Exercise 3.6

We have that S (t) is approximately normally distributed with mean S(¢) and a variance
that may be estimated by 72(¢). By an argument similar to the one in exercise 3.3, we
have that
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is an approximate 100(1 — «) % confidence interval for ¢(S(t)). Here g is a strictly
increasing continuously differentiable function.
For g(z) = —log ( — logz), we have ¢'(z) = —1/(zlogz). We note that ¢'(z) > 0 for
x € (0,1). Thus
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is an approximate 100(1 — &) % confidence interval for —log (log S(t)). If we exponen-
tiate the lower and upper limits of (E.1), we find that
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is an approximate confidence interval for exp { —log (—log S(t))} = —1/log S(t). Now
(E.1) may equivalently be written as
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We may now use the transformation h(x) = —1/x for the lower and upper limit of
formula (3.30) to find that
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is an approximate confidence interval for log S(¢). Finally we exponentiate the lower
and upper limit of (E.4) to see that
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is an approximate 100(1 — a)) % confidence interval for S(¢). This shows (3.30) in the
ABG-book.



