test by

$$
Z_{1}=\int_{0}^{t_{0}} L(s)\left[d \hat{A}_{1}(s)-d \hat{A}_{1}(s)\right]=\int_{0}^{t_{0}} L(s)\left[\frac{d N_{1}(s)}{Y_{1}(s)}-\frac{d N_{2}(s)}{Y_{2}(s)}\right]
$$

Under $\mathrm{H}_{0}: \alpha_{1}(t)=\alpha_{2}(t)=\alpha(t) Z_{1}$ has expectation 0 and variance

$$
\mathrm{E}\left[\int_{0}^{t_{0}} L(s)^{2}\left(\frac{1}{Y_{1}(s)}+\frac{1}{Y_{2}(s)}\right) \alpha(s) d s\right]
$$

which may be estimated

$$
V_{11}=\int_{0}^{t_{0}} \frac{L(s)^{2}}{Y_{1}(s) Y_{2}(s)} d N_{\bullet}(s)
$$

Some weight functions

Let $L(t)=K(t) \frac{Y_{1}(s) Y_{2}(s)}{Y_{\bullet}(s)}$
Choices of $K(t)$ up or down-weights early and late events:

- $K(t)=1$ gives log-rank
- $K(t)=Y(t)$ Gehan's generalisation of the Wilcoxon-test
- $K(t)=\hat{S}(t)$ Peto and Prentice generalization of Wilcoxon
- $K(t)=\hat{S}(t)^{p}(1-\hat{S}(t))^{q}$ Fleming and Harrington generalization of Prentice' test.
- $K(t)=\hat{S}(t)^{p}$ implementered in R

Ex. 3.9 Logrank Relapse Leukemia

```
> tpl<-c(1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,15,17,22,2
> dpl<-rep(1,length(tpl))
> t6MP<-c(6,6,6,6,7,9,10,10,11,13,16,17,19,20,22,23,
    25,32,32,34,35)
> d6MP<-c(1,1,1,0,1,0,1,0,0,1,1,0,0,0,1,1,0,0,0,0,0)
> times<-c(tpl,t6MP)
> relapse<-c(dpl,d6MP)
> group<-c(rep(1,length(tpl)),rep(2,length(t6MP)))
>
> #Log-rank
> survdiff(Surv(times,relapse) ~group)
```

	N Observed	Expected	$(O-E)^{\wedge} 2 / E$	$(O-E)^{\wedge} 2 / V$	
group $=1$	21	21	10.7	9.77	16.8
group $=2$	21	9	19.3	5.46	16.8

Ex. 3.9 Relapse Leukemia - two other tests

```
> #Wilcoxon type,
> survdiff(Surv(times,relapse) ~group,rho=1)
```

	N Observed	Expected	$(\mathrm{O}-\mathrm{E})^{\wedge} 2 / \mathrm{E}$	$(\mathrm{O}-\mathrm{E})^{\wedge} 2 / \mathrm{V}$	
group=1	21	14.55	7.68	6.16	14.5
group $=2$	21	5.12	12.00	3.94	14.5

 Chisq= 14.5 on 1 degrees of freedom, \(p=0.000143\)
 $>$
> \#In between
> survdiff(Surv(times,relapse)~group,rho=0.5)

	N Observed	Expected	$(O-E)^{\wedge} 2 / E$	$(O-E)^{\wedge} 2 / V$	
group $=1$	21	17.22	8.98	7.57	15.7
group $=2$	21	6.68	14.92	4.56	15.7

Ex. 3.10 Unbiased variance estimator

We will show that, see slide $2, \mathrm{E}\left[V_{11}\right]=\operatorname{Var}\left(Z_{1}\right)$.
Since $N_{\bullet}(t)=N_{1}(t)+N_{2}(t)$ under H_{0} has intensity process $Y_{\bullet}(t) \alpha(t)=Y_{1}(t) \alpha(t)+Y_{2}(t) \alpha(t)$, i.e. the sum of the intensity processes of the $N_{j}(t)$ we have

$$
\begin{aligned}
V_{11} & =\int_{0}^{t_{0}} \frac{L(s)^{2}}{Y_{1}(s) Y_{2}(s)} d N_{\bullet}(s) \\
& =\int_{0}^{t_{0}} \frac{L(s)^{2}}{Y_{1}(s) Y_{2}(s)} Y_{\bullet}(s) \alpha(s) d s+\int_{0}^{t_{0}} \frac{L(s)^{2}}{Y_{1}(s) Y_{2}(s)} d M_{\bullet}(s)
\end{aligned}
$$

where $M_{\bullet}(t)=N_{\bullet}(t)-\int_{0}^{t} Y_{\bullet}(s) \alpha(s) d s$ is a martingale, thus the last term is an integral wrt martingale and has exp. 0. Thus

$$
\begin{aligned}
\mathrm{E}\left[V_{11}\right] & =\mathrm{E}\left[\int_{0}^{t_{0}} \frac{L(s)^{2}}{Y_{1}(s) Y_{2}(s)} Y_{\bullet}(s) \alpha(s) d s\right] \\
& =\mathrm{E}\left[\int_{0}^{t_{0}} L(s)^{2}\left(\frac{1}{Y_{1}(s)}+\frac{1}{Y_{2}(s)}\right) \alpha(s) d s\right]=\operatorname{Var}\left(Z_{1}\right)
\end{aligned}
$$

Ex. 3.11

Want to show that under the null where $\alpha_{1}(t)=\alpha_{2}(t)=\alpha(t)$ we have $\mathrm{E}\left[N_{1}\left(t_{0}\right)\right]=\mathrm{E}\left[E_{1}\left(t_{0}\right)\right]$ where from eq. (3.60), ABG
$E_{1}\left(t_{0}\right)=\int_{0}^{t_{0}} Y_{1}(s) \frac{d N_{\bullet}(s)}{Y_{\bullet}(s)}=\int_{0}^{t_{0}} Y_{1}(s) \alpha(s) d s+\int_{0}^{t_{0}} Y_{1}(s) \frac{d M_{\bullet}(s)}{Y_{\bullet}(s)}$
where the last equality is added in here. The last term is a martingale with expectation 0 and we get

$$
\mathrm{E}\left[E_{1}\left(t_{0}\right)\right]=\mathrm{E}\left[\int_{0}^{t_{0}} Y_{1}(s) \alpha(s) d s\right]
$$

But we also have
$\mathrm{E}\left[N_{1}\left(t_{0}\right)\right]=\mathrm{E}\left[\int_{0}^{t_{0}} Y_{1}(s) \alpha(s) d s+M_{1}\left(t_{0}\right)\right]=\mathrm{E}\left[\int_{0}^{t_{0}} Y_{1}(s) \alpha(s) d s\right]$,
thus equality (under the null).

About variance of Z_{1}

Under the null we may write, $M_{j}(t)=N_{j}(t)-\int Y_{j}(s) \alpha(s) d s$,

$$
Z_{1}=\int_{0}^{t_{0}} L(s) \frac{d M_{1}(s)}{Y_{1}(s)}-\int_{0}^{t_{0}} L(s) \frac{d M_{2}(s)}{Y_{2}(s)}
$$

as the difference between two martingales and the variance result follows directly when they are uncorrelated.

In general $\operatorname{Cov}\left(\sum_{i} U_{i}, \sum_{j} V_{j}\right)=\sum_{i} \sum_{j} \operatorname{Cov}\left(U_{i}, V_{j}\right)$ and this will extend to integrals, thus

$$
\begin{aligned}
\operatorname{Cov}\left(\int_{0}^{t_{0}}\right. & \left.L(s) \frac{d M_{1}(s)}{Y_{1}(s)}, \int_{0}^{t_{0}} L(s) \frac{d M_{2}(s)}{Y_{2}(s)}\right) \\
& =\int_{0}^{t_{0}} \int_{0}^{t_{0}} \operatorname{Cov}\left(L\left(s_{1}\right) \frac{d M_{1}\left(s_{1}\right)}{Y_{1}\left(s_{1}\right)}, L\left(s_{2}\right) \frac{d M_{2}\left(s_{2}\right)}{Y_{2}\left(s_{2}\right)}\right)
\end{aligned}
$$

About variance of Z_{1}, contd.

But the latter term simplifies to

$$
\int_{0}^{t_{0}} \operatorname{Cov}\left(L(s) \frac{d M_{1}(s)}{Y_{1}(s)}, L(s) \frac{d M_{2}(s)}{Y_{2}(s)}\right)
$$

since for $s_{1} \neq s_{2}$, say $s_{1}<s_{2}$,

$$
\begin{aligned}
& \operatorname{Cov}\left(L\left(s_{1}\right) \frac{d M_{1}\left(s_{1}\right)}{Y_{1}\left(s_{1}\right)}, L\left(s_{2}\right) \frac{d M_{2}\left(s_{2}\right)}{Y_{2}\left(s_{2}\right)}\right)= \\
& \mathrm{E}\left[\left.\mathrm{E}\left(L\left(s_{1}\right) \frac{d M_{1}\left(s_{1}\right)}{Y_{1}\left(s_{1}\right)} L\left(s_{2}\right) \frac{d M_{2}\left(s_{2}\right)}{Y_{2}\left(s_{2}\right)}\right) \right\rvert\, \mathcal{F}_{s_{2}-}\right] \\
& \mathrm{E}\left[L\left(s_{1}\right) \frac{d M_{1}\left(s_{1}\right)}{Y_{1}\left(s_{1}\right)} \mathrm{E}\left(\left.L\left(s_{2}\right) \frac{d M_{2}\left(s_{2}\right)}{Y_{2}\left(s_{2}\right)} \right\rvert\, \mathcal{F}_{s_{2}-}\right)\right]=0
\end{aligned}
$$

About variance of Z_{1}, III

Furthermore

$$
\int_{0}^{t_{0}} \operatorname{Cov}\left(L(s) \frac{d M_{1}(s)}{Y_{1}(s)}, L(s) \frac{d M_{2}(s)}{Y_{2}(s)}\right)=0
$$

since
$\operatorname{Cov}\left(L(s) \frac{d M_{1}(s)}{Y_{1}(s)}, L(s) \frac{d M_{2}(s)}{Y_{2}(s)}\right)=\mathrm{E}\left[\frac{L(s)^{2}}{Y_{1}(s) Y_{2}(s)} \mathrm{E}\left[d M_{1}(s) d M_{2}(s) \mid \mathcal{F}_{s-}\right]\right.$
which equal zero since $N_{1}(s)+N_{2}(s)$ has intensity process
$\left(Y_{1}(s)+Y_{2}(s)\right) \alpha(s) d s$, thus
$\begin{aligned} \operatorname{Var}\left(d M_{1}(s)+d M_{2}(s) \mid \mathcal{F}_{s-}\right) & =\left(Y_{1}(s)+Y_{2}(s)\right) \alpha(s) d s \\ & =\operatorname{Var}\left(d M_{1}(s) \mid \mathcal{F}_{s-}\right)+\operatorname{Var}\left(d M_{2}(s) \mid \mathcal{F}_{s-}\right)\end{aligned}$
giving $\mathrm{E}\left[d M_{1}(s) d M_{2}(s) \mid \mathcal{F}_{s-}\right]=\operatorname{Cov}\left[d M_{1}(s), d M_{2}(s) \mid \mathcal{F}_{s-}\right]=0$

About variance of Z_{1}, IV

A couple of the arguments on the previous page may need some more explanation: $N_{j}(t)$ has intensity process $Y_{j}(t) \alpha(t)$ and so for the martingale $M_{j}(t)=N_{j}(t)-\int_{0}^{t} Y_{j}(s) \alpha(s) d s$ we have

$$
\operatorname{Var}\left(d M_{j}(t) \mid \mathcal{F}_{t-}\right)=Y_{j}(t) \alpha(t) d t
$$

Furthermore $N_{1}(t)+N_{2}(t)$ has intensity process
$\left(Y_{1}(t)+Y_{2}(t)\right) \alpha(t)$ and martingale
$M_{\bullet}(t)=\left(N_{1}(t)+N_{2}(t)\right)-\int_{0}^{t}\left(Y_{1}(s)+Y_{2}(s)\right) \alpha(s) d s=M_{1}(t)+M_{2}(t)$
and so $\operatorname{Var}\left(d M_{\bullet}(t) \mid \mathcal{F}_{t-}\right)=\left(Y_{1}(t)+Y_{2}(t)\right) \alpha(t) d t$
$=\operatorname{Var}\left(d M_{2}(t) \mid \mathcal{F}_{t-}\right)+\operatorname{Var}\left(d M_{2}(t) \mid \mathcal{F}_{t-}\right)$. Thus $M_{1}(t)$ and $M_{2}(t)$ have uncorrelated increments.

