More on Cox-regression
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1. Repetition
2. Left truncation
3. Time-dependent covariates
4. Stratified Cox-regression
5. Residuals - Model check
6. How to handle departures from prop.haz. assumption
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Repetition Cox-regression

With covariater; the survival timel; has hazard

a(t|x;) = exp(f'x;)ap(t)

whereay(t) is called basis (underlying) hazard and whgiie a
regressionsparameter.

With D; indicator for death for individual, 7, right censoring
time andR (¢) = {i : T, > t} = the risk set (right before) time
we estimates by maximizing the Cox’ partial likelihood

R exp(8'2;) o [exp(B2:) ]
=11 D kery XP(Br) _H[S@(ﬁ,t)]

1=1

whereS (3,t) = 37 cr (s, exp(B'zr)
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Rep. Cox-regr., contd.

In counting process notation we saw that we may express the
score

U(B) = a1og Z / [az ;] AN (t).

Also L() may be treated as a regular likelihood. Thus

B~N(B,I(3)™H).

wherel(8) = —& 83 and for two nested models with

maximum log-partial likelihood respectively and! we have

A

LRT =2(I* — ) ~ x>

q

if the [*-model hag; more parameters than thenodel and that
I-model is true (K-model).
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Estimation of cumulative hazard Ay (t) = | ao(s)ds

The common estimator fofy(¢) is the Breslow-estimator

Aoy = Y o= [

T;<t ZRER(TD CXp S©) (8,5)

Note the similarity with the Nelson-Aalen estimator.

Given Ay(t) it is simple to estimate cumulative hazard for an
individual with hazardx(t|z;) = exp(8'x;)ap(t) as

A(t|z;) = exp(f'z:) Ay ()

The survival functionS(t|z;) = P(T; > t|x;) can be estimated by

A

S(t’%) = eXP(_A(t‘%)) = eXP(—Ao(t) exp(f'z;)) = So( )P (Fa)
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Cox-regression for left truncated and rightcens. data

We may use the same likelihood expression in counting psoces
notation. We may estimate by maximizing the partial
likelihood, or solving

0(8) = alog Z/[ s<0> ]dNi(t):O

ZY exp([

We need only remember th&}(¢) need not be non-decreasing,
but

Y(t) = I(L; <t <T)).

No arguments have used the property of non-decreasing
(might be a good exercise to check).
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R Cox-reg. with l.trunc. and r.cens.

The program need information on left truncation timean
addition to(T}, D;, z;).

Example: Time until death psychiatric patients. Data:

r; = 1 or 2 for men /women

L; = age of first time admitted to psychiatric ward (year)
T; = age at death/censoring (year)

D; = indicator of death.

> coxph(Surv(ageonset,agedeath,death) sex)
coef exp(coef) se(coef) z P
sex 0.39 1.48 0.61 0.639 0.52

Likelihood ratio test=0.43 on 1 df, p=0.514 n= 26
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Time dependent covariates;(t)

Risk factors may depend on time:
r;(t) = smoker at time (yes/no)
x;(t) = cum. no. cigarettes (pack years) smoked attage
x;(t) = no. years since quitting smoking

It may furthermore be that the proportional hazards modesdo
not fit the data well with the included covariates, but thahbkdv

model is given by.

Oé(t’il?z) = exp(ﬁlxi -+ 625[3zt)()40(t)

so that the effect af; becomes larger (smaller)according to
By > 0(< 0). May code this by introducing new covariates, for

inStanceﬂiQ (t) = tx;.
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Cox-regression allows for time dependeni:i(t)!

Model: o;(t) = exp(ﬁ’:lsz ). Will simply solve
01 i SW(B, ¢
U(ﬁ) Og Z/ T; — S(O)Eg t;] dNi(t) =0

(as before) with the difference that

ZY exp(B'x;(1)).

depend on time dependenit).

Similarly to left truncation all theory goes through exsidtie
same way as before. For the sake of repetition we check

ElU(B)] = 0.

However. We need to assume thaf(z) is predictable!
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U () martingale with expectation 0. As before

S = ST ai()Yi(t) exp(B'ai(t)) = SW (B, 1). Thus the

B
s SW (6, 1)

score
With predictable covariates;(t) the model can be written

dN;(s) = Y;(t) exp(8'x;(t)) ao(t)dt + dM;(t)

(with standard interpretations) which gives

(1 )
UB)= Y, [l EW DIVi() exp(B'(t) o (t)d
(1)
—I_Zz 1f zi(t g(m(ﬁ t)]dM( t)
S( )(B
— z 1f — 50)(, g]dM( )
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because

S
Z / 2:(t) — 5 g gm(t) exp(8'z;(t)) o (t)dt = 0.

L n (1) /
This sinced"", [z;(t) — ;Téggm(t) exp(B'zi(t))

D(B,t) —

and so

ik (1)
=3 [0~ Gy

IS a sum of integrals wrt. martingales, and itself a martmgath
E[U(5)] = 0. just as for time constant and right censored data!
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Time dependent covariates IR

R only allows for time dependent covariate@stant on
Intervals, I.e. step functions.

Assume that;(t) = z; oninterval< L;;, U;;] for
i=1,2... J.

Need to represent this individud] times In the data fil as left
truncated data with

L;; as left trunkcation time

U;; as right censoring time

D;; = D;I( eventin intervalj) as indicator

r; as covariate value

Note: Did not assumé; ;1 = U,;;, and individuals may well
disappear and reenter later. |
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Stratified Cox-regression

Assume that the population is divided inde=1, 2, ..., S strata
so that person= 1,2, ..., n, within stratums with covariater;,
has hazard

t is) — € / 18 s t
- (t];) = exp(B'is) (1)

aps(t) IS the baseline in stratum
(typically v, (t) /o (t) Varies witht.)
Effects of covariates are the same in all strata

We get a partial likelihood from each stratum:

ns ] D’LS

L) =[] |2

i=1 _ZkERS(TiS) exp(ﬁ’xks)_

with D;, = indicator for individuaks in stratums etc.
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Stratified Cox-regression, contd.

All strata give information org. If we assume that the strata are
iIndependent (weak assumption) we may then combine this
iInformation by maximizing the stratified partial likelihdo

The corresponding score function becomes

S

o0 - alogggw)) s alogéf;(ﬁ)) S0

whereU, () is the score function from stratusa These all have
expectation 0, i.e. E/(3)] = 0.

s=1
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Stratified Cox-regression,

We find information/, from stratums and/(3) total information

becomes, due to independence,
S

Var[U(8)] = » E[L(8)] = E[I(B)]

Thus may use the stratified partial likelihood as a regular
likelihood.

The stratified partial likelihood is useful when the
proportional model does not hold for a categorical variable

Stratify on this variable and keep regression model for
other covariates

In particular this is useful when the stratification varels
a confounder and the main interest is on the other variables.
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Stratified Cox-regression IR

Uses the Melanoma-data. Stratifies on grouped tumor thsskne
by commandstrata
coxph(Surv(lifetime,dead) ulcer+sex+age+strata(grth ick),data=mel)

coef exp(coef) se(coef) z P

ulcer -0.9480 0.388 0.32572 -2.910 0.0036
sex 0.4074 1.503 0.27351 1.490 0.1400
age 0.0063 1.006 0.00837 0.753 0.4500

Likelihood ratio test=13.2 on 3 df, p=0.00426 n= 205
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What did we gain from this?

Compares with the Cox-regression where thickness is a
categorical variable

> coxph(Surv(lifetime,dead) ulcer+sex+age-+factor(grt hick),data=mel)

coef exp(coef) se(coef) z P

ulcer -0.9562 0.384 0.32407 -2.95 0.0032

sex 0.3416 1.407 0.27127 1.26 0.2100

age 0.0103 1.010 0.00845 1.22 0.2200
factor(grthick)2 1.0440 2.841 0.36538 2.86 0.0043
factor(grthick)3 1.1207 3.067 0.41641 2.69 0.0071

Likelihood ratio test=45.3 on 5 df, p=1.27e-08 n= 205

The results are only marginally different, but we have medeh

a much more flexible way.
There is hardly a change in the standard errors, and the added
flexibility did not lead to loss in efficiency.
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Baseline in each stratum InR.

> nycox<-coxph(Surv(lifetime,dead) ulcer+sex+age+str

> plot(survfit(nycox),fun="cum.haz")
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The proportional hazards assumption might be checked from
these plots (or rather the log-cumulative hazard plots).

Better methods are presented later in the lectures.
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How can the Cox-model fail?

a(tlz;) = exp(B'zi)ao(t)?
The Cox-model is flexible wrt the baseling(t), but otherwise

strict with respect to how the hazard depend on covariabes, f
Instance

We may have specified covariatg. wrong, correct
alternative may be f.ex:’, = log(x;;) or z%, = \/x.

We do not have a proportional model. The effect may vary
with time, f.ex.a(t|z;) = exp(B(t)'z;)ap(t) wheres(t) is
a function of time.
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Martingale residuals

With a specified model for the hazard, say a proportional fuza
modela;(t) = exp(f'z;)ag(t) we that

Mj() = Ni(t) — / Yi(s) exp(B/a:)ao(s)ds

IS @ martingale we expectation zero. Inserting the Coxvegor

3 for 3, the Breslow estimatatAy(s) = Scﬁf)fzgl) for a(s)ds and

the maximal right censored survival timewve get the so called
martingale residuals

M; = Ni(1) — /0 ' Yi(s) exp(B'z;)dAo(s)

which have the structure "Observed"-"Expected".
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Example: Melanoma data

We saw thatog(tumorsize was a better covariate than tumorsize
directly. We will check if this can be discovered from magiihe
residuals.

coxfit<-coxph(Surv(lifetime,status==1)"sex+ulcer+th ickn, data=melanoma)
martres<-coxfit$residuals
plot(melanomas$thickn,martres)
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Example: Melanoma data, contd.

As often it is difficult to read off residual plots directly. aV
calculate mean mart. resid. for groups of tumor thickness

> grthickn<-melanoma$grthick
> |Im(martres factor(grthickn)-1)

Coefficients:
factor(grthickn)l factor(grthickn)2 factor(grthickn)3

-0.05661 0.14225 -0.09167
> summary(Im(martres factor(grthickn)))

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.05661 0.05279 -1.072 0.285
factor(grthickn)2 0.19886 0.08680 2.291 0.023 *
factor(grthickn)3 -0.03506 0.11082 -0.316 0.752

F-statistic: 3.149 on 2 and 202 DF, p-value: 0.04502

Note: This analysis Is not strictly correct, from ABG one may
figure out a correct test. But it shows that the martingale
residuals are largest for the second group.
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GAM: Generalized Additive Models

(Hastie & Tibshirani (1990): By smoothing techniques we may
fit

Linear model: Y =a+ f(x) +¢

Logistic model: log(;%) = o+ f(x)

wheref(x) is some smooth function. This may be don&iwith
the librarygamthat may need to be downloaded from CRAN.

Similar models may be fitted for survival data under
specifications

a(t|z) = exp(f(z))ao(t)
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Example: Melanoma data, GAM-plot

We add a gam-curve with 95% CI to the scatter plot of
martingale residuals vs. thickness.

thick<-melanomas$thickness)

library(gam)

plot(gam(martres™s(thick)),se=T,ylim=c(min(martres) ,max(martres)))
points(thick,martres)
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GAM for Cox-regression in R

Regression-splindR-syntax

coxph(Surv(time,status) ~ns(z,df=4))

Cubic smoothing-spline (penalized partial likelihood):
R-syntax:

coxph(Surv(time,status) ~pspline(z,df=4))
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Penalized log-partial-likelihood:
Maximize, for given smoothing parameter
" log(L()) =\ [ (1" (@)
L(f) = Partial likelihood
A = "penalty"-term for curvature of (z)
In particular:
A = oo : No curvature f(x) = Sx straight line
A = 0 : No smoothing

Maximation problem actually has a simple numerical sohutio
The penalty term\ corresponds to a certain degree of freedom
and may be interpreted as df = no. covariates in mod., thotigh d
may be any real number 0.
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Example: Penalized log-partial-likelihood:

Melanoma-data, thicknesk;commands:
newcoxfit<-coxph(Surv(lifetime,status==1)"pspline(t hickn,df=4),data=melano

newmel<-melanoma
thckspacing<-min(melanomas$thickn)

+(1:205) * (max(melanoma$thickn)-min(melanoma$thickn))/205
newmel$thickn<-thckspacing
newpred<-predict(newcoxfit,newmel,type="terms",term =1,se=T)

mi<-min(newpred$fit-1.96 * newpred$se. fit)

ma<-max(newpred$fit+1.96 * newpred$se. fit)
plot(thckspacing,newpred$fit,type="1",ylim=c(mi,ma) xlab="thickness")
lines(thckspacing,newpred$fit+1.96 * newpred$se. fit,Ilty=2)
lines(thckspacing,newpred$fit-1.96 * newpred$se.fit,Ity=2)
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Example: Penalized log-partial-likelihood:

Melanoma-data, thickness, Plot pfz) against: = thickness:

newpreds$fit

I I I I
0 5 10 15

thickness

The plot shows what we also found with grouping of thickndss,
IS the smallest tumors that have smaller risk.
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May smooth with more covariates

a(tlr) = exp(Biz1 + Baza + B33 + fa(ra))o(?)
Ex: Melanomay; = sex,z, = ulc., x3 = age,r, = tumorth.

newcoxfit<-coxph(Surv(lifetime,status==1)"sex+ulcer

newpred<-predict(newcoxfit,newmel,type="terms",term

newpreds$fit

+age
+pspline(thickn,df=4),data=melan
=4,s5e=T)

— spline
- log

10

thickness

15
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Non-proportional hazards

The old-fashioned way of checking departure from
proportionality is based on the following: With
a(t|x) = exp(Bx)ay(t) we have

log(A(t|z)) = B’z + log(Ay(1))

l.e. log(A(t|x)) for differentz andlog(Aq(t)) should be parallel
lines.

Thus if x Is the only covariate and is categorical we may plot
log of Nelson-Aalen for every level of

If the lines are parallel then proportionality OK
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Ex. Melanoma: Checks tumor-thickness and ulceration

Ulcer

log(H)

tid

log(H)

Tumortykkelse

tid
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Multivariable models

If we have decided that;, x,, . .., x, should be included in the
model and want to check if the categorical covariate;
satisfies proportionality we should rather

Fit a stratified Cox-model with,, , ;-levels as strata and
r1,%a,...,T, s covariates.

Plotlog(A,(t, %)) against for different levelss of z,, 1

Are the lines parallel?

Again, it might be an advantage to look at
log(A;(¢,z)) — log(Ai(Z, 7))
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Schoenfeld residuals

The Schoenfeld-residuals are given by, Torsuch thatD; = 1
>y 2 Yi(Ty) exp('z;)

D et Yi(Ty) exp(B'z;)

There is thus one residual for event time and for each comyone
of the covariates.

ijk —

: Y;(T;) exp(B'z;)
Slncezyz1 V() exp(B'aD) sums to one they may be thought of as

point mass probabilities for some distribution.

The interpretation of the distribution Is that of the coasesz ;
given that individualy experienced the event. And so

~

Z?zl Y (T}) eXP(B/%‘
> i1 Yi(T}) exp(B'x;)
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More Schoenfeld

becomes the expectation in this distribution.
The Schoenfeldt-residuals at tiriie may also be written
z; — Z(1).

Furthermore, witiJ () = the scorefunction,
0=UB)= Y [x;—z(Ty)
Tj:Djzl
a sensible property for a residual.

Sometimes componehtfor =, — z;(1;) shows a clear
tendency for positive values over intervals (and negaties o
others). In the "positive" intervals there is the greatsk ri
connected to componehtthan in the "negative".
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Schoenfeld, contd.

We could have done a local Cox-regression within the "pasiti
interval. In such case thgt) would tend to be larger.

Thus the Schoenfeld-residuals give information as to wdretine
prop.haz. assumption holds.

They may even be used to estimate how the hazard ratio varies

over time. Let

V(t) =

D(3,1)

(5, t)

1
1)

1 2

The observed information is given d3/(¢)dN(¢) and in
particularV/ (¢) can be interpreted as the variancer@iven

event at.
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Scaled Schoenfeld-residual

If the true model equals(t|x) = exp(8(t)x)ay(t) for some
function 3(¢) we have as a 1.order approximation

B(Ty) = B+ V(Ty) (a; — 2(T}))

that measures the departure from mean fisk

Plot of this quantity - smoothed over time - may give a picioire
how the risk varies.

More on Cox-rearession — n. 35/45



Ex: Melanoma data

Calculates and smooths scaled Schoenfeld-residuald #r al

covariates in the melanom data.

coxfit<-coxph(Surv(lifetime,dead) sex+age+ulcer+log
plot(cox.zph(coxfit))

Beta(t) for sex
2 -1 0 1 2 3

0.77 24 3 42 53 63 79

Time

Beta(t) for ulcer
4 2 0 2 4

0.77 24 3 42 53 63 79

Time

Beta(t) for age

Beta(t) for logthick

0.15

-0.05 0.05

-0.15

0.77 24 3 42 53 63 79

Time

0.77 24 3 42 53 63 79

Time

thick,data=mel)
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Test for prop. assumption

can be based on Schoenfeld-residuals: The tests are ditecte
departures from the model given by

a(t|r) = exp((Bo + 0g(t))x) o (t)

for specified functiong(t). Actually they are score-tests for a
new covariater’(t) = g(t)x.

If the model is extended by a new time-dependent covariate
r,+1(t) = x,9(t) the score for the coefficiemt,, is given

Upt1 = Z g T — Zy( T 7))
as a weighted sum of the Schoenfeld-residuals.
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Test for proportionality

Example: Melanoma data: KM transform.

Sex x?=0.5 p=0.46
Ulceration x?=0.7 p=0.40
Age Y2 =128 p=0.09

log(Tumor thickness) y? = 4.1 p=0.04
Indication for departure for tumor thickness

R-syntax:
coxfit<-coxph(Surv(lifetime,dead) sex+age+ulcer+log thick,data=mel)
cox.zph(coxfit)
rho chisqg p
sex -0.095 0.536 0.4642
age 0.200 2.828 0.0927
ulcer 0.116 0.717 0.3972
logthick -0.299 4.079 0.0434
GLOBAL NA 10.450 0.0335
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Strategies when proportional hazard fails
Stratiflied Cox-regression
Separate analyzes on disjoint time intervals
Time-dependent covariates

Alternative regression models
Accelerated failure time models
Additive models
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Ex. Stratified Cox-regression

Weak departure wrt. thickness. StratifieSgauick

> coxstrat<-coxph(Surv(lifetime,dead) sex+age+ulcer+ strata(grthick),data=m
> coxstrat

coef exp(coef) se(coef) z p

sex 0.4074 1.503 0.27351 1.490 0.1400

age 0.0063 1.006 0.00837 0.753 0.4500
ulcer -0.9480 0.388 0.32572 -2.910 0.0036

Likelihood ratio test=13.2 on 3 df, p=0.00426 n= 205
> cox.zph(coxstrat)
rho chisq p
sex -0.0232 0.0313 0.860
age 0.11/8 1.0581 0.304
ulcer 0.1037 0.5619 0.453
GLOBAL NA 1.5924 0.661

But possibly the stratification changed other estimates
somewhat?
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Separate intervals

We may split the time interval | 2 and make separate
Cox-regressions within each interval:

Ex: Melanoma data. Half of death before= 3
Analysis on|0, 3 >: Uses events only iffetime <3

coxph(Surv(lifetime,dead * (lifetime<3)) sex+age+ulcer+logthick,data=mel)
coef exp(coef) se(coef) V4 P
sex 0.4654 1.593 0.336 1.38 0.1700
age 0.0106 1.011 0.010 1.06 0.2900
ulcer -1.1979 0.302 0.449 -2.67 0.0076
logthick 0.6628 1.940 0.231 2.87 0.0041

Analysis on|3, co >: Uses only events witlietime > 3
coxph(Surv(lifetime,dead * (lifetime>3)) sex+age+ulcer+logthick,data=mel)

coef exp(coef) se(coef) z P

sex 0.2204 1.247  0.3531 0.624 0.5300

age 0.0332 1.034 0.0122 2.718 0.0066
ulcer -0.5140 0.598  0.3833 -1.341 0.1800
logthick 0.2378 1.268  0.2148 1.107 0.2700
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Time dependent covariats

If similar parameter estimates for age, sex and ulceratmon o
these intervals we may fit a common model

a(t|x)

log(5o) = Prwn + fows + Paxs
+hawal (t < 3) + Bsaal(t = 3)

l.e. Cox-regression with time dependent covariates
334](t < 3)
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Cox-regression with time dependent covariates

Need to set up data-frame with time dependent covariates:
mel2 <- data.frame(intime = c(rep(0,205),rep(3,167)))

mel2$%outtime <- c(pmin(mel$lifetime,3),mel$lifetime[m el$lifetime>3])
mel2$indi <- c(mel$dead * (mel$lifetime<3),mel$dead[mel$lifetime>3])
mel2$sex <- c(mel$sex,mel$sex[mel$lifetime>3])

mel2$ulcer <- c(mel$ulcer,mel$ulcer[melslifetime>3])

mel2$age <- c(mel$age,mel$age[melslifetime>3])

mel2$logtha <- c(mel$logthick,rep(0,167))

mel2$logthb <- c(rep(0,205),mel$logthick[mel$lifetime >3])
coxph(Surv(intime,outtime,indi) sex+ulcer+age-+logth a+logthb,data=mel2)
coef exp(coef) se(coef) V4 P
sex 0.3813 1.464 0.26901 1.417 0.16000
ulcer -0.9845 0.374 0.32646 -3.016 0.00260
age 0.0102 1.010 0.00823 1.239 0.22000
logtha 0.8985 2.456 0.24757 3.629 0.00028
logthb  0.2130 1.237 0.23346 0.912 0.36000
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Advantages/disadvantages with strategies

1. Stratification
Easy
More difficult to show effect of stratification variable
Allows for only a few problem covariates

2. Separate intervals
Relatively easy
Choice of interval difficult/arbitrary
Looses power for covariates where the assumption is OK

Many parameter estimates
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Advantages/disadvantages with strategies
3. Time dependent covariates

Somewhat awkward to arrange {(?))
Difficult choice of interval

Only helpful when prop.haz. OK for most covar.

Consequences of departure from proportionality

biased estimates of coefficients
both for covariates where the assumption hold and fail

biased survival estimates
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