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2. Test for several samples

3. Stratified tests
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Two samples, notation

Counting processes

• No. events in group 1 with treatment A:N1(t)

• No. events in group 2 with treatment B:N2(t)

In each group,j = 1, 2,,

• No. at riskYj(t)

• hazardαj(t)

• MartingaleMj(t) = Nj(t)−
∫ t

0
Yj(s)αj(s)ds

Null hypothesis

H0 : α1(t) = α2(t)

Alternative hypothesis

H0 : α1(t) 6= α2(t)
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Two samples, Graphical check

Let Âj(t) =
∫ t

0
dNj(s)/Yj(s) be the Nelson-Aalen estimators of

Aj(t) andŜj(t) =
∏t

0(1− dNj(s)/Yj(s)) the Kaplan-Meier

estimator ofSj(t).

Under the null we would expect̂A1(t) ≈ Â2(t) and

Ŝ1(t) ≈ Ŝ2(t)

Time (months)

S
ur

vi
va

l

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kontroll
Behandling

Non-parametric tests – p. 3/34



Two samples, Naive test

We could test the null by comparinĝA1(t)− Â2(t) through

Z =
Â1(t)− Â2(t)√

V̂ar(Â1(t)) + V̂ar(Â2(t))
∼ N(0, 1) under H0

whereV̂ar(Âj(t)) =
∫ t

0
dNj(s)/Yj(s)

2 are the variance

estimators of thêAj(t).

However,

• choice oft is arbitrary

• t = t0 = largest time with ind. at risk in both groups may

be a bad choice

• few individual at risk towardt0, large uncertainty
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Two-sample log-rank test:

Define weight process

L(t) =
Y1(t)Y2(t)

Y1(t) + Y2(t)
=

Y1(t)Y2(t)

Y•(t)

The log-rank test statistic is then defined as

Z1 =

∫ t0

0

L(s)[dÂ1(s)−dÂ2(s)] =

∫ t0

0

L(s)[
dN1(s)

Y1(s)
− dN2(s)

Y2(s)
]

However, noteZ1 is not N(0,1) under the null, needs to be

standardized.

Furthermore, withZ2 defined similarly, we have

Z1 + Z2 = 0

need only considerZ1.
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Two-sample log-rank test:

With N•(t) = N1(t) +N2(t) we have

Z1 =
∫ t0
0
[Y2(s)
Y•(s)

dN1(s)− Y1(s)
Y•(s)

dN2(s)]

=
∫ t0
0
[(1− Y1(s)

Y•(s)
)dN1(s)− Y1(s)

Y•(s)
dN2(s)]

= N1(t0)−
∫ t0
0

Y1(s)
Y•(s)

[dN1(s) + dN2(s)]

= O1 − E1

whereO1 = N1(t0) the observed no. events in group 1 and

E1 =

∫ t0

0

Y1(s)
dN•(s)

Y•(s)

can be interpreted as the "expected" number under the null
α1(t) = α2(t) = α(t). Note: the common Nelson-Aalen under
the null will have incrementsdN•(s)/Y•(s).
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Z1 as martingale under H0

In general we may write, withMj(t) = Nj(t)−
∫ t

0
Yj(s)αj(s)ds,

Z1 =

∫ t0

0

L(s)[
dM1(s)

Y1(s)
− dM2(s)

Y2(s)
]+

∫ t0

0

L(s)(α1(s)−α2(s))ds

Thus under the null,α1(t) = α2(t), we have

Z1 =

∫ t0

0

L(s)

Y1(s)
dM1(s)−

∫ t0

0

L(s)

Y2(s)
dM2(s)

the difference between two integrals with respect to martingales.

In particular E[Z1] = 0 under the null.
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Variance ofZ1

The two terms inZ1 under the null as expressed on previous

slide are uncorrelated, thus

Var[Z1] = E[
∫ t0
0

Y1(s)2

Y•(s)2
Y2(s)α(s)ds] + E[

∫ t0
0

Y2(s)2

Y •(s)2
Y1(s)α(s)ds]

= E[
∫ t0
0

Y1(s)Y2(s)
Y•(s)

α(s)ds]

which may be estimated by

V11 =

∫ t0

0

Y1(s)Y2(s)

Y•(s)2
dN•(s)

The log-rank test is thus to reject H0 : α1(t) = α2(t) at 5% level
when|Z1/

√
V11| > 1.96
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Why uncorrelated?

• Two independent groups

• The intensity process ofN1(t) +N2(t) equals

Λ1(t) + Λ2(t) =
∫ t

0
Y1(s)α1(s)ds+

∫ t

0
Y2(s)α2(s)ds

• thus, Var(M1(t) +M2(t)) = E[Λ1(t) + Λ2(t)] =

Var(M1(t)) + Var(M1(t)),

• thus Cov(M1(t),M2(t)) = 0

• For such uncorrelated martingales and predictable

processesKj(t) we also get

Var[
∫ t

0
K1(s)dM1(s) +

∫ t

0
K2(s)dM2(s)] =

E[
∫ t

0
(K2

1 (s)dΛ1(s) +K2
2(s)dΛ2(s)]
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The standardized log-rank statistic

is given as
Z1√
V11

=
O1 − E1√

V
∼ N(0, 1)

or as [
Z1√
V11

]2
=

(O1 − E1)
2

V11

∼ χ2
1

approximately for "large" data sets.

Note thatV11 is symmetric wrt groupe 1 and 2 and the choice of

reference group is arbitrary.
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Example Log-rank: Data on kidney transplantation

The data can be found in theR-library KMsurv on Cran

> library(KMsurv); data(kidtran); attach(kidtran)

> eldre<-(age>49)

> survdiff(Surv(time,delta)˜eldre)

N Observed Expected (O-E)ˆ2/E (O-E)ˆ2/V

eldre=FALSE 574 73 100.3 7.44 26.5

eldre=TRUE 289 67 39.7 18.81 26.5

Chisq= 26.5 on 1 degrees of freedom, p= 2.64e-07
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Approximation log-rank test

Often good approximation

(O2 − E2)
2

V11
≈ (O1 − E1)

2

E1
+

(O2 − E2)
2

E2

In general the left hand side is larger or equal to the right hand

side and the approximation is close when

• Same censoring pattern in both groups

• Small (moderate) difference in mortality

When these assumptions hold we have, for someq,

Y1(t)

Y•(t)
≈ q og

Y2(t)

Y•(t)
≈ 1− q

for all t.
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This gives

V11 =

∫ t0

0

Y1(t)Y2(t)

Y•(t)2
dN•(t) ≈ q(1− q)N•(τ)

and

1

V11

≈ 1

q(1− q)N•(t0)
=

1

qN•(t0)
+

1

(1− q)N•(t0)
≈ 1

E1

+
1

E2

sinceqN•(t0) ≈
∫ t0
0

Y1(t)
Y•(t)

dN•(t) = E1 and corresp. forE2.

Thus
(O1−E1)2

V11

≈ (O1−E1)2

E1

+ (O1−E1)2

E2

= (O1−E1)2

E1

+ (O2−E2)2

E2

sinceO1 − E1 = E2 −O2.
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A class of two-sample test:

LetL(t) be a general predictable weight function and define a

general two-sample test by

Z1 =

∫ t0

0

L(s)[dÂ1(s)−dÂ2(s)] =

∫ t0

0

L(s)[
dN1(s)

Y1(s)
− dN2(s)

Y2(s)
]

Again,Z1 is not N(0,1) under the null, needs to be standardized.

Furthermore, withL(t) = L1,2(t) = L2,1(t), that is indicesj = 1

and 2 can be interchanged, andZ2 defined similarly, we have

Z1 + Z2 = 0

need only considerZ1.
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Some weight functions

Write L(t) = K(t)Y1(t)Y2(t)
Y•(t)

for some functionK(t). Different

choices ofK(s) give some standard variations on the log-rank

test.

Choices ofK(t) up or down-weights early and late events:

• K(t) = 1 gives log-rank

• K(t) = Y•(t) Gehan’s generalisation of the Wilcoxon-test

• K(t) = Ŝ(t) Peto and Prentice generalization of Wilcoxon

(Ŝ(t) =
∏

s≤t
(1− dN•(s)/Y•(s)))

• K(t) = Ŝ(t)p(1− Ŝ(t))q Fleming and Harrington

generalization of Prentice’ test.

• K(t) = Ŝ(t)p implementered inR (and referred to as

Fleming-Harrington in ABG).
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Properties two-sample tests

Under the null,α1(t) = α2(t) we have

Z1 =

∫ t0

0

L(s)[
dM1(s)

Y1(s)
− dM2(s)

Y2(s)
]

and thus as an integral with respect to martingales and has

expectation zero and variance

E[
∫ t0

0

L(s)2(
1

Y1(s)
+

1

Y2(s)
)α(s)ds]

which may be estimated

V11 =

∫ t0

0

L(s)2

Y1(s)Y2(s)
dN•(s)
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Example: Kidney transpl. data

> eldre<-(age>49)

> survdiff(Surv(time,delta)˜eldre)

N Observed Expected (O-E)ˆ2/E (O-E)ˆ2/V

eldre=FALSE 574 73 100.3 7.44 26.5

eldre=TRUE 289 67 39.7 18.81 26.5

Chisq= 26.5 on 1 degrees of freedom, p= 2.64e-07

> survdiff(Surv(time,delta)˜eldre,rho=0)

N Observed Expected (O-E)ˆ2/E (O-E)ˆ2/V

eldre=FALSE 574 73 100.3 7.44 26.5

eldre=TRUE 289 67 39.7 18.81 26.5

Chisq= 26.5 on 1 degrees of freedom, p= 2.64e-07
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Example, contd.

> survdiff(Surv(time,delta)˜eldre,rho=1)

N Observed Expected (O-E)ˆ2/E (O-E)ˆ2/V

eldre=FALSE 574 65.6 90.3 6.74 26

eldre=TRUE 289 60.9 36.2 16.80 26

Chisq= 26 on 1 degrees of freedom, p= 3.45e-07

> survdiff(Surv(time,delta)˜eldre,rho=0.5)

N Observed Expected (O-E)ˆ2/E (O-E)ˆ2/V

eldre=FALSE 574 69.2 95.1 7.08 26.3

eldre=TRUE 289 63.8 37.9 17.77 26.3

Chisq= 26.3 on 1 degrees of freedom, p= 2.98e-07
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Test - More than two samples

k > 2 groups. For grouph define

• Yh(t) = no. at risk att,

• Nh(t) = no. events in[0, t].

Totally letY•(t) =
∑k

h=1 Yh(t) andN•(t) =
∑k

h=1Nh(t).

Model: Hazardαh(t) in grouph.

Null hypothesis: H0 : α1(t) = α2(t) = · · · = αk(t).

The tests are defined from forh = 1, 2, . . . , k, and predictable

processesK(t)

Zh =
∫ t0
0

K(s)dNh(t)−
∫ t0
0

K(s)Yh(s)
dN•(s)
Y•(s)

= Oh − Eh
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Test - more than two samples

Can derive estimates for Var[Zh] as

Vhh =
∫ t0
0

K(s)2 Yh(s)(Y•(s)−Yh(s))
Y•(s)2

dN•(s)

and for Cov(Zh, Zj) as

Vhj = −
∫ t0

0

K(s)2
Yh(s)Yj(s)

Y•(s)2
dN•(s)

Let V be the(k − 1)x(k − 1) matrix withVhh along the diagonal

andVhj outside forh, j = 1, 2, . . . , k − 1. Furthermore, let

Z = (Z1, Z2, . . . , Zk−1)
>. Then under the null hypothesis

(Z)>V −1Z ∼ χ2
k−1
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Ex: Kidney transpl.

> agegr<-trunc(age/20)

> table(agegr)

0 1 2 3

29 304 429 101

> survdiff(Surv(time,delta)˜agegr)

Call:

survdiff(formula = Surv(time, death) ˜ agegr)

N Observed Expected (O-E)ˆ2/E (O-E)ˆ2/V

agegr=0 29 1 5.65 3.82 3.99

agegr=1 304 21 56.76 22.53 38.17

agegr=2 429 88 65.45 7.77 14.63

agegr=3 101 30 12.15 26.24 28.97

Chisq= 61.2 on 3 degrees of freedom, p= 3.26e-13
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Ex: Kidney transpl., contd.

> survdiff(Surv(time,delta)˜agegr,rho=1)

Call:

survdiff(formula = Surv(time, death) ˜ agegr, rho = 1)

N Observed Expected (O-E)ˆ2/E (O-E)ˆ2/V

agegr=0 29 0.999 5.04 3.24 3.76

agegr=1 304 18.870 50.92 20.17 37.50

agegr=2 429 79.281 59.36 6.68 13.88

agegr=3 101 27.382 11.20 23.36 27.92

Chisq= 59.3 on 3 degrees of freedom, p= 8.48e-13
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Stratified tests

Ex. Kidney transplants: LaαBM(t) be the hazard for black men

andαBF(t), αWM(t) andαWF(t) hazards for black females, white

males and white females.

May be interested in testing difference between races

irrespectively of differences between sexes, i.e.

H0 : αBM(t) = αWM(t) andαBF(t) = αWF(t)

We can immediately apply tests separately for men and women

based on

OW|M − EW|M andOW|F − EW|F

A combined (or stratified test) will use

(OW|M − EW|M) + (OW|F − EW|F).
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Stratified tests more generally

Hazard in grouph = 1, 2, . . . , k and stratas = 1, 2, . . . , S is

given byαhs(t). Would like to test, over all stratas,

H0 : α1s(t) = α2s(t) = · · · = αks(t).

With stratum spesific tests based onZhs = (Oh|s − Eh|s),

h = 1, 2, . . . , k we may construct a stratified test based on

(k − 1) of

Zh =
S∑

s=1

Zhs.

In R:

• Add +strata(gender) to model formula
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Ex: Separat and stratified test on kidney transplant data

> survdiff(Surv(time,delta)˜race,subset=(gender==1))

N Observed Expected (O-E)ˆ2/E (O-E)ˆ2/V

race=1 432 73 71.9 0.0168 0.097

race=2 92 14 15.1 0.0801 0.097

Chisq= 0.1 on 1 degrees of freedom, p= 0.755

> survdiff(Surv(time,delta)˜race,subset=(gender==2))

N Observed Expected (O-E)ˆ2/E (O-E)ˆ2/V

race=1 280 39 44.79 0.748 4.85

race=2 59 14 8.21 4.076 4.85

Chisq= 4.8 on 1 degrees of freedom, p= 0.0277

> survdiff(Surv(time,delta)˜race+strata(gender))

N Observed Expected (O-E)ˆ2/E (O-E)ˆ2/V

race=1 712 112 116.7 0.188 1.13

race=2 151 28 23.3 0.942 1.13

Chisq= 1.1 on 1 degrees of freedom, p= 0.287
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Multistate models

Will consider stochastic processesX(t) that

• can move between states{0, 1, . . . , k} with

• transition ratesαij(t) = limh↓0
1
h
P(X(t+ h) = j|X(t) = i)

• under a Markov assumption,Fs is the history up to times,

P(X(t+ h) = j|X(s) = i) = P(X(t+ h) = j|Fs)

We will then derive the Aalen-Johansen estimator of

Pij(s, t) = P(X(t) = j|X(s) = i).

We will consider

• The competing risk setting (model)

• The illness-death (e.g. healthy-illness-death)) model

• The general case
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(Healthy-)Illness-Death (ID)

Hazards (intensities)αgh(t) for transition from stateg to stateh
at timet with α01(t) > 0, α02(t) > 0 andα12(t) > 0 (at least for
somet) and all otherαgh(t) = 0.

Non-parametric tests – p. 27/34



Competing risks

Denotes the state "alive" by 0 and state "death from causeh" by

h(= 1, 2, . . . , k)

• Transition (hazard) rateα0h(t) of causeh

• k causes of death (can only observe one cause)
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Competing risks, random variables

PostulatesTh = time until death of causeh = 1, 2, . . . , k.

Assumes that theTh are independent with hazardsα0h(t).

Note: Observes onlyT = min(T1, T2, . . . , Tk) andD = h if

T = Th, not the differentTh’s.

However, the framework is suitable for describing the modelfor

the processX(t) on states{0, 1, . . . , k} with transition rates

α0h(t) from the "alive" state 0 to cause of death states

h = 1, . . . , k.

In particular we find that

P00(s, t) = P(X(t) = 0|X(s) = 0) = P(T > t|T > s)

= exp(−
∑k

h=1

∫ t

s
α0h(u)du)
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Cumulative incidence functions

The transition probabilities for competing risks are givenas

P0h(s, t) = P (X(t) = h|X(s) = 0) =

∫ t

s

P00(s, u)α0h(u)du

with the reasoning that to be in stateh at t one have

• stayed in state0 from times until some timeu

where0 ≤ s < u < t

• and then moved to stateh at timeu.

• After u the process has to stay inh.

We refer toP0h(s, t) ascumulative incidence functions.

NecessarilyP00(s, t) + P01(s, t) + · · · + P0k(s, t) = 1.
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Competing risks, censoring

The processX(t) is observed up to some censoring timeC.

Observation is summarized bỹT = min(T,C), whereT is the

event time ofX(t) without censoring, andD = h if X(T̃ ) = h.

In particularD = 0 if T̃ = C.

With n independent individual processesXi(t) we observe

(T̃i, Di).

We get the following counting process framework:

• Y0(t) = #{T̃i ≥ t)} = no. still at risk

• N0h(t) = #{T̃i ≤ t,Di = h)} = counts deaths of causeh

• N(t) =
∑k

h=1N0h(t) total no. of deaths beforet
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Intensity processes and martingales

Assume independent censoring. Then we have the following

intensity processes for the counting processes:

• Intensity process ofN0h(t) becomesλ0h(t) = Y0(t)α0h(t)

• Intensity process ofN0(t) becomes

λ0(t) = Y0(t)
∑k

h=1 α0h(t) = Y0(t)α0(t)

We then obtain martingales

• M0h(t) = N0h(t)− Λ0h(t) = N0h(t)−
∫ t

0
Y0(s)α0h(s)

• M0(t) = N0(t)− Λ0(t) = N0(t)−
∫ t

0
Y0(s)α0(s)ds

In particular theM0h(t) are orthogonal (uncorrelated) because
N0(t) only jumps with step 1, implying that theN0h(t) will not
jump at the same timet.
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Estimation of survival function P00(s, t)

SinceN0(t) has intensity processY0(t)α0(t) we get that an

almost unbiased estimator of the survival function

P00(s, t) = exp(−
∫ t

s
α0(u)du) is given by

P̂00(s, t) =
∏

s<u≤t

[
1− dN0(u)

Y0(u)

]
,

corresponding directly to the Kaplan-Meier estimator.

The properties: expectation, variance and asymptotical

normality, follows exactly in the same way as for Kaplan-Meier.

In particularP̂00(s, t) has expectation, (J(s) = I(Y0(s) > 0)),

E[exp(−
∫ t

s

J(u)α0(u)du)] = E[P ?
00(s, t)].

Non-parametric tests – p. 33/34



Estimate cum. incidence function

We noted
P0h(s, t) =

∫ t

s

P00(u)α0h(s, u)du,

thus by plug-in estimates of the cumulative incidence functions

are given by
P̂0h(s, t) =

∫ t

s

P̂00(s, u−)
dN0h(u)

Y0(u)
.

We get

E[P̂0h(s, t)] =

∫ t

s

E[P ?
00(s, u−)J(u)]α0h(u)du,

thus close to unbiased.

Variances are somewhat more tricky here, a variance formulais
given in ABG, eq. (3.89).)
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