
Frailty models
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1. Concept of frailty (Ch. 6 & 6.1)

2. Marginal hazard in frailty models (Ch. 6.2.1 & 6.2.2)

3. Recurrent and cluster data (Ch. 7 & 7.1)

4. Shared frailty models (Ch. 7.2)

5. Likelihood derivations (Ch.7.2.2)
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Frailty

A frailty is a latent (unobserved) random variableZ used in

survival analysis assuming that the hazard givenZ equals

α(t|Z) = Zα(t)

for some basic rateα(t). The frailtyZ captures heterogeneity in

the population.

Frailties can alternatively be described as

• mixing distributions

• random components

They can describe situations where what is observed on a
populations level may differ from what goes on on the individual
level.

Frailty models – p. 2/16



Modelling frailties

Typically some parametric model is assumed for theZ and a

common choice is the gamma distribution with density

Z ∼ g(z|η, ν) =
νη

Γ(η)
zη−1 exp(−νz); z > 0

with expectation E[Z] = η
ν

and variance Var[Z] = η
ν2

.

To avoid over-parametrization of the modelZα(t) one typically

restricts E[Z] = 1, thusν = η and Var[Z] = 1
ν
= δ.

Note that with Var[Z] = δ → 0, the model converges to

T ∼ α(t), thus a model without frailty.

The degree of heterogeneity is then described byδ.
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The marginal survival function

Conditional onZ we have the survival function

S(t|Z) = P(T > t|Z) = exp(−ZA(t))

whereA(t) =
∫ t

0
α(s)ds is the cumulative hazard.

It follows that the marginal or population survival function

becomes
S(t) = P(T > t) =

∫

∞

0

exp(−zA(t))g(z)dz

whereg(z) is the density of the frailtyZ.

After obtainingS(t) = exp(−M(t)) whereM(t) =
∫ t

0
µ(s)ds

we obtain the marginal (population) hazardµ(t) by

µ(t) =
d

dt
[− log(S(t))]
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Laplace transform

The Laplace transform of a random variableZ with densityg(z)

is given by
LZ(c) = E[exp(−cZ)] =

∫

exp(−cz)g(z)dz

whenever this integral exists. Note thatLZ(c) = MZ(−c) where

MZ(t) = E[exp(Zt)] is the moment generating function ofZ.

It is convenient to use the Laplace transform in the context of

frailty models because the marginal survival function becomes

S(t) = P(T > t) =

∫

exp(−zA(t))g(z)dz = LZ(A(t))

which leads to a marginal hazard

µ(t) =
d

dt
[− log(S(t))] = α(t)

−L
′

Z(A(t))

LZ(A(t))
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Marginal survival and hazard with gamma-frailty

WhenZ ∼ gamma(ν, ν) andδ = 1/ν we get a

Laplace-transform

LZ(c) =
1

(1 + δc)1/δ
.

Thus the marginal survival function becomes

S(t) =
1

(1 + δA(t))1/δ
,

whereas we get the marginal hazard by

µ(t) =
d

dt
[− log(S(t))] =

α(t)

1 + δA(t)

As shown on the next page the shape of the marginal hazard can
look quite different from the basic hazardα(t).
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Example: α(t) = t2, Weibull, increasing hazard

With α(t) = t2 we getA(t) = t3/3 andµ(t) = α(t)
1+δA(t)

= t2

1+δt3/3
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Summarizing

• Even though individual hazards was increasing, the

population hazard had a maximum

• Can be explained by the "frail", i.e. highZ, fail first

• After a while the remaining population is relatively robust

This may be an explanation for phenomena with unimodal

hazard

• Divorce rates typically have a maximum around 7 years

after marriage ("7 year itch")

• Incidence of testicular cancer declines after around 35 years

• Schizophrenia sets in among teenagers/young adults

However, there may be other mechanisms leading to hazards
with a maximum.
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Multivariat survival

We can say more about the possibility of frailties in the presence

of multivariate survival data.

We will discuss two types of multivariate survival data

• Recurrent (serial) times for one individual

• Clustered survival data

Examples of the first may be the times

• between individual ear infections

• between individual admissions to psychiatric wards

Examples of the second could be times to

• asthma diagnosis for two twins (or more siblings)

• failure of amalgam fillings for one individual
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Shared frailty model

Let Tij be the times until eventj for

• for individual i (recurrent data)

• clusteri

We assume a shared frailtyZi for each eventj = 1, . . . , ni where

ni are the number of recurrences / individuals in clusteri.

Conditional onZi we assume hazardsZiα(t) for Ti1, . . . , Tini

Furthermore we assume that independent censoring betweenTij

and that clusters of data are independent.

With censoring timesCij let T̃ij = min(Tij, Cij) be the

right-censored survival times andDij = I(T̃ij = Tij) be
indicators of events. This are combined into
Hi = (T̃i1, Di1, . . . , T̃ini

, Dini
).
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Likelihood for multivariate frailty data

Conditionally on the frailtyZi we get the likelihood contribution

from individual / clusteri as

P (Hi|Zi) =
∏ni

j=1(Ziα(T̃ij))
Dij exp(−ZiA(T̃ij))

= (
∏ni

j=1 α(T̃ij)
Dij)ZDi•

i exp(−ZiVi)

whereDi• =
∑ni

j=1Dij andVi =
∑ni

j=1A(T̃ij).

The unconditional likelihood contributions can thus be written

P (Hi) = EZi
P (Hi|Zi) = (

ni
∏

j=1

α(T̃ij)
Dij)EZi

[

ZDi•

i exp(−ZiVi)
]

and the total log-likelihood as

logL =

n
∑

i=1

log(P (Hi))
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A property of the Laplace-transform is that itsr-th derivative can

be written

L
(r)
Z (c) = EZ [(−Z)r exp(−cZ)] .

The log-likelihood can thus be expressed through these as

logL =
n

∑

i=1

[

ni
∑

j=1

Dij log(α(T̃ij)) + log((−1)Di•L
(Di•)
Zi

(Vi))

]

In particular ifZi ∼ gamma(1/δ, 1/δ), i.e. EZi = 1 and

VarZi = δ we saw thatLZ(c) = [(1 + δc)]−1/δ which can be

plugged in tologL after deriving the r-th derivative ofLZ(c)

(see ABG, pg.279).
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Example: Asthma Norwegian twins (Harris et al., 1997)

Age of diagnosis of asthma before age at investigation age 16-25

years was recorded for 527 monozygotic girl twin pairs and 442

dizygotic girl twin pairs.

The plots show Kaplan-Meier estimators of not being diagnosed

with asthma given that the co-twin had asthma among

monozygotic and dizygotic twins.
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Clearly larger risk if a monozygotic co-twin had asthma.
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Example: Asthma Norwegian twins, contd.

This would more appropriately be analyzed using shared frailty

models.

Will use functionparfm from R-library parfm . Here the

Weibull distribution is modelled asα(t; ρ, λ) = λtρ−1 and the

gamma-variance is denotedθ = δ.

The output on next slide shows that the standard error ofθ̂ = δ̂ is

much smaller than the actual estimate for monozygotic twins,

whereas it is larger for dizygotic twin.

This is consistent with a genetic effect (but could also be
influenced by larger correspondence in environment for
monozygotes).
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Example: Asthma Norwegian twins, output

# Monozygotic girl twins

> parfm(Surv(tid,ast)˜1,cluster="par",frailty="gamma ",data=j1)

Frailty distribution: gamma

Baseline hazard distribution: Weibull

ESTIMATE SE

theta 9.239 3.392

rho 1.022 0.138

lambda 0.003 0.001

# Dizygotic girl twins

> parfm(Surv(tid,ast)˜1,cluster="par",frailty="gamma ",data=j2)

Frailty distribution: gamma

Baseline hazard distribution: Weibull

ESTIMATE SE

theta 0.149 0.734

rho 0.710 0.096

lambda 0.007 0.002
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Asthma Norwegian twins: In the actual paper

we did not use frailty analysis, but clustered Cox-regression

(Chapter 8, not curriculum). Status of the co-twin was covariate.

Such data are dependent, but the dependency can be accounted
for by a robust (sandwich estimator) variance.
# Monozygotic girl twins

> coxph(Surv(tid, ast) ˜ asttv + cluster(par), data = j2)

coef exp(coef) se(coef) robust se z p

asttv 0.183 1.201 0.520 0.715 0.26 0.8

n= 884, number of events= 54

# Dizygotic girl twins

> coxph(Surv(tid, ast) ˜ asttv + cluster(par), data = j1)

coef exp(coef) se(coef) robust se z p

asttv 2.638 13.979 0.284 0.396 6.65 2.9e-11

n= 1054, number of events= 53
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