Exercise 2.11

This exercise generalizes the results (2.36) and (2.37) in the ABG-book to inhomogeneous Poisson processes.

Let N(t) be an inhomogeneous Poisson process with intensity $\lambda(t)$. For s < t we then have that N(t) - N(s) is Poisson distributed with parameter $\int_s^t \lambda(u) du$ and that the number of events in disjoint time intervals are independent. It follows that N(t) is a Markov process, so all information on the history \mathcal{F}_s is contained in N(s).

We introduce the process $M(t) = N(t) - \int_0^t \lambda(u) du$.

a) For s < t we have that

$$E\{M(t) | \mathcal{F}_s\} = E\left\{N(t) - \int_0^t \lambda(u) du | \mathcal{F}_s\right\}$$

$$= E\{N(s) + N(t) - N(s) | N(s)\} - \int_0^t \lambda(u) du$$

$$= N(s) + E\{N(t) - N(s)\} - \int_0^t \lambda(u) du$$

$$= N(s) + \int_s^t \lambda(u) du - \int_0^t \lambda(u) du$$

$$= N(s) - \int_0^s \lambda(u) du$$

$$= M(s)$$

which shows that M(t) is a martingale.

b) We want to show that $\mathrm{E}[M^2(t)-\int_0^t\lambda(s)ds|\mathcal{F}_s]=M^2(s)-\int_0^s\lambda(s)ds.$ But $\mathrm{E}[M^2(t)-\int_0^t\lambda(s)ds|\mathcal{F}_s]$ will equal $\mathrm{E}[(M(t)-M(s)+M(s))^2-\int_0^t\lambda(u)du|\mathcal{F}_s]$ $=\mathrm{E}[(M(t)-M(s))^2+M(s)^2-2(M(t)-M(s))M(s)-\int_0^s\lambda(u)du-\int_s^t\lambda(u)du|\mathcal{F}_s]$ $=M^2(s)-\int_0^s\lambda(u)du$

because $E[(M(t) - M(s))M(s)|\mathcal{F}_s] = M(s)E[(M(t) - M(s))|\mathcal{F}_s] = 0$ since M(t) is a martingale and because $E[(M(t) - M(s))^2|\mathcal{F}_s] - \int_s^t \lambda(u)du = 0$ since

$$E[(M(t) - M(s))^{2} | \mathcal{F}_{s}] = E[(M(t) - M(s))^{2}]$$

$$= Var[(M(t) - M(s))] + (E[(M(t) - M(s))])^{2}$$

$$= \int_{s}^{t} \lambda(u) du + 0,$$

where the first equality follows since M(t) - M(s) is independent of \mathcal{F}_s , the second from the general $\mathrm{E}(Z^2) = \mathrm{Var}(Z) + (\mathrm{E}Z)^2$ and the third from $\mathrm{E}[(M(t) - M(s))] = 0$ and $\mathrm{Var}[(M(t) - M(s))] = \mathrm{Var}[(N((t) - N(s))] = \int_s^t \lambda(u) du$.