Non-parametric tests
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1. Two-sample tests
2. Test for several samples
3. Stratified tests
4. Intro to general event histories
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Two samples, notation
Counting processes

No. events in group 1 with treatment Al (?)

No. events in group 2 with treatment B (¢)
In each group; =1, 2,,

No. at riskY ()

hazardo, ()

Martingale M, (t) = N;(t) — [, Y;(s)a;(s)ds
Null hypothesis

Ho : aq(t) = as(t)

Alternative hypothesis

Ho : an(t) # as(t)
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Two samples, Graphical check

Let A ( fo dN;(s)/Y;(s ) be the Nelson-Aalen estimators of
A;(t) ande( ) = [1o(1 — dN;(s)/Y;(s)) the Kaplan-Meier
estimator ofS;(¢).

Under the null we would expeet; (t) ~ A,(t) and

Si(t) &~ Sy(t)

0.2

0.0
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Two samples, Naive test

We could test the null by comparindy (t) — As(t) through

~ N(0,1) under H,

where\@r(ﬁj(t)) = ft dN,(s)/Y;(s)* are the variance
estimators of thel,(¢).
However,

choice oft is arbitrary

t = t, = largest time with ind. at risk in both groups may
be a bad choice

few individual at risk toward,, large uncertainty
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Two-sample log-rank test:

Define weight process

o Vi)Yae(t) Yi(t)Ya(t)
L(t)_m(t)+1@(t) YL (1)

The log-rank test statistic is then defined as

7 :/OOL(S)[dﬁl(s)—dﬁz(s)] :/OL(S)[dng)_dgz(S)]

0
However, noteZ; is not N(0,1) under the null, needs to be
standardized.

Furthermore, with?Z, defined similarly, we have
Zl —|— ZQ — O

need only considet;.
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Two-sample log-rank test:

With N,(t) = Ni(t) + No(t) we have

Zl — to[%le(S) — %dNQ(S)]

to

— [ = BE)AN, (s5) — B aNy (s))

= Ni(to) = Jy* 3 [dN1(s) + dNy(s)]

=01 — E4
whereO,; = Nj(ty) the observed no. events in group 1 and

B = /Ooms)dg.(g

can be interpreted as the "expected" number under the null

aq(t) = as(t) = a(t). Note: the common Nelson-Aalen under
the null will have incrementgN,(s)/Y,(s).

Non-parametric tests — p. 6/34



/1 as martingale under H,

In general we may write, with/; (¢) fo fl ds,

7, = /O OL(S)[‘%S) —dgé‘;)w /0 OL(S)(al(s)—QQ(S))ds

Thus under the nulky, (¢) = as(t), we have

L) o L(s)
Zi= | it = [

the difference between two integrals with respect to mgaties.

In particular EZ;] = 0 under the null.
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Variance of 7,

The two terms inZ; under the null as expressed on previous
slide are uncorrelated, thus

Varizy] = E[[;" i Ya(s)a(s)ds] + E[fy” 7 Y(s)als)ds

_ E[fto Y1(s)Ya(s ( )dS]

0 Ye(s)

which may be estimated by

[ Yi(s)Yals)
vn_/o (o)

The log-rank test is thus to reject Ha (1) = ax(t) at 5% level
when|Z;/+/Vi1| > 1.96
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Why uncorrelated?

Two independent groups

The intensity process a¥, (t) + N»(t) equals
Mi(t) + As(t) = [§ Yi(s)au(s)ds + [ Ya(s)as(s)ds

thus, Va(M; (1) + Ma(t)) = E[A1 (1) + Aa(t)] =
Var(M(t)) + Var(Ml(t))

thus Co¥ M, (t), My(t)) =

For such uncorrelated martingales and predictable
processes(;(t) we also get
Var| fo K1(s)dM, (s +f0 Ky (s)dMs(s)] =

E[fy (K7 (s)dA(s) + K3(s)dAs(s)]
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The standardized log-rank statistic

IS given as
Zl Ol — E1
= ~ N(O0, 1
v N
or as
lx/Zl r LA
Vi Vi :

approximately for "large" data sets.

Note thatl/;; Is symmetric wrt groupe 1 and 2 and the choice of
reference group is arbitrary.
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Example Log-rank: Data on kidney transplantation

The data can be found in thilibrary KMsurv on Cran

> library(KMsurv); data(kidtran); attach(kidtran)
> eldre<-(age>49)
> survdiff(Surv(time,delta) eldre)
N Observed Expected (O-E)2/E (O-E)2/V
eldre=FALSE 574 73 100.3 7.44 26.5

eldre=TRUE 289 67 39.7 18.81 26.5

Chisg= 26.5 on 1 degrees of freedom, p= 2.64e-07
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Approximation log-rank test

Often good approximation

(02 — E5)? (O — Ey)? N (03 — Ey)?

A
Y

Vi L Ly

In general the left hand side is larger or equal to the rightha
side and the approximation is close when

Same censoring pattern in both groups
Small (moderate) difference in mortality

When these assumptions hold we have, for sgme

Vi(t) Ya(t)
v.t) 1% v

~1—gq

for all ¢.
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This gives

and

1 1 I S L ]
Vit q(1 —q)Ne(to) qNe(to) (1—Q)No(to) By By

sinceqN. (to) ~ [,° THAdN(t) = Ey and corresp. fos,.

0 Y.
Thus
(O1—E1)®  __ (O1—E1)? 4 (O1—E1)?
Vi1 ~ Er Es
(O1—E1)? 4 (O2—FE»)?
T Eq Eo

sinceO; — E; = Ey — O,.
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A class of two-sample test:

Let L(¢) be a general predictable weight function and define a
general two-sample test by

7 :/OOL(S)[dﬁl(s)—dA2(3)] :/OOL(S)[dgl(S)_dgz(S)]

Again, Z; i1s not N(0,1) under the null, needs to be standardized.

Furthermore, withl.(t) = L 2(t) = L2 1(t), thatis indiceg = 1
and 2 can be interchanged, arigdefined similarly, we have

Zl"’ZQ:O

need only consider;.
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Some weight functions

Write L(t) = K ()22 for some functioni (t). Different
choices ofK (s) give some standard variations on the log-rank

test.

Choices ofK (¢) up or down-weights early and late events:

K (t) = 1 gives log-rank

K (t) = Y,(t) Gehan’s generalisation of the Wilcoxon-test

A

K (t) = S(t) Peto and Prentice generalization of Wilcoxon
(S(t) = [1s<;(1 — dNe(s)/Ye(5)))

AN A

K(t) = S(t)?(1 — S(t))? Fleming and Harrington
generalization of Prentice’ test.

K (t) = S(t)? implementered ifR (and referred to as
Fleming-Harrington in ABG).
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Properties two-sample tests

Under the nullo () = as(t) we have

[P dMi(s)  dMs(s)
Zl_/o oY) ~ W) |

and thus as an integral with respect to martingales and has
expectation zero and variance

which may be estimated

B to L(S)2 )
= ], T
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Example: Kidney transpl. data
> eldre<-(age>49)
> survdiff(Surv(time,delta) eldre)

N Observed Expected (O-E)2/E (O-E)2/V
eldre=FALSE 574 73 100.3 7.44 26.5
eldre=TRUE 289 67 39.7 18.81 26.5

Chisg= 26.5 on 1 degrees of freedom, p= 2.64e-07
> survdiff(Surv(time,delta) eldre,rho=0)

N Observed Expected (O-E)2/E (O-E)2/V
eldre=FALSE 574 73 100.3 7.44 26.5
eldre=TRUE 289 67 39.7 18.81 26.5

Chisg= 26.5 on 1 degrees of freedom, p= 2.64e-07
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Example, contd.
> survdiff(Surv(time,delta) eldre,rho=1)
N Observed Expected (O-E)2/E (O-E)2/V
eldre=FALSE 574 65.6 90.3 6.74 26
eldre=TRUE 289 60.9 36.2 16.80 26
Chisg= 26 on 1 degrees of freedom, p= 3.45e-07
> survdiff(Surv(time,delta)”eldre,rho=0.5)
N Observed Expected (O-E)2/E (O-E)2/V
eldre=FALSE 574 69.2 905.1 7.08 26.3

eldre=TRUE 289 63.8 37.9 17.77 26.3

Chisg= 26.3 on 1 degrees of freedom, p= 2.98e-07
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Test - More than two samples
k > 2 groups. For group define
Y;,(t) = no. at risk at,
Ny (t) = no. events ino, t].
Totally let Y, (t) = S°r_, Vi (¢) andN,(t) = S2r_, Ny (t).

Model: Hazard,(t) in grouph.

Null hypothesis: | : ai(t) = ay(t) = - - - = ay(t).
The tests are defined from far= 1,2, ... k, and predictable
processes (t)

Zn = [, K(s)dNa(t) = [, K (5)Ya(s) 525 = On — By
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Test - more than two samples

Can derive estimates for iaf;,| as

V., = 0750 K(S)Q Yh(S)(?((Z));Yh(S)) AN, (s)

and for Co\Z;, Z;) as

Let V' be the(k — 1)x(k — 1) matrix with V};, along the diagonal
andV/,; outside forh,j —=1,2,...,k — 1. Furthermore, let
Z = (Zy,Zs,...,Z;_1)". Then under the null hypothesis

(Z)Tv_lz ~ X2—1
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Ex: Kidney transpl.

> agegr<-trunc(age/20)
> table(ageqr)
0 1 2 3
29 304 429 101
> survdiff(Surv(time,delta) ageqr)
Call:
survdiff(formula = Surv(time, death) ~ ageqr)

N Observed Expected (O-E)2/E (O-E)2/V

agegr=0 29 1 5.65 3.82 3.99
agegr=1 304 21 56.76 22.53 38.17
agegr=2 429 38 65.45 7.77 14.63
agegr=3 101 30 12.15 26.24 28.97

Chisg= 61.2 on 3 degrees of freedom, p= 3.26e-13
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Ex: Kidney transpl., contd.

> survdiff(Surv(time,delta)"agegr,rho=1)
Call:
survdiff(formula = Surv(time, death) = agegr, rho = 1)

N Observed Expected (O-E)2/E (O-E)2/V

agegr=0 29 0.999 5.04 3.24 3.76
agegr=1 304 18.870 50.92 20.17 37.50
agegr=2 429 79.281 59.36 6.68 13.88
agegr=3 101 27.382 11.20 23.36 27.92

Chisg= 59.3 on 3 degrees of freedom, p= 8.48e-13
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Stratified tests

Ex. Kidney transplants: Lagy (¢) be the hazard for black men
andagge(t), awm (1) andawe(t) hazards for black females, white
males and white females.

May be interested in testing difference between races
Irrespectively of differences between sexes, i.e.

Ho : agym (t) — QWM (t) and&BF(t) — CYWF(t)

We can immediately apply tests separately for men and women
based on
Owm — Ewm andOwr — Ewr

A combined (or stratified test) will use

(Owm — Ewm) + (Owir — Ewie).
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Stratified tests more generally

Hazard ingrough = 1,2,... ., kandstrata =1,2,...,5'IS
given byay,(t). Would like to test, over all stratg

Ho @ aqs(t) = aos(t) = -+ - = ays(t).

With stratum spesific tests based B, = (Ons — Ehs),

h=1,2,...,kwe may construct a stratified test based on
(k—1) of
S
Zn =" Zns.
s=1
In R

Add +strata(gender) to model formula
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Ex: Separat and stratified test on kidney transplant data

> survdiff(Surv(time,delta) race,subset=(gender==1))

N Observed Expected (O-E)2/E (O-E)2/V
race=1 432 73 71.9 0.0168 0.097
race=2 92 14 15.1 0.0801 0.097

Chisg= 0.1 on 1 degrees of freedom, p= 0.755

> survdiff(Surv(time,delta) race,subset=(gender==2))

N Observed Expected (O-E)"2/E (O-E)2/V
race=1 280 39 44.79 0.748 4.85
race=2 59 14 8.21 4.076 4.85

Chisg= 4.8 on 1 degrees of freedom, p= 0.0277

> survdiff(Surv(time,delta) race+strata(gender))

N Observed Expected (O-E)"2/E (O-E)2/V
race=1 712 112 116.7 0.188 1.13
race=2 151 28 23.3 0.942 1.13

Chisg= 1.1 on 1 degrees of freedom, p= 0.287
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Multistate models

Will consider stochastic process&st) that
can move between statég, 1, ..., k} with
transition ratesy;;(t) = limy o -P(X (¢t + h) = j|X(t) = 7)

under a Markov assumptiolf, is the history up to time,
P(X(t+h) = j|X(s) = 1) = P(X(t + h) = j|.F5)

We will then derive the Aalen-Johansen estimator of
Pij(s,t) = P(X(1) = j|X(s) = 1).

We will consider

The competing risk setting (model)

The illness-death (e.g. healthy-iliness-death)) model

The general case
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(Healthy-)lliness-Death (ID)

0

Healthy

Diseased

Dead

Hazards (intensities), (¢) for transition from statg to stateh
at timet with a1 (t) > 0, a2(t) > 0 andayo(t) > 0 (at least for

somet) and all otheiy,(t) =

0.
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Competing risks

Dead by
cause 1

Dead by
cause 2

\ 4

Alive

Dead by
cause 3

Denotes the state "alive" by 0 and state "death from caliby
h(=1,2,...,k)

Transition (hazard) ratey, (¢) of causeh

k causes of death (can only observe one cause)
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Competing risks, random variables

Postulated;, = time until death of causk =1, 2, ... k.
Assumes that thé), are independent with hazardg;, ().

Note: Observes only’ = min(73,T5,...,T) andD = hif
T = T}, not the different/},’s.

However, the framework is suitable for describing the mddel
the process{ (¢) on stateq0, 1, ..., k} with transition rates
aop(t) from the "alive" state O to cause of death states
h=1,..., k.

In particular we find that

P(X(t) =0|X(s) =0)=P(T > t|T > s)
= exp(— Y5 _, [. aon(u)du)

PO()(S, t)
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Cumulative incidence functions
The transition probabilities for competing risks are giasn

Pon(s,t) = P(X(t) = h|X(s) =0) = / Poo (s, u)agn(u)du

with the reasoning that to be in stdtet¢ one have

stayed in staté from time s until some timeu
wherel < s <u <t

and then moved to stateat timeu.

After v the process has to stay/in

We refer toFy; (s, t) ascumulative incidence functions

NecessarilyPyo(s,t) + Poi(s,t) + - + Po(s,t) = 1.
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Competing risks, censoring
The processX (t) is observed up to some censoring tifie

Observation is summarized By= min(T, C'), whereT is the
event time ofX (¢) without censoring, and® = h if X(T) = h.
In particularD = 0if T = C.

With n independent individual process&s$(t) we observe
(T3, D).
We get the following counting process framework:
Yo(t) = #{T;, > t)} = no. still at risk
Non(t) = #{T; < t, D; = h)} = counts deaths of cause
N(t) = 3% _. Nou(t) total no. of deaths before
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Intensity processes and martingales

Assume independent censoring. Then we have the following
Intensity processes for the counting processes:

Intensity process oV, (t) becomes\y, (1) = Yo(t)aon(t)
Intensity process oV (t) becomes
No(t) = Yo(t) Yoy aon(t) = Yo(t)ao(?)

We then obtain martingales
Mon(t) = Non(t) — Aon(t) = Non(t) fo Yo(s)aon(s)
Mo(t) = No(t) — Ao(t) = No(t) — [y Yo(s)ao(s)ds

In particular theM,(t) are orthogonal (uncorrelated) because
Ny(t) only jumps with step 1, implying that th&, (¢) will not
jump at the same time
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Estimation of survival function Py (s, t)

SinceNy(t) has intensity process,(t)aq(t) we get that an
almost unbiased estimator of the survival function
Poo(s,t) = exp(— fst ag(u)du) is given by

B = T1 ll_dNo(u)lj

s<u<t Yb U)

corresponding directly to the Kaplan-Meier estimator.

The properties: expectation, variance and asymptotical
normality, follows exactly in the same way as for Kaplan-bfel

In particular Py (s, t) has expectation J(s) = I(Yy(s) > 0)),

Elexp(— / J(w)a(u)du)] = E[P% (s.1)].
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Estimate cum. incidence function

We noted t
Pon(s,t) :/ Poo(w)aon(s, w)du,

thus by plug-in estimates of the cumulative incidence fiomst

are given by . b dNop(u
POh(S7t):/ POO(S7U_) YE)OELZE))

We get

B[Py (s.1)] = / B[P (5. u—).T (1)) g ()

thus close to unbiased.

Variances are somewhat more tricky here, a variance forraula
given in ABG, eq. (3.89).)
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