More on Cox-regression

STK4080 H16

- 1. Repetition
- 2. Left truncation
- 3. Time-dependent covariates
- 4. Stratified Cox-regression
- 5. Residuals Model check
- 6. How to handle departures from prop.haz. assumption

Repetition Cox-regression

With covariate x_i the survival time T_i has hazard

$$\alpha(t|x_i) = \exp(\beta' x_i) \alpha_0(t)$$

where $\alpha_0(t)$ is called basis (underlying) hazard and where β is a regressionsparameter.

With D_i indicator for death for individual i, \tilde{T}_i right censoring time and $\mathcal{R}(t) = \{i : \tilde{T}_i \geq t\}$ = the risk set (right before) time t we estimate β by maximizing the Cox' partial likelihood

$$L(\beta) = \prod_{i=1}^{n} \left[\frac{\exp(\beta' x_i)}{\sum_{k \in \mathcal{R}(\tilde{T}_i)} \exp(\beta' x_k)} \right]^{D_i} = \prod_{i=1}^{n} \left[\frac{\exp(\beta' x_i)}{S^{(0)}(\beta, t)} \right]^{D_i}$$

where
$$S^{(0)}(\beta, t) = \sum_{k \in \mathcal{R}(\tilde{T}_i)} \exp(\beta' x_k)$$

Rep. Cox-regr., contd.

In counting process notation we saw that we may express the score

$$U(\beta) = \frac{\partial \log(L(\beta))}{\partial \beta} = \sum_{i=1}^{n} \int \left[x_i - \frac{S^{(1)}(\beta, t)}{S^{(0)}(\beta, t)} \right] dN_i(t).$$

Also $L(\beta)$ may be treated as a regular likelihood. Thus

$$\hat{\beta} \sim \mathbf{N}(\beta, I(\hat{\beta})^{-1}).$$

where $I(\beta) = -\frac{\partial^2 \log(L(\beta))}{\partial \beta^2}$ and for two nested models with maximum log-partial likelihood respectively l^* and \hat{l} we have

$$LRT = 2(l^* - \hat{l}) \sim \chi_q^2$$

if the l^* -model has q more parameters than the \hat{l} -model and that \hat{l} -model is true (H₀-model).

Estimation of cumulative hazard $A_0(t) = \int_0^t \alpha_0(s) ds$

The common estimator for $A_0(t)$ is the Breslow-estimator

$$\hat{A}_0(t) = \sum_{\tilde{T}_i \le t} \frac{D_i}{\sum_{k \in \mathcal{R}(\tilde{T}_i)} \exp(\hat{\beta}' x_k)} = \int_0^t \frac{dN_{\bullet}(s)}{S^{(0)}(\hat{\beta}, s)}$$

Note the similarity with the Nelson-Aalen estimator.

Given $\hat{A}_0(t)$ it is simple to estimate cumulative hazard for an individual with hazard $\alpha(t|x_i) = \exp(\beta' x_i)\alpha_0(t)$ as

$$\hat{A}(t|x_i) = \exp(\hat{\beta}'x_i)\hat{A}_0(t)$$

The survival function $S(t|x_i) = P(T_i > t|x_i)$ can be estimated by

$$\hat{S}(t|x_i) = \exp(-\hat{A}(t|x_i)) = \exp(-\hat{A}_0(t)\exp(\hat{\beta}'x_i)) = \hat{S}_0(t)^{\exp(\hat{\beta}'x_i)}.$$

Cox-regression for left truncated and rightcens. data

We may use the same likelihood expression in counting process notation. We may estimate β by maximizing the partial likelihood, or solving

$$U(\beta) = \frac{\partial \log(L(\beta))}{\partial \beta} = \sum_{i=1}^{n} \int \left[x_i - \frac{S^{(1)}(\beta, t)}{S^{(0)}(\beta, t)} \right] dN_i(t) = 0$$

where

$$S^{(0)}(\beta, t) = \sum_{i=1}^{n} Y_i(t) \exp(\beta' x_i).$$

We need only remember that $Y_i(t)$ need not be non-decreasing, but

$$Y_i(t) = I(L_i < t \le T_i).$$

No arguments have used the property of non-decreasing $Y_i(t)$ (might be a good exercise to check).

R: Cox-reg. with l.trunc. and r.cens.

The program need information on left truncation time L_i in addition to (\tilde{T}_i, D_i, x_i) .

Example: Time until death psychiatric patients. Data:

 $x_i = 1$ or 2 for men / women

 L_i = age of first time admitted to psychiatric ward (year)

 T_i = age at death/censoring (year)

 $D_i = \text{indicator of death.}$

```
> coxph(Surv(ageonset,agedeath,death)~sex)
    coef exp(coef) se(coef) z p
sex 0.39    1.48    0.61 0.639 0.52
Likelihood ratio test=0.43 on 1 df, p=0.514 n= 26
```

Time dependent covariates $x_i(t)$

Risk factors may depend on time:

- $x_i(t) = \text{smoker at time } t \text{ (yes/no)}$
- $x_i(t) = \text{cum. no. cigarettes (pack years) smoked at age } t$
- $x_i(t) = \text{no. years since quitting smoking}$

It may furthermore be that the proportional hazards model does not fit the data well with the included covariates, but that a valid model is given by.

$$\alpha(t|x_i) = \exp(\beta_1 x_i + \beta_2 x_i t)\alpha_0(t)$$

so that the effect of x_i becomes larger (smaller)according to $\beta_2 > 0 < 0$. May code this by introducing new covariates, for instance $x_{i2}(t) = tx_i$.

Cox-regression allows for time dependent $x_i(t)$!

Model: $\alpha_i(t) = \exp(\beta' x_i(t)) \alpha_0(t)$. Will simply solve

$$U(\beta) = \frac{\partial \log(L(\beta))}{\partial \beta} = \sum_{i=1}^{n} \int \left[x_i - \frac{S^{(1)}(\beta, t)}{S^{(0)}(\beta, t)} \right] dN_i(t) = 0$$

(as before) with the difference that

$$S^{(0)}(\beta, t) = \sum_{i=1}^{n} Y_i(t) \exp(\beta' x_i(t)).$$

depend on time dependent $x_i(t)$.

Similarly to left truncation all theory goes through exactly the same way as before. For the sake of repetition we check $E[U(\beta)] = 0$.

However: We need to assume that $x_i(t)$ is predictable!

$U(\beta)$ martingale with expectation 0. As before

$$\frac{\partial S^{(0)}(\beta,t)}{\partial \beta} = \sum_{i=1}^n x_i(t) Y_i(t) \exp(\beta' x_i(t)) = S^{(1)}(\beta,t)$$
. Thus the score

$$U(\beta) = \sum_{i=1}^{n} \int \left[x_i(t) - \frac{S^{(1)}(\beta, t)}{S^{(0)}(\beta, t)} \right] dN_i(t)$$

With predictable covariates $x_i(t)$ the model can be written

$$dN_i(s) = Y_i(t) \exp(\beta' x_i(t)) \alpha_0(t) dt + dM_i(t)$$

(with standard interpretations) which gives

$$U(\beta) = \sum_{i=1}^{n} \int [x_i(t) - \frac{S^{(1)}(\beta, t)}{S^{(0)}(\beta, t)}] Y_i(t) \exp(\beta' x_i(t)) \alpha_0(t) dt$$

$$+ \sum_{i=1}^{n} \int [x_i(t) - \frac{S^{(1)}(\beta, t)}{S^{(0)}(\beta, t)}] dM_i(t)$$

$$= \sum_{i=1}^{n} \int [x_i(t) - \frac{S^{(1)}(\beta, t)}{S^{(0)}(\beta, t)}] dM_i(t)$$

because

$$\sum_{i=1}^{n} \int \left[x_i(t) - \frac{S^{(1)}(\beta, t)}{S^{(0)}(\beta, t)} \right] Y_i(t) \exp(\beta' x_i(t)) \alpha_0(t) dt = 0.$$

This since $\sum_{i=1}^{n} [x_i(t) - \frac{S^{(1)}(\beta,t)}{S^{(0)}(\beta,t)}] Y_i(t) \exp(\beta' x_i(t))$

$$= S^{(1)}(\beta, t) - \frac{S^{(1)}(\beta, t)}{S^{(0)}(\beta, t)} S^{(0)}(\beta, t) = 0$$

and so

$$U(\beta) = \sum_{i=1}^{n} \int \left[x_i(t) - \frac{S^{(1)}(\beta, t)}{S^{(0)}(\beta, t)} \right] dM_i(t)$$

is a sum of integrals wrt. martingales, and itself a martingale with $E[U(\beta)] = 0$. just as for time constant and right censored data!

Time dependent covariates in R

R only allows for time dependent covariates **constant on intervals**, i.e. step functions.

Assume that $x_i(t) = x_j$ on interval $\{L_{ij}, U_{ij}\}$ for $j = 1, 2, \dots, J_i$.

Need to represent this individual J_i times in the data fil as left truncated data with

- L_{ij} as left trunkcation time
- U_{ij} as right censoring time
- $D_{ij} = D_i I(\text{ event in interval } j)$ as indicator
- x_i as covariate value

Note: Did not assume $L_{i,j+1} = U_{ij}$, and individuals may well disappear and reenter later.

Stratified Cox-regression

Assume that the population is divided into s = 1, 2, ..., S strata so that person $i = 1, 2, ..., n_s$ within stratum s with covariate x_{is} has hazard

$$\alpha(t|x_{is}) = \exp(\beta' x_{is}) \alpha_{0s}(t)$$

where

- $\alpha_{0s}(t)$ is the baseline in stratum s (typically $\alpha_{0s}(t)/\alpha_{0s'}(t)$ varies with t.)
- Effects of covariates β are the same in all strata

We get a partial likelihood from each stratum:

$$L_s(\beta) = \prod_{i=1}^{n_s} \left[\frac{\exp(\beta' x_{is})}{\sum_{k \in \mathcal{R}_s(T_{is})} \exp(\beta' x_{ks})} \right]^{D_{is}}$$

with $D_{is} = \text{indicator for individual } is \text{ in stratum } s \text{ etc.}$

Stratified Cox-regression, contd.

All strata give information on β . If we assume that the strata are independent (weak assumption) we may then combine this information by maximizing the stratified partial likelihood

$$L(\beta) = \prod_{s=1}^{S} L_s(\beta)$$

The corresponding score function becomes

$$U(\beta) = \frac{\partial \log(L(\beta))}{\partial \beta} = \sum_{s=1}^{S} \frac{\partial \log(L_s(\beta))}{\partial \beta} = \sum_{s=1}^{S} U_s(\beta)$$

where $U_s(\beta)$ is the score function from stratum s. These all have expectation 0, i.e. $E[U(\beta)] = 0$.

Stratified Cox-regression, III

We find information I_s from stratum s and $I(\beta)$ total information becomes, due to independence,

$$Var[U(\beta)] = \sum_{s=1}^{S} E[I_s(\beta)] = E[I(\beta)]$$

Thus may use the stratified partial likelihood as a regular likelihood.

- The stratified partial likelihood is useful when the proportional model does not hold for a categorical variable.
- Stratify on this variable and keep regression model for other covariates
- In particular this is useful when the stratification variable is a confounder and the main interest is on the other variables.

Stratified Cox-regression i R

Uses the Melanoma-data. Stratifies on grouped tumor thickness by command strata:

```
coxph(Surv(lifetime,dead)~ulcer+sex+age+strata(grthick),data=mel)
```

```
coef exp(coef) se(coef) z p
ulcer -0.9480 0.388 0.32572 -2.910 0.0036
sex 0.4074 1.503 0.27351 1.490 0.1400
age 0.0063 1.006 0.00837 0.753 0.4500
```

Likelihood ratio test=13.2 on 3 df, p=0.00426 n= 205

What did we gain from this?

Compares with the Cox-regression where thickness is a categorical variable

> coxph(Surv(lifetime,dead)~ulcer+sex+age+factor(grthick),data=mel)

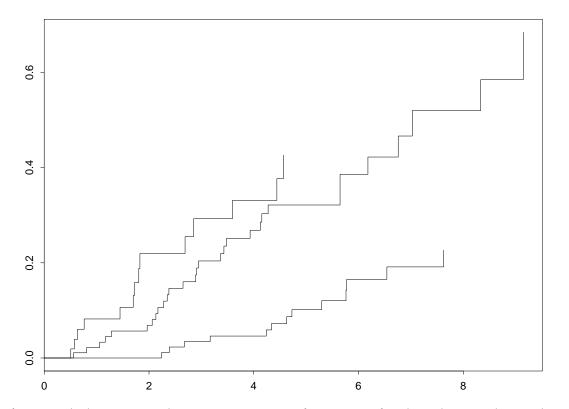
```
coef exp(coef) se(coef) z p
ulcer -0.9562 0.384 0.32407 -2.95 0.0032
sex 0.3416 1.407 0.27127 1.26 0.2100
age 0.0103 1.010 0.00845 1.22 0.2200
factor(grthick)2 1.0440 2.841 0.36538 2.86 0.0043
factor(grthick)3 1.1207 3.067 0.41641 2.69 0.0071
Likelihood ratio test=45.3 on 5 df, p=1.27e-08 n= 205
```

The results are only marginally different, but we have modeled in a much more flexible way.

There is hardly a change in the standard errors, and the added flexibility did not lead to loss in efficiency.

Baseline in each stratum in R.

- > nycox<-coxph(Surv(lifetime,dead)~ulcer+sex+age+strata(grthick),data=m
- > plot(survfit(nycox),fun="cum.haz")



The proportional hazards assumption might be checked from these plots (or rather the log-cumulative hazard plots).

Better methods are presented later in the lectures.

How can the Cox-model fail?

$$\alpha(t|x_i) = \exp(\beta' x_i) \alpha_0(t)?$$

The Cox-model is flexible wrt the baseline $\alpha_0(t)$, but otherwise strict with respect to how the hazard depend on covariates, for instance

- We may have specified covariate x_{ik} wrong, correct alternative may be f.ex. $x'_{ik} = \log(x_{ik})$ or $x''_{ik} = \sqrt{x_{ik}}$.
- We do not have a proportional model. The effect may vary with time, f.ex. $\alpha(t|x_i) = \exp(\beta(t)'x_i)\alpha_0(t)$ where $\beta(t)$ is a function of time.

Martingale residuals

With a specified model for the hazard, say a proportional hazards model $\alpha_i(t) = \exp(\beta' x_i) \alpha_0(t)$ we that

$$M_i(t) = N_i(t) - \int_0^t Y_i(s) \exp(\beta' x_i) \alpha_0(s) ds$$

is a martingale we expectation zero. Inserting the Cox-estimator $\hat{\beta}$ for β , the Breslow estimator $d\hat{A}_0(s) = \frac{dN_{\bullet}(s)}{S^{(0)}(\hat{\beta},s)}$ for $\alpha_0(s)ds$ and the maximal right censored survival time τ we get the so called **martingale residuals**

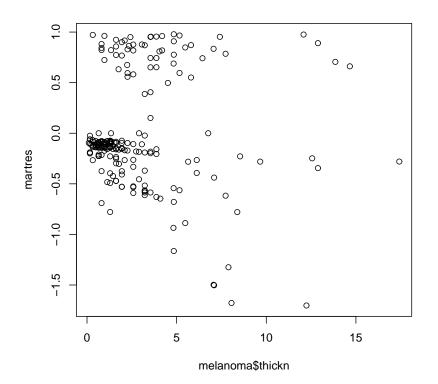
$$\hat{M}_i = N_i(\tau) - \int_0^\tau Y_i(s) \exp(\hat{\beta}' x_i) d\hat{A}_0(s)$$

which have the structure "Observed"-"Expected".

Example: Melanoma data

We saw that log(tumorsize) was a better covariate than tumorsize directly. We will check if this can be discovered from martingale residuals.

```
coxfit<-coxph(Surv(lifetime,status==1)~sex+ulcer+thickn, data=melanoma)
martres<-coxfit$residuals
plot(melanoma$thickn,martres)</pre>
```



Example: Melanoma data, contd.

As often it is difficult to read off residual plots directly. We calculate mean mart. resid. for groups of tumor thickness

```
> grthickn<-melanoma$grthick
> lm(martres~factor(grthickn)-1)
Coefficients:
factor(grthickn)1 factor(grthickn)2 factor(grthickn)3
        -0.05661
                           0.14225
                                            -0.09167
> summary(lm(martres~factor(grthickn)))
                Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.05661 0.05279 -1.072 0.285
factor(grthickn)2 0.19886 0.08680 2.291 0.023 *
factor(grthickn)3 -0.03506 0.11082 -0.316 0.752
F-statistic: 3.149 on 2 and 202 DF, p-value: 0.04502
```

Note: This analysis is not strictly correct, from ABG one may figure out a correct test. But it shows that the martingale residuals are largest for the second group.

GAM: Generalized Additive Models

(Hastie & Tibshirani (1990): By smoothing techniques we may fit

Linear model:
$$Y = \alpha + f(x) + \varepsilon$$

Logistic model:
$$\log(\frac{p}{1-p}) = \alpha + f(x)$$

where f(x) is some smooth function. This may be done in R with the library gam that may need to be downloaded from CRAN.

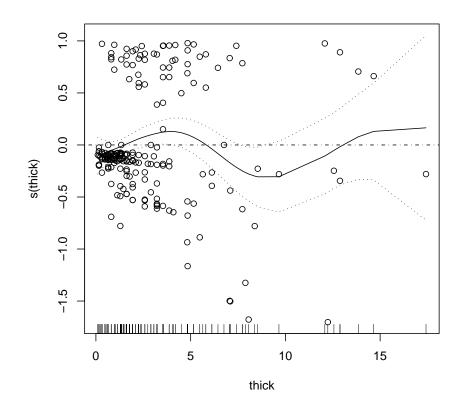
Similar models may be fitted for survival data under specifications

$$\alpha(t|x) = \exp(f(x))\alpha_0(t)$$

Example: Melanoma data, GAM-plot

We add a gam-curve with 95% CI to the scatter plot of martingale residuals vs. thickness.

```
thick<-melanoma$thickness)
library(gam)
plot(gam(martres~s(thick)),se=T,ylim=c(min(martres),max(martres)))
points(thick,martres)</pre>
```



GAM for Cox-regression in R

- Regression-spline: R-syntax
 coxph(Surv(time, status)~ns(z, df=4))
- Cubic smoothing-spline (penalized partial likelihood):
 R-syntax:
 coxph(Surv(time, status)~pspline(z, df=4))

Penalized log-partial-likelihood:

Maximize, for given smoothing parameter λ ,

$$\log(L(f)) - \lambda \int (f''(x))^2 dx$$

where

- L(f) = Partial likelihood
- λ = "penalty"-term for curvature of f(x)

In particular:

- $\lambda = \infty$: No curvature, $f(x) = \beta x$ straight line
- $\lambda = 0$: No smoothing

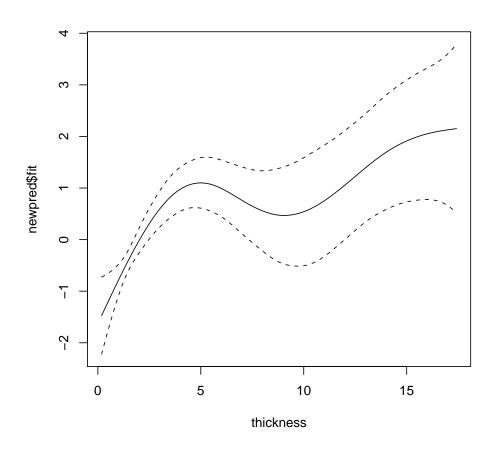
Maximation problem actually has a simple numerical solution. The penalty term λ corresponds to a certain degree of freedom and may be interpreted as df = no. covariates in mod., though df may be any real number > 0.

Example: Penalized log-partial-likelihood:

Melanoma-data, thickness, R-commands:

Example: Penalized log-partial-likelihood:

Melanoma-data, thickness, Plot of $\hat{f}(x)$ against x = thickness:



The plot shows what we also found with grouping of thickness, it is the smallest tumors that have smaller risk.

May smooth with more covariates

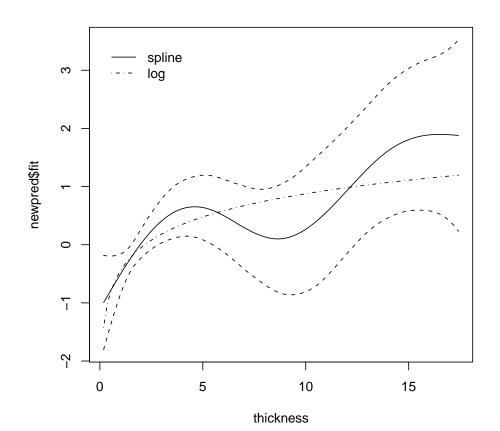
$$\alpha(t|x) = \exp(\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + f_4(x_4))\alpha_0(t)$$

Ex: Melanoma, $x_1 = \text{sex}$, $x_2 = \text{ulc.}$, $x_3 = \text{age}$, $x_4 = \text{tumorth.}$

newcoxfit<-coxph(Surv(lifetime, status==1)~sex+ulcer+age

+pspline(thickn,df=4),data=me

newpred<-predict(newcoxfit,newmel,type="terms",term=4,se=T)</pre>



More on Cox-regression -p. 28/45

Non-proportional hazards

The old-fashioned way of checking departure from proportionality is based on the following: With $\alpha(t|x) = \exp(\beta x)\alpha_0(t)$ we have

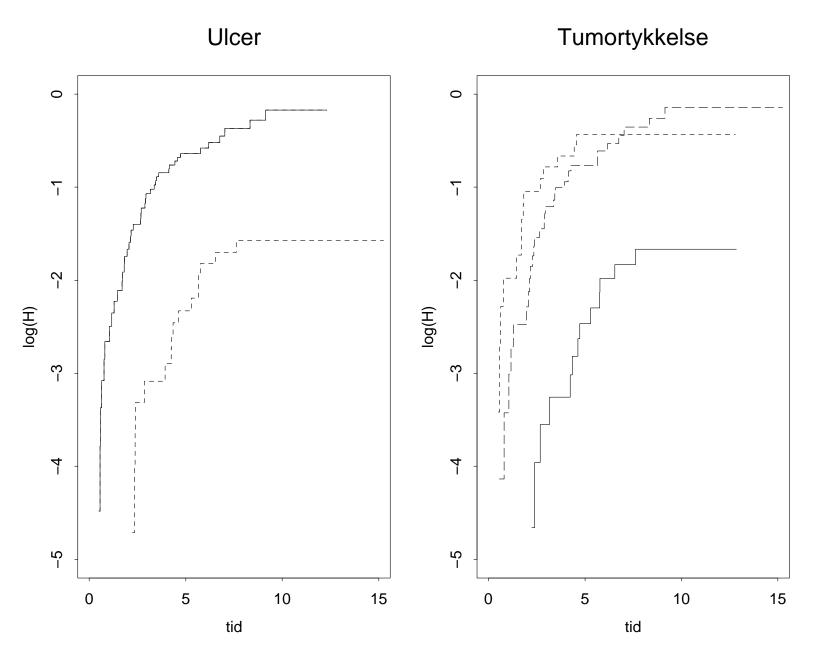
$$\log(A(t|x)) = \beta' x + \log(A_0(t))$$

i.e. $\log(A(t|x))$ for different x and $\log(A_0(t))$ should be parallel lines.

Thus if x is the only covariate and is categorical we may plot

- \log of Nelson-Aalen for every level of x
- If the lines are parallel then proportionality OK

Ex. Melanoma: Checks tumor-thickness and ulceration



Multivariable models

If we have decided that x_1, x_2, \ldots, x_p should be included in the model and want to check if the categorical covariate x_{p+1} satisfies proportionality we should rather

- Fit a stratified Cox-model with x_{p+1} -levels as strata and x_1, x_2, \ldots, x_p as covariates.
- Plot $\log(\hat{A}_s(t,\bar{x}))$ against t for different levels s of x_{p+1}
- Are the lines parallel?

Again, it might be an advantage to look at $\log(\hat{A}_s(t,\bar{x})) - \log(\hat{A}_1(t,\bar{x}))$.

Schoenfeld residuals

The Schoenfeld-residuals are given by, for \tilde{T}_j such that $D_j = 1$

$$x_{jk} - \frac{\sum_{i=1}^{n} x_{ik} Y_i(\tilde{T}_j) \exp(\hat{\beta}' x_i)}{\sum_{i=1}^{n} Y_i(\tilde{T}_j) \exp(\hat{\beta}' x_i)}$$

There is thus one residual for event time and for each component of the covariates.

Since $\frac{Y_i(\tilde{T}_j) \exp(\hat{\beta}' x_i)}{\sum_{i=1}^n Y_i(\tilde{T}_j) \exp(\hat{\beta}' x_i)}$ sums to one they may be thought of as point mass probabilities for some distribution.

The interpretation of the distribution is that of the covariates x_j given that individual j experienced the event. And so

$$\frac{\sum_{i=1}^{n} x_{ik} Y_i(\tilde{T}_j) \exp(\hat{\beta}' x_i)}{\sum_{i=1}^{n} Y_i(\tilde{T}_j) \exp(\hat{\beta}' x_i)} = \bar{x}_k(\tilde{T}_j)$$

More Schoenfeld

becomes the expectation in this distribution.

The Schoenfeldt-residuals at time \tilde{T}_j may also be written $x_j - \bar{x}(\tilde{T}_j)$.

Furthermore, with $U(\beta)$ = the scorefunction,

$$0 = U(\hat{\beta}) = \sum_{\tilde{T}_j: D_j = 1} [x_j - \bar{x}(\tilde{T}_j)]$$

a sensible property for a residual.

Sometimes component k for $x_{jk} - \bar{x}_k(\tilde{T}_j)$ shows a clear tendency for positive values over intervals (and negative over others). In the "positive" intervals there is the greater risk connected to component k than in the "negative".

Schoenfeld, contd.

We could have done a local Cox-regression within the "positive" interval. In such case the $\bar{x}(t)$ would tend to be larger.

Thus the Schoenfeld-residuals give information as to whether the prop.haz. assumption holds.

They may even be used to estimate how the hazard ratio varies over time. Let

$$V(t) = \frac{S^{(2)}(\hat{\beta}, t)}{S^{(0)}(\hat{\beta}, t)} - \left[\frac{S^{(1)}(\hat{\beta}, t)}{S^{(0)}(\hat{\beta}, t)}\right]^{2}$$

The observed information is given as $\int V(t)dN(t)$ and in particular V(t) can be interpreted as the variance of x given event at t.

Scaled Schoenfeld-residual

If the true model equals $\alpha(t|x) = \exp(\beta(t)x)\alpha_0(t)$ for some function $\beta(t)$ we have as a 1.order approximation

$$\beta(\tilde{T}_j) \approx \hat{\beta} + V(\tilde{T}_j)^{-1}(x_j - \bar{x}(\tilde{T}_j))$$

i.e. varying around the scaled Schoenfeld-residual

$$V(\tilde{T}_j)^{-1}(x_j - \bar{x}(\tilde{T}_j))$$

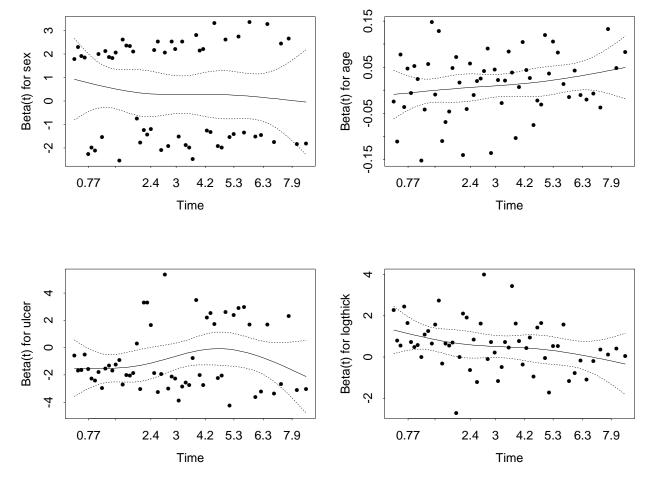
that measures the departure from mean risk $\hat{\beta}$.

Plot of this quantity - smoothed over time - may give a picture of how the risk varies.

Ex: Melanoma data

Calculates and smooths scaled Schoenfeld-residuals for all 4 covariates in the melanom data.

coxfit<-coxph(Surv(lifetime,dead)~sex+age+ulcer+logthick,data=mel)
plot(cox.zph(coxfit))</pre>



Test for prop. assumption

can be based on Schoenfeld-residuals: The tests are directed to departures from the model given by

$$\alpha(t|x) = \exp((\beta_0 + \theta g(t))x)\alpha_0(t)$$

for specified functions g(t). Actually they are score-tests for a new covariate x'(t) = g(t)x.

If the model is extended by a new time-dependent covariate $x_{p+1}(t) = x_p g(t)$ the score for the coefficient β_{p+1} is given

$$U_{p+1} = \sum_{j} g(\tilde{T}_j)[x_p - \bar{x}_p(\tilde{T}_j)]$$

as a weighted sum of the Schoenfeld-residuals.

Test for proportionality

Example: Melanoma data: KM transform.

Sex
$$\chi_1^2 = 0.5$$
 p=0.46
Ulceration $\chi_1^2 = 0.7$ p=0.40

Age
$$\chi_1^2 = 2.8$$
 p=0.09

log(Tumor thickness) $\chi_1^2 = 4.1$ p=0.04 Indication for departure for tumor thickness

R-syntax:

coxfit<-coxph(Surv(lifetime,dead)~sex+age+ulcer+logthick,data=mel)
cox.zph(coxfit)</pre>

```
rho chisq p
sex -0.095 0.536 0.4642
age 0.200 2.828 0.0927
ulcer 0.116 0.717 0.3972
logthick -0.299 4.079 0.0434
GLOBAL NA 10.450 0.0335
```

Strategies when proportional hazard fails

- Stratified Cox-regression
- Separate analyzes on disjoint time intervals
- Time-dependent covariates
- Alternative regression models
 - Accelerated failure time models
 - Additive models

Ex. Stratified Cox-regression

Weak departure wrt. thickness. Stratifies on grthick:

> coxstrat<-coxph(Surv(lifetime,dead)~sex+age+ulcer+strata(grthick),dat

```
> coxstrat
        coef exp(coef) se(coef) z
                                         р
 sex 0.4074 1.503 0.27351 1.490 0.1400
 age 0.0063 1.006 0.00837 0.753 0.4500
ulcer -0.9480 0.388 0.32572 -2.910 0.0036
Likelihood ratio test=13.2 on 3 df, p=0.00426 n= 205
> cox.zph(coxstrat)
         rho chisq p
  sex -0.0232 0.0313 0.860
  age 0.1178 1.0581 0.304
ulcer 0.1037 0.5619 0.453
GLOBAL
          NA 1.5924 0.661
```

But possibly the stratification changed other estimates somewhat?

Separate intervals

We may split the time interval i 2 and make separate

Cox-regressions within each interval:

Ex: Melanoma data. Half of death before $\tau = 3$ Analysis on [0, 3 >: Uses events only if lifetime < 3

Analysis on $[3, \infty >:$ Uses only events with lifetime > 3

coxph(Surv(lifetime,dead*(lifetime>3))~sex+age+ulcer+logthick,data=mel)

```
coef exp(coef) se(coef) z p
sex 0.2204 1.247 0.3531 0.624 0.5300
age 0.0332 1.034 0.0122 2.718 0.0066
ulcer -0.5140 0.598 0.3833 -1.341 0.1800
logthick 0.2378 1.268 0.2148 1.107 0.2700
```

Time dependent covariats

If similar parameter estimates for age, sex and ulceration on these intervals we may fit a common model

$$\log(\frac{\alpha(t|x)}{\alpha_0(t)}) = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 I(t < 3) + \beta_5 x_4 I(t \ge 3)$$

i.e. Cox-regression with time dependent covariates

- $x_4I(t < 3)$
- $x_4 I(t \ge 3)$

Cox-regression with time dependent covariates

Need to set up data-frame with time dependent covariates:

```
mel2 \leftarrow data.frame(intime = c(rep(0,205),rep(3,167)))
mel2$outtime <- c(pmin(mel$lifetime,3),mel$lifetime[mel$lifetime>3])
mel2$indi <- c(mel$dead*(mel$lifetime<3), mel$dead[mel$lifetime>3])
mel2$sex <- c(mel$sex,mel$sex[mel$lifetime>3])
             <- c(mel$ulcer,mel$ulcer[mel$lifetime>3])
mel2$ulcer
mel2$age
           <- c(mel$age,mel$age[mel$lifetime>3])
mel2$logtha <- c(mel$logthick,rep(0,167))</pre>
mel2$logthb <- c(rep(0,205),mel$logthick[mel$lifetime>3])
coxph(Surv(intime,outtime,indi)~sex+ulcer+age+logtha+logthb,data=mel2)
         coef exp(coef) se(coef)
       0.3813
                 1.464 0.26901 1.417 0.16000
  sex
ulcer -0.9845 0.374 0.32646 -3.016 0.00260
      age
logtha 0.8985 2.456 0.24757 3.629 0.00028
logthb 0.2130 1.237 0.23346 0.912 0.36000
```

Likelihood ratio test=49 on 5 df, p=2.17e-09 n= 372 more on Cox-regression - p. 43/45

Advantages/disadvantages with strategies

- 1. Stratification
 - Easy
 - More difficult to show effect of stratification variable
 - Allows for only a few problem covariates
- 2. Separate intervals
 - Relatively easy
 - Choice of interval difficult/arbitrary
 - Looses power for covariates where the assumption is OK
 - Many parameter estimates

Advantages/disadvantages with strategies

- 3. Time dependent covariates
 - Somewhat awkward to arrange (in R(?))
 - Difficult choice of interval
 - Only helpful when prop.haz. OK for most covar.

Consequences of departure from proportionality

- biased estimates of coefficients
- both for covariates where the assumption hold and fail
- biased survival estimates