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1. Censoring
2. Survival and hazard function
3. Estimation of survival, Kaplan-Meier
4. Log-rank test for difference in survival
5. Proportional hazards model, Cox-regression
6. Parametric likelihood
7. Counting processes & Martingales (briefly)
8. A few event history schemes
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Survival times

or more generally: Time to an event

Time until death

Time until a machine stops working
Time to disease

Duration of marriage

Duration of employment

Age at sexual debut

Typical problem:Censoring:
Alive at end of follow-up
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Example: Clinical trial

Start of study at time = 0

New patients are discovered and included in the stud
Patients are follow-up until death,

or to when they do not wish to participate in the study
anymore

or to the end of the study period
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Example: clinical trial, contd.

Scheme: Death given biyand censoring by.

Fig. on the left: calendar-time, Fig. on the right: time omdst
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Survival times, for mally

T, = survival time for ind. noz
C; = censoring time for ind. na.

Will not observe allf; (or C;), only

~

T, = min(T;, C;) = Censored lifetime for ind. na.
D; = I(T; = T;-) — Indicator of death for individ nox

The responses in survival analysis are the p(éfysDi), l.e. the
combination of a continuous varialdlé and a binary variablé;.

For instance regression dn disregardingD; does not make
sense.

Need specialized methods for survival data!
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Distribution functions for survival time T
Density f(¢) given from RT € [t,t + A >) = f(t)A

Survival functionS(t) = P(T > t)

Hazard functionx(t) given from
PTelt,t+A>|T>t) ~a(t)A

Cumulative hazardi(t) = [ a(s)ds

Writes S(t) for "Survival"

Interpretation hazard: Prob. for death in small intervaladi
(divided by A) given alive byt.

Relationships:

a(t) = f(t)/5(1)
S(t) = exp(—A(t))
A(t) = —log(5(2))
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For the exponential distribution
a(t) = v, i.e. constant

(2)
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Weibull distributions: «(t,b, k) = bt*~*

With & = 1. Exponential distributiong(t) = constant
Wit £ > 1: Increasing hazard
With £ < 1: Decreasing hazard

25

20
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10
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Kaplan-Meler estimator for the survival function

Define, with/() the indicator function,

Y (t) = number "at risk" by=>""_ I(T, > t)

May then estimaté'(¢) by the Kaplan-Meier estimator

S) =Tzl - 25
= (1—

<T1>)(1 B <T2>) (1= Y(Tw)

when the data are indexed so that< T, < --- < T,
T 1 <t <1T.
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Explanation for Kaplan-Meier:

P(Die at timeT;| Alive just beforeT}) = D; /Y (T;)
P(Survive to timel}| Alive just beforeT}) =1 — D,/Y (T})

Thus, since nobody dies in the interVﬂvS-—h ;)

P(Survive tol}) =

—~

P(Survive tol}| Survive toT}_; )
«P(Survive tol;_;| Survive toT}_,)

«P(Survive tal})

S(T3)

We may say that the Kaplan-Meier estimator is non-parametri

since we have made no parametric assumptions.
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A constructed data set:

Censored lifetime§; = 2,3, 5.6, 7*,8, 8, 10*, 12
where * indicates a censored valu€lofwith D, = 0.

Timet; AtriskY; DeathD; D;/Y; 1—D;/Y; S(t)
0 9 0 0 1 1
1 8 3
2 9 1 L 5 5
1 7 87 _ 7
3 8 1 8 8 98 =9
5 7 0 0 1 :
1 5 75 ~
6 6 1 L 2 T3 ~0.648
7 5 0 0 1 0.648
2 1
8 4 2 2 . 0.324
10 2 0 0 1 0.324
12 1 1 1 0 0
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R-calculation of Kaplan-Meler

> tid<-c(2, 3, 5, 6, 7, 8, 8, 10, 12)
> d<-c(1, 1, 0, 1, 0, 1, 1, O, 1)
> library(survival)
> survtest<-survfit(Surv(tid,d)"1)
> survtest
Call: survfit(formula = Surv(tid, d)71)
n events median 0.95LCL 0.95UCL

9 6 8 6 Inf

> names(survtest)

[1] "n" "time" "n.risk" "n.event" "surv" "type"

[7] "std.err"  "upper" "lower" "conf.type" "conf.int" "cal

> chind(survtest$time,survtest$n.risk,survtest$n.eve nt,survtest$surv)
[1] [.2] [.3] [,4]

[1,] 2 9 1 0.8888889

[2,] 3 8 1 0.7777778

[3,] 5 7 0 0.7777778

[4,] 6 6 1 0.6481481

[5,] 7 5 0 0.6481481

[6,] 8 4 2 0.3240741

[7,] 10 2 0 0.3240741

[8,] 12 1 1 0.0000000
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R-plot of Kaplan-Meler

> plot(survfit(Surv(tid,d)"1))
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Example: 205 Danish melanoma patients
T = Time to death from melanoma

C' = Time to end of follow-up or death of other cause

O

0.8

0.6

S()=P(T>1)

0.4

0.2

0.0

tid (aar)
> survfit(Surv(time,dead)™1)
Call: survfit(formula = Surv(time, dead)™1)
n events median 0.95LCL 0.95UCL

205 57 Inf Inf Inf
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Cumulative hazard: Nelson-Aalen estimator
Estimation of cumulative hazard: Nelson-Aalen estimator

T, <t ( Z)
(May alternatively estimaté(t) by exp(—A(t)), or A(t) by

A

—log(S(1)).)

Estimation of hazard.(¢) and densityf (t):
Possible, but more difficult.
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Comparison of two groups

Example: Is survival better with new therapy?

(Ti1,Di1);i=1,...,n; Survival data with trad. therapy

~

(T2, Dio);1 = 1,...,mny  Survival data with new therapy

A

Si(t) = Kaplan-Meier estimator in group, & = 1, 2

Compare
Graphically: PlotS; (¢) and Sy (t)
Hypothesis testt.og-rank-test
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Graphical comparison in R

time<-c(2,3,4,7,10,22,28,29,32,37,40,41,54,61,63,71 ,127,140,146,158,
167,182,2,6,12,54,56,68,89,96,96,125,128,131,140,14 1,143,145,
146,148,162,168,173,181)

d<-c(rep(1,16),rep(0,6),c(1,1,1,1,0,1,1,1,1,0,0,0,0 ,0,1,0,1,0,0,1,0,0))

gr<-c(rep(1,22),rep(2,22))
plot(survfit(Surv(time,d) gr),lty=1:2,xlab="Time (mo

nths)",ylab="Survival"
legend(1,0.2,c("Control","Treat"),lty=1:2,bty="n")

Survival

0.2

—— Control
-- Treat

0.0

0 50 100 150

Time (months)

Introduction — p. 17/48



L og-rank test

O, = No. of observed deaths in control group
O, = No. of observed deaths in treatment group
E, = "Expected" no. deaths in grodpunder H:Same mortality

L M1 +M2j
o Zj nk] ni;+n2;

wheren;; = "no. at risk" andmn; no. deaths at tinte i group k.
Tests the hypothesis by

7 =—=%=F N0 1) under
v/ Var(o.—g) (0.1) under H
or equivalently
Z2 _ (02—E2)2 ~ X% under I_d)

— Var(o,-E,)
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L og-rank test, contd.

A somewhat conservative test (too large p-values) is giyen b

O, — Ey)’° L (02— Ey)*?
Eq Ey

X? = ( ~ x> under H

survdiff(Surv(tid,d)"gr)
Call: survdiff(formula = Surv(tid, d) = gr)

N Observed Expected (O-E)2/E (O-E)2/V
gr=1 22 16 10.6 2.73 4.66
gr=2 22 11 16.4 1.77 4.66

Chisqg= 4.7 on 1 degrees of freedom, p= 0.0309
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The proportional hazards model: 1. One covariate

Hazard rate for subject with one covariate

ax(t) = ag(t) exp(5X)
where baseline hazard(t) is the hazard for subject with
X =0.

Interpretation: Hazard rate ratio (or loosely Relative Risk),

e5'¢! (t)
XX (t)

HR = exp(8(X; — Xp)) =

In particular with.X binary

HR = exp() =
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Example: Mortality rates among men and women,

Statistics Norway, 2000, smoothed.

Binary covariateX indicator of men.

Prop. hazard modelot valid in age interval 0-100 years
Prop. hazard model roughly valid in interval 40-85 yearfwit
HR ~ 1.8.

log(hazard)
hazard-ratio

0 20 40 60 80 100 0 20 40 60 80 100
Age Age

log(hazard)
7 6 5 -4 -3 -2

hazard-ratio
2

40 50 60 70 80 40 50 60 70 80

Age Age )
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Example 1. Melanomadata

T = time to death from melanoma
hazardox (t) = ap(t) exp(8X)

X = Indicator of ulceration,

HR = 24 = exp(f8) = hazard ratio between those with and

without ulceration.
X7 = tumor thickness (mm) subject 1,
X, = thickness (mm) subject 2%; + 1 mm,

HR = exp(B) = rate ratio w. 1 mm difference.
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Proportional hazards model: 2. Several covariates

Hazard rate for individual with covariate vector
X = (X1,Xg, ..., X))

OéX(t) = Oé()(t) exp{ﬁle -+ BQXQ “+ ...+ ﬁpo}

where baseline hazard(t) is hazard function for individual
W|th a” X1 — X2 — ceee — Xp — O
Interpretation: Hazard rateratio (HR)

Another subject withX’ = (X7, X3, ...., X)) whereX| =1,
X1 =0andX; = X, otherwise:

ax(t)
A x (t)

HR; = exp{ﬁl} —
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Example 1. Melanomadata
ax(t) = ap(t) exp(B81 X1 + B2 Xo + B3 X3 + 54X4)

X, =sex (M=1, F=0)

X5 = Indicator of ulceration,
X3 = age,

X4 = thickness (mm)

X = (X1,0, X3, Xy)
X' = (Xla 17X37X4)

HR = 2xW — oxp(8,) = hazard ratio between those with and

axr(t) o

without ulceratioradjusted for sex, age and thickness.
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Estimation in the proportional hazards model

e With baseline hazard,(t) = ay(t, #) parametrically specified
— by likelihood for censored data.

Gompertz:ag(t, 0 = (v, A)) = My

Weibull: ag(t,0 = (v, \)) = X771

e With baselinen(t) = ay; piecewise constant aft;_;, ¢,]
— by Poisson regression.

e With baseline hazard,(¢) arbitrary function
— by Cox-regression.
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Comparison of different types of baseline hazards

log(hazard rate)

log(hazard rate)
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Cox’ Regression:

Death at;. Let

L;(3) = P(Subject: died att;|i € R(¢;), death at;)
_ oi(ts)
ZkeR(ti) ag(ti)
— exp(BXi)ao(ti)
2 keRr(t;) XP(BXk)ao(ts)
_ exp(B8Xi)
ZkeR(ti) exp(B8Xy)

where

o o;(t) = ap(t) exp(BX;) = hazard of subjectat t
e R(t) = subjects under observationtat= riskset at.

Note L;(/) depend org only,
not on the baseline hazard(t).
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Cox’ Partial likelihood:
Assume subjectdied att;, s =1, ..., d.

Estimates by maximizing (Cox, 1972)

L(B) =TI, Li(B)
= L,(8)La(B)....La(F)

Note: We may estimate& and H R = exp() without saying
anything about the baseling ().

The partial likelihood behaves as a usual likelihood.

In particular standard errors of Cox-estimatoand confidence
intervals ford R = exp(3) are produced "automatically".
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Example 1. Melanomadata

survival
0.0 0.2 04 0.6 08 1.0

survival
0.0 0.2 04 0.6 08 1.0
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0 1000 2000 3000 4000 5000
time (days)
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Example 1. Melanomadata

Variable B  se(d) Z-value p-value
tumorsize (mm) 0.11 0.04 2.89 0.004
ulceration 1.16 0.31 3.76 0.0002

sex (F=0,M=1) 0.43 0.27 1.62 0.11
age (years/10) 0.12 0.08 1.47 0.14

Variable HR = exp(3) HR, HRy

tumorsize (mm) 1.12 1.04 1.20
ulceration 3.20 1.75 5.88
sex (F=0,M=1) 1.54 0.91 2.60

age (years/10) 1.13 0.96 1.33
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R-code and print-out:

> coxph(Surv(time,dead) sex+ulcer+age+thickn,data=me )]
Call:
coxph(formula = Surv(time, dead) = sex + ulcer + age + thickn, data = me
coef exp(coef) se(coef) z P
sex 0.4328 1.542 0.2674 1.62 0.11000
ulcer -1.1645 0.312 0.3098 -3.76 0.00017
age 0.0122 1.012 0.0083 1.47 0.14000
thickn  0.1089 1.115 0.0377 2.89 0.00390

Likelihood ratio test=41.6 on 4 df, p=2e-08 n= 205
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More R-code and print-out:

> summary(coxph(Surv(time,dead) sex+ulcer+age+thickn ,data=mel))
coxph(formula = Surv(time, dead) ~ sex + ulcer + age + thickn, data = me
n= 205
coef exp(coef) se(coef) z P
sex 0.4328 1.542 0.2674 1.62 0.11000
ulcer -1.1645 0.312 0.3098 -3.76 0.00017
age 0.0122 1.012 0.0083 1.47 0.14000
thickn  0.1089 1.115 0.0377 2.89 0.00390

exp(coef) exp(-coef) lower .95 upper .95

sex 1.542 0.649 0.913 2.604
ulcer 0.312 3.204 0.170 0.573

age 1.012 0.988 0.996 1.029
thickn 1.115 0.897 1.036 1.201

Rsquare= 0.184  (max possible= 0.937 )

Likelihood ratio test= 41.6 on 4 df, p=2e-08

Wald test = 39.4 on 4 df, p=5.72e-08
Score (logrank) test = 46.7 on 4 df, p=1.79e-09
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Likelihood for right-censored data

Assume that lifetime§’; stem from a distribution with density
f(t;0), survival functionS(¢; ) and hazardy(t; ).

Right-censored ob<f; = min(C;, T;) andD; = I(T; = T;).
Likelihood

L) = ][ L:«(9)
1=1
where the the likelihood contributiob;(0) is given by
i(0)
i(0)

Thus we can summarize the likelihood contribution as

Exact observedD,; = 1) :

f(T3:0) = (T} 0)S(T5; 0)

L
L P(T; > T;) = S(T5; 0)

Right censoredD; = 0) :

Li(0) = a(T; 0)” S(T5; 0)
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Example: Exponential distribution

Hazard:a(t) = v (constant in time)

Survival functionS(t) = exp(—vt)

Likelihood contribution:L;(v) = v2i exp(—vT})
Likelihood L(v) =[], v"" exp(—vT}) = vP exp(—vTo)
where

D, = Z D; = Total no. of deaths
and i=1

T, = Zﬁ — Total observation time
1=1

The likelihood is maximized for the occurrence / exposute ra

D, "Occurrence"
V = p—
T, "Exposure”
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| nferencein STK 4080

For some estimator we may use maximum likelihood (ML)
theory In this course.

An advantages of ML is general large sample results in finite
parameter models.

However, we will work with estimators of functions: Surviva
function S(¢), cumulative hazard function4(t) for simple
samples and cumulative baseline functibit) = fot ap(s)ds in
proportional hazards models.

To deal with estimators of functions it will be convenient to

Introduce the counting process and martingale framework
(Aalen, Borgan & Gjessing, 2008).
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A counting processis a process
that counts events over time
has steps of size 1

at random times

Examples
Poisson process (STK2130)
Ni(t) =I(T; <t,D; = 1)
N(t) = >y Ni(t)
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Example: Counting process

10

N(t)

tid
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Nelson-Aalen / Kaplan-M eier with counting processes

We write the Nelson-Aalen estimator of the cumulative hazar
A(t) as

Lo D;  [TdN(s)
A(‘)%y@)/o V(s)

that is as an integral with respect to the counting process.

Similarly we will write the Kaplan-Meier estimator of the
survival function as

N D ~ dN(s)
500 = T35 =TT = 55

l.e. a so-callegbroduct integral with respect to the counting
process.
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A martingaleisa process M (t) with properties

E(M(t)|F] = M(s)fors <t

whereF; is thehistory of the process up to time

Examples:
M(t) = N(t) — At for Poisson proces¥ (t) with rate \
M(t) = N(t) — [ Y(s)a(s)ds
for N(t) = >_i=, Ni(t)
ForY (¢) > 0 we have the difference between the
Nelson-Aalen and the cumulative hazard becomes
A(t) = A(t) = [ 755[dN(s) = Y(s)a(s)ds] = [; 22
which is a martingale!
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Example: Martingale

M(t)
0

2.0

0.0 0.5 1.0
tid
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L eft truncation - delayed entry data

Previously in these slides we presented the following plot |
connection with time on a clinical study when patient arover
calendar time.

The plot may also be used to exemplify left truncated datarahe
Individuals are included in study from a certain age and wher
age Is the underlying time scale.

Observations
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=
o

Patient
P N W DM OO0 NN 00 O
[ ]
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L eft truncation and counting process framewor k
For such data we assume that
timet is age and hazard ig(?)

Individual enter at timé/; = left truncation time

individuals have events or are censoied= 1/0 at time7}
Such data can be represented through counting processnotat

N;(t) = I(T; < t) = counting events

Y;(t) = I(V; < t < T;) = at risk indicator function

Nelson-Aalen and Kaplan-Meier estimators can then be
calculated on left truncated data using the formulas giviEwa
pages back.

Also Cox-regression allows for left truncation.
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Event history analysis, Sec. 1.5and 3.4

So far we have only considered simple survival analysis
situations. There are, however, more complicated obsenat
scheme with several types of events that can occur:

Examples:
Competing risk situations

lliIness-death situation

Methods for survival data may be modified to handle such
situations.
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Competing risks, Sec. 3.4.1

Dead by
cause 1

Alive

Dead by
cause 2

Dead by
cause 3

With X (t) = 5,5 = 0,1, 2, 3 denoting the state of an individual
at timet we will estimate theeumulative incidence function

Po; () = P(X (%) = j].X(0) = 0),

l.e. the probabillity that an individual died of caugbefore (or

at) time?.
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Healthy-IlIness-Death, Sec. 3.4.2

0 1

Healthy Diseased

P4

Dead

Again denotingX (¢) = j the state of an individual at timewe
are interested in estimating

Pj(t) = P(X(t) = k| X(0) = j),

particularly for; = 0.
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Thegeneral case, Sec. 3.4.3, Aalen-Johansen estimator

HIV-infection
unknown

HIV-infection
known

HIV-infection
treated

Again, interest is on

Stage by CD4 count prior to treatment:

2500

1

"| AIDS

10
AIDS

AN

14

| Dead

350-499 200 - 349 <200
2 3 4
7 8 9
11 12

Pji(t) = P(X(t) = k|X(0)

13
AIDS

7)s

7
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Frailty concept, Ch. 6

Individual hazards may depend on latent - nonobserved -
variablesZ referred to agrailties through

a(t|Z) = Za(t)
wherea(t) is some given hazard.

Observed hazards over populations without taking thetyraito
account may appear strikingly different framat).

Example: Divorce rates over the population appears to have a
maximum at 7 years ("7 year itch"). Under a frailty specifimat
we can have e.g. increasing rates for each couple, the hiut fra
marriages fall early - leaving only stable marriages aftgears.

Curriculum will only consider Section 6.1 and 6.2
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Multivatiate survival, Frailty Ch. 7and Marginal Ch. 8

Example twin data: Hazards for twinin pair: could be given
aij(t) = Zij(t)

whereZ; is the frailty of the twin pairp;; = exp(5'z;;)a(t) and
z;; covariates of twiry in pair.

Purpose:
Estimate relative riskexp(5)

Investigate degree of dependence (i.e. frailty distrrgtio

Curriculum will only consider Sections 7.1, 7.2, 8.1 and 8.2
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