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1. Censoring

2. Survival and hazard function

3. Estimation of survival, Kaplan-Meier

4. Log-rank test for difference in survival

5. Proportional hazards model, Cox-regression

6. Parametric likelihood

7. Counting processes & Martingales (briefly)

8. A few event history schemes
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Survival times

or more generally: Time to an event

• Time until death

• Time until a machine stops working

• Time to disease

• Duration of marriage

• Duration of employment

• Age at sexual debut

Typical problem:Censoring:

Alive at end of follow-up
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Example: Clinical trial

Start of study at timet = 0

• New patients are discovered and included in the stud

• Patients are follow-up until death,

• or to when they do not wish to participate in the study

anymore

• or to the end of the study period
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Example: clinical trial, contd.

Scheme: Death given by• and censoring by◦.

Fig. on the left: calendar-time, Fig. on the right: time on study.
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Survival times, formally

Ti = survival time for ind. no.i

Ci = censoring time for ind. no.i

Will not observe allTi (orCi), only

T̃i = min(Ti, Ci) = Censored lifetime for ind. no.i

Di = I(Ti = T̃i) = Indicator of death for individ no.i

The responses in survival analysis are the pairs(T̃i, Di), i.e. the

combination of a continuous variablẽTi and a binary variableDi.

For instance regression oñTi disregardingDi does not make

sense.

Need specialized methods for survival data!
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Distribution functions for survival time T
• Densityf(t) given from P(T ∈ [t, t+∆ >) ≈ f(t)∆

• Survival functionS(t) = P (T > t)

• Hazard functionα(t) given from

P(T ∈ [t, t+∆ > |T ≥ t) ≈ α(t)∆

• Cumulative hazardA(t) =
∫ t

0
α(s)ds

WritesS(t) for "Survival"

Interpretation hazard: Prob. for death in small interval aroundt

(divided by∆) given alive byt.

Relationships:

• α(t) = f(t)/S(t)

• S(t) = exp(−A(t))

• A(t) = − log(S(t))

• CumulativeF (t) = P(T ≤ t) = 1− S(t)
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For the exponential distribution

• α(t) = ν, i.e. constant

• A(t) = νt

• S(t) = exp(−νt)

• f(t) = ν exp(−νt)
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Weibull distributions: α(t, b, k) = btk−1

With k = 1: Exponential distribution,α(t) = constant

Wit k > 1: Increasing hazard

With k < 1: Decreasing hazard
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Kaplan-Meier estimator for the survival function

Define, withI() the indicator function,

Y (t) = number "at risk" by=
∑n

i=1 I(T̃i ≥ t)

May then estimateS(t) by the Kaplan-Meier estimator

Ŝ(t) =
∏

T̃i≤t[1− Di

Y (T̃i)
]

= (1− D1

Y (T̃1)
)(1− D2

Y (T̃2)
) · · · ·(1− Dk

Y (T̃k)
)

when the data are indexed so thatT̃1 < T̃2 < · · · < T̃n

T̃k−1 < t ≤ T̃k.
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Explanation for Kaplan-Meier:

P̂(Die at timeT̃i| Alive just beforeT̃i) = Di/Y (T̃i)

P̂(Survive to timẽTi| Alive just beforeT̃i) = 1−Di/Y (T̃i)

Thus, since nobody dies in the intervals(T̃j−1, T̃j)

P̂(Survive toT̃i) = P̂(Survive toT̃i| Survive toT̃i−1)

∗P̂(Survive toT̃i−1| Survive toT̃i−2)

∗ · · · ·
∗P̂(Survive toT̃1)

= Ŝ(T̃i)

We may say that the Kaplan-Meier estimator is non-parametric

since we have made no parametric assumptions.

May useŜ(t) whatever distributionTi has.
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A constructed data set:

Censored lifetimes̃Ti = 2, 3, 5∗, 6, 7∗, 8, 8, 10∗, 12
where * indicates a censored value ofTi with Di = 0.

Time tj At risk Yi DeathDi Dj/Yi 1−Di/Yi Ŝ(t)

0 9 0 0 1 1
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≈ 0.648
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0.324

10 2 0 0 1 0.324

12 1 1 1 0 0

Introduction – p. 11/48



R-calculation of Kaplan-Meier

> tid<-c(2, 3, 5, 6, 7, 8, 8, 10, 12)

> d<-c(1, 1, 0, 1, 0, 1, 1, 0, 1)

> library(survival)

> survtest<-survfit(Surv(tid,d)˜1)

> survtest

Call: survfit(formula = Surv(tid, d)˜1)

n events median 0.95LCL 0.95UCL

9 6 8 6 Inf

> names(survtest)

[1] "n" "time" "n.risk" "n.event" "surv" "type"

[7] "std.err" "upper" "lower" "conf.type" "conf.int" "cal l"

> cbind(survtest$time,survtest$n.risk,survtest$n.eve nt,survtest$surv)

[,1] [,2] [,3] [,4]

[1,] 2 9 1 0.8888889

[2,] 3 8 1 0.7777778

[3,] 5 7 0 0.7777778

[4,] 6 6 1 0.6481481

[5,] 7 5 0 0.6481481

[6,] 8 4 2 0.3240741

[7,] 10 2 0 0.3240741

[8,] 12 1 1 0.0000000
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R-plot of Kaplan-Meier

> plot(survfit(Surv(tid,d)˜1))
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Example: 205 Danish melanoma patients

T = Time to death from melanoma

C = Time to end of follow-up or death of other cause

tid (aar)

S
(t
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>
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> survfit(Surv(time,dead)˜1)

Call: survfit(formula = Surv(time, dead)˜1)

n events median 0.95LCL 0.95UCL

205 57 Inf Inf Inf
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Cumulative hazard: Nelson-Aalen estimator

Estimation of cumulative hazard: Nelson-Aalen estimator

Â(t) =
∑

T̃i≤t

Di

Y (T̃i)

(May alternatively estimateS(t) by exp(−Â(t)), orA(t) by

− log(Ŝ(t)).)

Estimation of hazardα(t) and densityf(t):

Possible, but more difficult.
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Comparison of two groups

Example: Is survival better with new therapy?

(T̃i1, Di1); i = 1, ..., n1 Survival data with trad. therapy

(T̃i2, Di2); i = 1, ..., n2 Survival data with new therapy

Ŝk(t) = Kaplan-Meier estimator in groupk, k = 1, 2

Compare

• Graphically: PlotŜ1(t) andŜ2(t)

• Hypothesis test:Log-rank-test
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Graphical comparison in R

time<-c(2,3,4,7,10,22,28,29,32,37,40,41,54,61,63,71 ,127,140,146,158,

167,182,2,6,12,54,56,68,89,96,96,125,128,131,140,14 1,143,145,

146,148,162,168,173,181)

d<-c(rep(1,16),rep(0,6),c(1,1,1,1,0,1,1,1,1,0,0,0,0 ,0,1,0,1,0,0,1,0,0))

gr<-c(rep(1,22),rep(2,22))

plot(survfit(Surv(time,d)˜gr),lty=1:2,xlab="Time (mo nths)",ylab="Survival"

legend(1,0.2,c("Control","Treat"),lty=1:2,bty="n")
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Log-rank test

O1 = No. of observed deaths in control group

O2 = No. of observed deaths in treatment group

Ek = "Expected" no. deaths in groupk under H0:Same mortality

=
∑

j nkj
m1j+m2j

n1j+n2j

wherenkj = "no. at risk" andmkj no. deaths at timetj i groupk.

Tests the hypothesis by

Z = O2−E2√
Var(O2−E2)

∼ N(0, 1) under H0

or equivalently

Z2 = (O2−E2)2

Var(O2−E2)
∼ χ2

1 under H0
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Log-rank test, contd.

A somewhat conservative test (too large p-values) is given by

X2 =
(O1 − E1)

2

E1
+

(O2 − E2)
2

E2
∼ χ2

1 under H0

survdiff(Surv(tid,d)˜gr)

Call: survdiff(formula = Surv(tid, d) ˜ gr)

N Observed Expected (O-E)ˆ2/E (O-E)ˆ2/V

gr=1 22 16 10.6 2.73 4.66

gr=2 22 11 16.4 1.77 4.66

Chisq= 4.7 on 1 degrees of freedom, p= 0.0309
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The proportional hazards model: 1. One covariate

Hazard rate for subject with one covariateX:

αX(t) = α0(t) exp(βX)

where baseline hazardα0(t) is the hazard for subject with

X = 0.

Interpretation: Hazard rate ratio (or loosely Relative Risk),

HR = exp(β(X1 −X0)) =
αX1(t)

αX0(t)

In particular withX binary

HR = exp(β) =
α1(t)

α0(t)
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Example: Mortality rates among men and women,

Statistics Norway, 2000, smoothed.

Binary covariateX indicator of men.

Prop. hazard modelnot valid in age interval 0-100 years

Prop. hazard model roughly valid in interval 40-85 years with

HR ≈ 1.8.
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Example 1: Melanomadata

T = time to death from melanoma

hazardαX(t) = α0(t) exp(βX)

X = indicator of ulceration,

HR = α1(t)
α0(t)

= exp(β) = hazard ratio between those with and

without ulceration.

X1 = tumor thickness (mm) subject 1,

X2 = thickness (mm) subject 2=X1 + 1 mm,

HR = exp(β) = rate ratio w. 1 mm difference.
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Proportional hazards model: 2. Several covariates

Hazard rate for individual with covariate vector

X = (X1, X2, ...., Xp)

αX(t) = α0(t) exp{β1X1 + β2X2 + ...+ βpXp}

where baseline hazardα0(t) is hazard function for individual

with all X1 = X2 = .... = Xp = 0.

Interpretation: Hazard rate ratio (HR)

Another subject withX ′ = (X ′
1, X

′
2, ...., X

′
p) whereX ′

1 = 1,

X1 = 0 andX ′
j = Xj otherwise:

HR1 = exp{β1} =
αX′(t)

αX(t)
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Example 1: Melanomadata

αX(t) = α0(t) exp(β1X1 + β2X2 + β3X3 + β4X4)

X1 = sex (M=1, F=0)

X2 = indicator of ulceration,

X3 = age,

X4 = thickness (mm)

X = (X1, 0, X3, X4)

X ′ = (X1, 1, X3, X4)

HR = αX(t)
αX′ (t)

= exp(β2) = hazard ratio between those with and

without ulcerationadjusted for sex, age and thickness.
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Estimation in the proportional hazards model

• With baseline hazardα0(t) = α0(t, θ) parametrically specified

→ by likelihood for censored data.

Gompertz:α0(t, θ = (γ, λ)) = λγt

Weibull: α0(t, θ = (γ, λ)) = λγtγ−1

• With baselineα0(t) = α0j piecewise constant on(tj−1, tj ]

→ by Poisson regression.

• With baseline hazardα0(t) arbitrary function

→ by Cox-regression.
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Comparison of different types of baseline hazards
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Cox’ Regression:

Death atti. Let

Li(β) = P(Subjecti died atti|i ∈ R(ti), death atti)

= αi(ti)∑
k∈R(ti)

αk(ti)

= exp(βXi)α0(ti)∑
k∈R(ti)

exp(βXk)α0(ti)

= exp(βXi)∑
k∈R(ti)

exp(βXk)

where

• αi(t) = α0(t) exp(βXi) = hazard of subjecti at t

• R(t) = subjects under observation att = riskset att.

NoteLi(β) depend onβ only,

not on the baseline hazardα0(t).
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Cox’ Partial likelihood:

Assume subjecti died atti, i = 1, . . . , d.

Estimateβ by maximizing (Cox, 1972)

L(β) =
∏d

i=1 Li(β)

= L1(β)L2(β)....Ld(β)

Note: We may estimateβ andHR = exp(β) without saying

anything about the baselineα0(t).

The partial likelihood behaves as a usual likelihood.

In particular standard errors of Cox-estimatorβ̂ and confidence

intervals forĤR = exp(β̂) are produced "automatically".
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Example 1: Melanomadata
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Example 1: Melanomadata

Variable β̂ se(̂β) Z-value p-value

tumorsize (mm) 0.11 0.04 2.89 0.004

ulceration 1.16 0.31 3.76 0.0002

sex (F=0,M=1) 0.43 0.27 1.62 0.11

age (years/10) 0.12 0.08 1.47 0.14

Variable ĤR = exp(β̂) ĤRL ĤRU

tumorsize (mm) 1.12 1.04 1.20

ulceration 3.20 1.75 5.88

sex (F=0,M=1) 1.54 0.91 2.60

age (years/10) 1.13 0.96 1.33
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R-code and print-out:

> coxph(Surv(time,dead)˜sex+ulcer+age+thickn,data=me l)

Call:

coxph(formula = Surv(time, dead) ˜ sex + ulcer + age + thickn, data = mel)

coef exp(coef) se(coef) z p

sex 0.4328 1.542 0.2674 1.62 0.11000

ulcer -1.1645 0.312 0.3098 -3.76 0.00017

age 0.0122 1.012 0.0083 1.47 0.14000

thickn 0.1089 1.115 0.0377 2.89 0.00390

Likelihood ratio test=41.6 on 4 df, p=2e-08 n= 205
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More R-code and print-out:

> summary(coxph(Surv(time,dead)˜sex+ulcer+age+thickn ,data=mel))

coxph(formula = Surv(time, dead) ˜ sex + ulcer + age + thickn, data = mel)

n= 205

coef exp(coef) se(coef) z p

sex 0.4328 1.542 0.2674 1.62 0.11000

ulcer -1.1645 0.312 0.3098 -3.76 0.00017

age 0.0122 1.012 0.0083 1.47 0.14000

thickn 0.1089 1.115 0.0377 2.89 0.00390

exp(coef) exp(-coef) lower .95 upper .95

sex 1.542 0.649 0.913 2.604

ulcer 0.312 3.204 0.170 0.573

age 1.012 0.988 0.996 1.029

thickn 1.115 0.897 1.036 1.201

Rsquare= 0.184 (max possible= 0.937 )

Likelihood ratio test= 41.6 on 4 df, p=2e-08

Wald test = 39.4 on 4 df, p=5.72e-08

Score (logrank) test = 46.7 on 4 df, p=1.79e-09
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Likelihood for right-censored data

Assume that lifetimesTi stem from a distribution with density

f(t; θ), survival functionS(t; θ) and hazardα(t; θ).

Right-censored obs:̃Ti = min(Ci, Ti) andDi = I(Ti = T̃i).

Likelihood

L(θ) =
n∏

i=1

Li(θ)

where the the likelihood contributionLi(θ) is given by

Exact observed(Di = 1) : Li(θ) = f(T̃i; θ) = α(T̃i; θ)S(T̃i; θ)

Right censored(Di = 0) : Li(θ) = P(Ti > T̃i) = S(T̃i; θ)

Thus we can summarize the likelihood contribution as

Li(θ) = α(T̃i; θ)
DiS(T̃i; θ)
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Example: Exponential distribution

Hazard:α(t) = ν (constant in time)

Survival functionS(t) = exp(−νt)

Likelihood contribution:Li(ν) = νDi exp(−νT̃i)

LikelihoodL(ν) =
∏n

i=1 ν
Di exp(−νT̃i) = νD• exp(−νT•)

where

D• =
n∑

i=1

Di = Total no. of deaths
and

T• =
n∑

i=1

T̃i = Total observation time

The likelihood is maximized for the occurrence / exposure rate

ν̂ =
D•

T•

=
"Occurrence"
"Exposure"
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Inference in STK4080

For some estimator we may use maximum likelihood (ML)

theory in this course.

An advantages of ML is general large sample results in finite

parameter models.

However, we will work with estimators of functions: Survival

functionS(t), cumulative hazard functionsA(t) for simple

samples and cumulative baseline functionA0(t) =
∫ t

0
α0(s)ds in

proportional hazards models.

To deal with estimators of functions it will be convenient to
introduce the counting process and martingale framework
(Aalen, Borgan & Gjessing, 2008).
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A counting process is a process

• that counts events over time

• has steps of size 1

• at random times

Examples

• Poisson process (STK2130)

• Ni(t) = I(T̃i ≤ t,Di = 1)

• N(t) =
∑n

i=1Ni(t)
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Example: Counting process
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Nelson-Aalen / Kaplan-Meier with counting processes

We write the Nelson-Aalen estimator of the cumulative hazard

A(t) as

Â(t) =
∑

T̃i≤t

Di

Y (T̃i)
=

∫ t

0

dN(s)

Y (s)
,

that is as an integral with respect to the counting process.

Similarly we will write the Kaplan-Meier estimator of the

survival function as

Ŝ(t) =
∏

T̃i≤t

[1− Di

Y (T̃i)
] =

∏

s≤t

[1− dN(s)

Y (s)
],

i.e. a so-calledproduct integral with respect to the counting
process.
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A martingale is a process M(t) with properties

• E[M(t)|Fs] = M(s) for s < t

whereFs is thehistory of the process up to times.

Examples:

• M(t) = N(t)− λt for Poisson processN(t) with rateλ

• M(t) = N(t)−
∫ t

0
Y (s)α(s)ds

for N(t) =
∑n

i=1Ni(t)

• ForY (t) > 0 we have the difference between the

Nelson-Aalen and the cumulative hazard becomes

Â(t)−A(t) =
∫ t

0
1

Y (s)
[dN(s)− Y (s)α(s)ds] =

∫ t

0
dM(s)
Y (s)

which is a martingale!
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Example: Martingale
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Left truncation - delayed entry data

Previously in these slides we presented the following plot in

connection with time on a clinical study when patient arriveover

calendar time.

The plot may also be used to exemplify left truncated data where

individuals are included in study from a certain age and where

age is the underlying time scale.
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Left truncation and counting process framework

For such data we assume that

• time t is age and hazard isα(t)

• individual enter at timeVi = left truncation time

• individuals have events or are censoredDi = 1/0 at timeT̃i

Such data can be represented through counting process notation

• Ni(t) = I(T̃i ≤ t) = counting events

• Yi(t) = I(Vi < t ≤ T̃i) = at risk indicator function

Nelson-Aalen and Kaplan-Meier estimators can then be

calculated on left truncated data using the formulas given afew

pages back.

Also Cox-regression allows for left truncation.
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Event history analysis, Sec. 1.5 and 3.4

So far we have only considered simple survival analysis

situations. There are, however, more complicated observational

scheme with several types of events that can occur:

Examples:

• Competing risk situations

• Illness-death situation

Methods for survival data may be modified to handle such
situations.
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Competing risks, Sec. 3.4.1

With X(t) = j, j = 0, 1, 2, 3 denoting the state of an individual

at timet we will estimate thecumulative incidence function

P0j(t) = P(X(t) = j|X(0) = 0),

i.e. the probability that an individual died of causej before (or
at) timet. Introduction – p. 44/48



Healthy-Illness-Death, Sec. 3.4.2

Again denotingX(t) = j the state of an individual at timet we

are interested in estimating

Pjk(t) = P(X(t) = k|X(0) = j),

particularly forj = 0.
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The general case, Sec. 3.4.3, Aalen-Johansen estimator

Again, interest is on

Pjk(t) = P(X(t) = k|X(0) = j),
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Frailty concept, Ch. 6

Individual hazards may depend on latent - nonobserved -

variablesZ referred to asfrailties through

α(t|Z) = Zα(t)

whereα(t) is some given hazard.

Observed hazards over populations without taking the frailty into

account may appear strikingly different fromα(t).

Example: Divorce rates over the population appears to have a

maximum at 7 years ("7 year itch"). Under a frailty specification

we can have e.g. increasing rates for each couple, the but frail

marriages fail early - leaving only stable marriages after 7years.

Curriculum will only consider Section 6.1 and 6.2
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Multivatiate survival, Frailty Ch. 7 and Marginal Ch. 8

Example twin data: Hazards for twinj in pair i could be given

αij(t) = Ziαij(t)

whereZi is the frailty of the twin pair,αij = exp(β′xij)α(t) and

xij covariates of twinj in pair i.

Purpose:

• Estimate relative risksexp(β)

• Investigate degree of dependence (i.e. frailty distribtion)

Curriculum will only consider Sections 7.1, 7.2, 8.1 and 8.2

Introduction – p. 48/48


	small Survival times
	small {Example: Clinical trial}
	small {Example: clinical trial, contd.}
	small {Survival times, formally }
	small {Distribution functions for survival time $T$}
	small {For the exponential distribution}
	small Weibull distributions: $alpha (t,b,k)
= b t^{k-1}$
	small {Kaplan-Meier estimator for the survival function}
	small {Explanation for Kaplan-Meier:}
	small {A constructed data set:}
	small {R-calculation of Kaplan-Meier}
	small {R-plot of Kaplan-Meier}
	small Example: 205 Danish melanoma patients
	small {Cumulative hazard: Nelson-Aalen estimator}
	small {Comparison of two groups}
	small {Graphical comparison in R}
	small {Log-rank test}
	small {Log-rank test, contd.}
	small {The proportional hazards model: 1. One covariate}
	small {Example: Mortality rates among men and women, \ Statistics Norway, 2000, smoothed.}
	small {Example 1: Melanomadata}
	small {Proportional hazards model: 2. Several covariates}
	small {Example 1: Melanomadata}
	small {Estimation in the proportional hazards model}
	small {Comparison of different types of baseline hazards}
	small {Cox' Regression:}
	small {Cox' Partial likelihood:}
	small {Example 1: Melanomadata}
	small {Example 1: Melanomadata}
	small {R-code and print-out:}
	small {More R-code and print-out:}
	small Likelihood for right-censored data
	small Example: Exponential distribution
	small Inference in STK4080
	small A counting process is a process
	small Example: Counting process
	small Nelson-Aalen / Kaplan-Meier with counting processes
	small A martingale is a process $M(t)$
with properties
	small Example: Martingale
	small {Left truncation - delayed entry data}
	small {Left truncation and counting process framework}
	small Event history analysis, Sec. 1.5 and 3.4
	small Competing risks, Sec. 3.4.1
	small Healthy-Illness-Death, Sec. 3.4.2
	small The general case, Sec. 3.4.3, Aalen-Johansen estimator
	small Frailty concept, Ch. 6 
	small Multivatiate survival, Frailty Ch. 7 and Marginal Ch. 8

