Frailty models

STK4080 H16

1. Concept of frailty (Ch. 6 & 6.1)
2. Marginal hazard in frailty models (Ch. 6.2.1 & 6.2.2)
3. Recurrent and cluster data (Ch. 7 & 7.1)
4. Shared frailty models (Ch. 7.2)
5. Likelihood derivations (Ch.7.2.2)
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Frailty

A frailty is a latent (unobserved) random varialdaised In
survival analysis assuming that the hazard giZesquals

a(t|Z) = Za(t)

for some basic rate(t). The frailty Z captures heterogeneity in
the population.
Frailties can alternatively be described as

mixing distributions

random components

They can describe situations where what is observed on a

populations level may differ from what goes on on the indinatl
level.
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Modelling frailties

Typically some parametric model is assumed forihand a
common choice is the gamma distribution with density

)

e D rexp(—vz); 2> 0
with expectation 7] = 1 and variance Vaz| = .

Z ~g(zln,v) =

To avoid over-parametrization of the modé&dh(¢) one typically
restricts EZ] = 1, thusy = nand VafZ] = 1 = ¢.

Note that with VarZ| = § — 0, the model converges to
T ~ «ft), thus a model without frailty.

The degree of heterogeneity is then described.by
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Themarginal survival function

Conditional onZ we have the survival function
S(t|1Z) =P(T > t|Z) = exp(—ZA(t))

whereA(t) = [,

, (s)ds is the cumulative hazard.

It follows that the marginal or population survival funatio
becomes ¢y — p(r > 1) — / " exp(—zA()g(2)dz
whereg(z) is the density of the f?ailt;Z .

After obtainingS(t) = exp(—M (t)) whereM (t) = [ u(s)ds
we obtain the marginal (population) hazard) by

d

() = [~ log(S (1))
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L aplace transform

The Laplace transform of a random variallevith densityg(z)
IS given by

£2(c) = Elexp(—cZ)] = / exp(—c2)g(2)dz

whenever this integral exists. Note that(c) = Mz (—c) where
My (t) = Elexp(Zt)] is the moment generating function &t

It Is convenient to use the Laplace transform in the contéxt o
frailty models because the marginal survival function lmees

S(t)=P(T >t) = /exp(—zA(t))g(z)dz = L7(A(1))

which leads to a marginal hazard

p(t) = %[— log(S(t))] = @(t)_LZ(Ait))
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Marginal survival and hazard with gamma-frailty

WhenZ ~ gamma(v,v) andd = 1/v we get a
Laplace-transform

1

Ly(c)= PG

Thus the marginal survival function becomes

1
(11 0A(1)1/’

S(t) =

whereas we get the marginal hazard by

d a(t)

As shown on the next page the shape of the marginal hazard can
look quite different from the basic hazandt).
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Example: «(t) = t*, Weibull, increasing hazard

With «(t) = t* we getA(t) = t°/3 andu(t) =

hazard
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Summarizing

Even though individual hazards was increasing, the
population hazard had a maximum

Can be explained by the "frail”, i.e. high, falil first

After a while the remaining population is relatively robust

This may be an explanation for phenomena with unimodal
hazard

Divorce rates typically have a maximum around 7 years
after marriage ("7 year itch")

Incidence of testicular cancer declines after around 35syea

Schizophrenia sets in among teenagers/young adults

However, there may be other mechanisms leading to hazards
with a maximum.
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Multivariat survival

We can say more about the possibility of frailties in the pres
of multivariate survival data.

We will discuss two types of multivariate survival data
Recurrent (serial) times for one individual
Clustered survival data

Examples of the first may be the times
between individual ear infections
between individual admissions to psychiatric wards

Examples of the second could be times to
asthma diagnosis for two twins (or more siblings)

failure of amalgam fillings for one individual
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Shared frailty model
Let 7T}, be the times until eventfor
for individual : (recurrent data)
cluster;

We assume a shared fraillg for each evenj =1, ..., n; where
n,; are the number of recurrences / individuals in cluster

Conditional onZ; we assume hazard§a(t) for Ty, . .., T;,,

Furthermore we assume that independent censoring beffyeen
and that clusters of data are independent.

With censoring time€;; let T;; = min(7};, C;;) be the
right-censored survival times add};, = I(7;; = T};) be
Indicators of events. This are combined into

H; = (Tiu,Di1,....,Tim., Din.).
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Likelihood for multivariate frailty data

Conditionally on the frailtyZ; we get the likelihood contribution
from individual / cluster as

P(Hi|Z) =T11'(Zia(Tsy)) P GXP( Z;A(T;))

whereD;, = Y7 D;; andV; = >0 A(Ty).

The unconditional likelihood contributions can thus betign

P(H;) = Bz, P(H|Z;) = (] [ (T3)")Ez, [2]* exp(—Z,V)]
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A property of the Laplace-transform is that itgh derivative can
be written

L7(c) = Ez [(—2) exp(—cZ)].

The log-likelihood can thus be expressed through these as

logL:Y Yleog )) + log((— 1)Di‘£(Z?i')(%))

In particular if Z; ~ gamma(1/6,1/6), i.e. EZ; = 1 and
VarZ; = 6 we saw thatl ;(c) = [(1 + d¢)]~1/° which can be

plugged in tdlog L after deriving the r-th derivative of 7 (¢)
(see ABG, pg.279).
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Example: Asthma Norwegian twins (Harriset al., 1997)

Age of diagnosis of asthma before age at investigation ag#b16
years was recorded for 527 monozygotic girl twin pairs angl 44
dizygotic girl twin pairs.

The plots show Kaplan-Meler estimators of not being diagdos
with asthma given that the co-twin had asthma among
monozygotic and dizygotic twins.

Monozygotic Dizygotic

YYYYYYYYYY

Clearly larger risk if a monozygotic co-twin had asthma.
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Example: Asthma Norwegian twins, contd.

This would more appropriately be analyzed using sharetiyfral
models.

Will use functionparfm from R-library parfm . Here the
Weibull distribution is modelled as(¢; p, \) = A\t*~! and the
gamma-variance Is denotéd= 9.

The output on next slide shows that the standard errér-ef is
much smaller than the actual estimate for monozygotic twins
whereas it is larger for dizygotic twin.

This Is consistent with a genetic effect (but could also be
Influenced by larger correspondence in environment for
monozygotes).
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Example: Asthma Norwegian twins, output

# Monozygotic girl twins
> parfm(Surv(tid,ast)™1,cluster="par",frailty="gamma

Frailty distribution: gamma
Baseline hazard distribution: Weibull

ESTIMATE SE
theta 9.239 3.392
rho 1.022 0.138
lambda 0.003 0.001

# Dizygotic girl twins
> parfm(Surv(tid,ast)”1,cluster="par",frailty="gamma

Frailty distribution: gamma
Baseline hazard distribution: Weibull

ESTIMATE SE
theta 0.149 0.734
rho 0.710 0.096
lambda 0.007 0.002

", data=j1)

" data=j2)
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Asthma Norwegian twins. In the actual paper
we did not use frailty analysis, but clustered Cox-regassi
(Chapter 8, not curriculum). Status of the co-twin was catar

Such data are dependent, but the dependency can be accounted
for by a robust (sandwich estimator) variance.

# Monozygotic girl twins
> coxph(Surv(tid, ast) © asttv + cluster(par), data = j2)

coef exp(coef) se(coef) robust se V4 P
asttv 0.183 1.201 0.520 0.715 0.26 0.8

n= 884, number of events= 54

# Dizygotic girl twins
> coxph(Surv(tid, ast) ~ asttv + cluster(par), data = j1)

coef exp(coef) se(coef) robust se z P
asttv  2.638 13.979 0.284 0.396 6.65 2.9e-11

n= 1054, number of events= 53
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