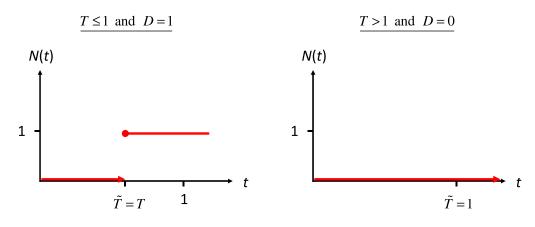
Solutions to exercises to Week 36

Exercise 1.6

T is exponentially distributed with hazard rate $\alpha(t) = 2$. We introduce the censored survival time $\tilde{T} = \min(T, 1)$, the event indicator $D = I\{T \leq 1\}$, and the counting process $N(t) = I\{\tilde{T} \leq t, D = 1\}$.

a



b) The intensity process $\lambda(t)$ is given by

$$\lambda(t) dt = P(dN(t) = 1 | past) = \begin{cases} \alpha(t) dt & \text{for } \widetilde{T} \ge t \\ 0 & \text{for } \widetilde{T} < t \end{cases}$$

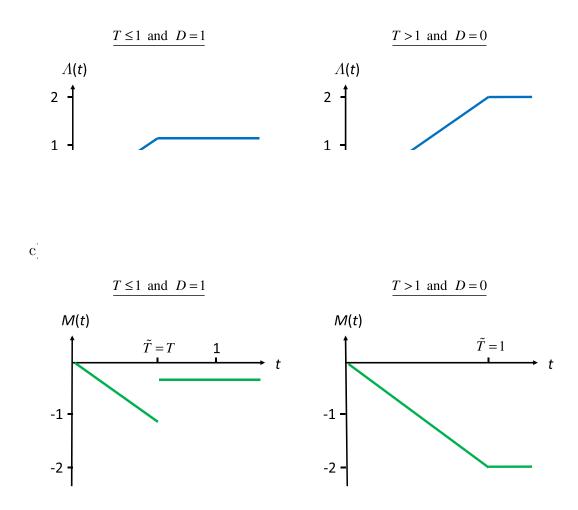
Thus we have

$$\lambda(t) = \alpha(t)I\{\widetilde{T} \ge t\} = 2 \cdot I\{\widetilde{T} \ge t\}$$

which gives

$$\Lambda(t) = \begin{cases} 2t & \text{for } t \leq \widetilde{T} \\ 2\widetilde{T} & \text{for } t > \widetilde{T} \end{cases}$$

Sketch of $\Lambda(t)$:



Exercise 1.7

X(t) is a birth- and death process with $X(0) = x_0 > 0$. Note that x_0 is the initial population size and X(t) is the population size at time t. The birth intensity is ϕ and death intensity is μ , so that

$$P(X(t+dt) = k | X(t-) = j) = \begin{cases} j\phi \, dt & k = j+1\\ 1-j(\phi+\mu) \, dt & k = j\\ j\mu \, dt & k = j-1 \end{cases}$$

We introduce the counting processes

 $N_b(t)$ = number of births in [0, t] $N_d(t)$ = number of deaths in [0, t]

The intensity process $\lambda_b(t)$ of $N_b(t)$ is given by

$$\lambda_b(t) \,\mathrm{d}t = P(\,\mathrm{d}N_b(t) = 1 \,|\,\mathrm{past})$$

From the past at time t, we know the value of X(t-). Further since a birth- and death-process is a Markov process, once we know X(t-) all the other information on

the past is irrelevant, i.e.

$$P\{ dN_b(t) = 1 | past, X(t-) = j \}$$

= $P\{ dN_b(t) = 1 | X(t-) = j \}$
= $P\{X(t+dt) = j+1 | X(t-) = j \}$
= $j\phi dt$

This gives

$$P(dN_b(t) = 1 | past) = X(t-)\phi dt$$

and hence

$$\lambda_b(t) = X(t-)\phi$$

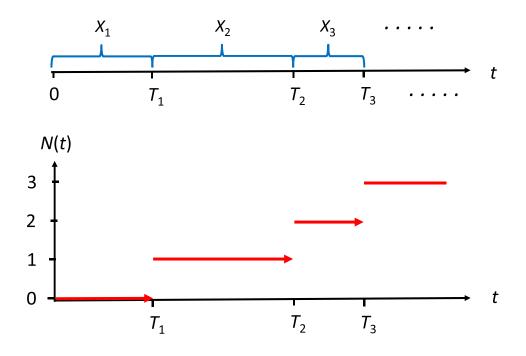
In a similar manner we find that the intensity process $\lambda_d(t)$ of $N_d(t)$ takes the form

$$\lambda_d(t) = X(t-)\mu$$

Exercise 1.8

 X_1, X_2, \ldots are *iid* random variables with hazard rate h(x). We let $T_n = X_1 + \cdots + X_n$ for $n = 1, 2, \ldots$, and consider the renewal process $T = \{T_0, T_1, T_2, \ldots\}$, where $T_0 = 0$. Corresponding to the renewal process, we may define the counting process:

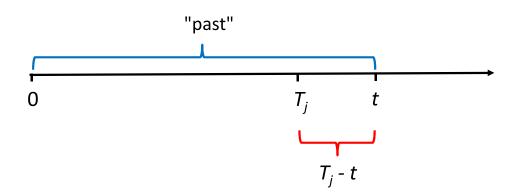
$$N(t) = \sum I\{T_n \le t\}$$



The intensity process $\lambda(t)$ of N(t) is given by

 $\lambda(t) \, \mathrm{d}t = P(\,\mathrm{d}N(t) = 1 \,|\, \mathrm{past})$

Note that from the past at time t we know the time of the last event (renewal), and hance the time elapsed since this event. Further since the times between events are



Thus we have that

$$P(dN(t) = 1 | past, T_j < t \le T_{j+1})$$

$$= P(t \le T_{j+1} \le t + dt | T_j, T_j < t \le T_{j+1})$$

$$= P(t \le T_j + X_{j+1} < t + dt | T_j, X_{j+1} \ge t - T_j)$$

$$= P(t - T_j \le X_{j+1} < t - T_j + dt | T_j, X_{j+1} \ge t - T_j)$$

$$= h(t - T_j) dt$$

This gives

$$P(dN(t) = 1 | past) = h(t - T_{Nt-1}) dt$$

and hence we have

$$\lambda(t) = h(t - T_{Nt-1})$$

Exercise 1.9

T is a survival time with hazard rate $\alpha(t)$ and v > 0 is a constant. If we consider T conditional on T > v, we say that the survival time is *left-truncated*.

a) When t > v, the conditional survival function of T takes the form:

$$S(t \mid v) = P(T > t \mid T > v)$$

$$= \frac{P(T > t, T > v)}{P(T > v)}$$

$$= \frac{P(T > t)}{P(T > v)}$$

$$= \frac{\exp\left(-\int_{0}^{t} \alpha(u) \, du\right)}{\exp\left(-\int_{0}^{v} \alpha(u) \, du\right)}$$

$$= \exp\left(-\int_{v}^{t} \alpha(u) \, du\right)$$

If $t \leq v$, then $S(t \mid v) = 1$.

Thus the hazard rate of T, given T > v, becomes [cf. (1.4) in the ABG-book]:

$$\alpha(t \mid v) = -\frac{S'(t \mid v)}{S(t \mid v)} = \begin{cases} 0 & \text{for } t \le v \\ \alpha(t) & \text{for } t > v \end{cases}$$

By the argument on page 28 in the ABG-book, it follows that conditional on T > v, the counting process $N(t) = I\{v < T \le t\}$ has intensity process

$$\lambda(t) = \alpha(t \mid v) I\{T \ge t\} = \alpha(t) I\{v < t \le T\}$$

Note that the intensity process is derived from the conditional distribution of T given T > v.

b) We then consider the left-truncated and right-censored survival time $\tilde{T} = T \wedge u = \min(T, u)$ obtained by censoring the left-truncated survival time at u > v, and let $D = I\{\tilde{T} = T\}$.

By the argument on page 31 in the ABG-book, it follows that the counting process $N(t) = I\{v < \tilde{T} \leq t, D = 1\}$ has intensity process (derived from the conditional distribution of T given T > v):

$$\lambda(t) = \alpha(t \,|\, v) \, I\{\widetilde{T} \geq t\} = \alpha(t) \, I\{v < t \leq \widetilde{T}\}$$

Note that this is of the same form as (1.22) in the ABG-book, but with the at risk indicator given by $Y(t) = I\{v < t \leq \tilde{T}\}$, not by (1.23).

Exercise 1.10

We have *n* independent survival times T_1, \ldots, T_n , where T_i has hazard rate $\alpha_i(t)$. We introduce the counting processes $N_i(t) = I\{T_i \leq t\}; i = 1, \ldots, n$. a) By the result of example 1.17 on page 29 in the ABG-book, the counting processes $N_i(t)$ have intensity processes (i = 1, ..., n)

$$\lambda_i(t) = \alpha_i(t) I\{T_i \ge t\}$$

and the aggregated counting process $N(t) = \sum_{i=1}^{n} N_i(t)$ has intensity process

$$\lambda(t) = \sum_{i=1}^{n} \lambda_i(t) = \sum_{i=1}^{n} \alpha_i(t) I\{T_i \ge t\}$$

We let $\mu_i(t)$; i = 1, ..., n; be known hazard functions (corresponding to known population hazards).

(i) When $\alpha_i(t) = \alpha(t)$, we have

$$\lambda(t) = \sum_{i=1}^{n} \alpha(t) I\{T_i \ge t\} = \alpha(t) \sum_{i=1}^{n} I\{T_i \ge t\}$$

(ii) When $\alpha_i(t) = \mu_i(t)\alpha(t)$, we have

$$\lambda(t) = \sum_{i=1}^{n} \mu_i(t) \alpha(t) I\{T_i \ge t\} = \alpha(t) \sum_{i=1}^{n} \mu_i(t) I\{T_i \ge t\}$$

(iii) When $\alpha_i(t) = \mu_i(t) + \alpha(t)$, we have

$$\lambda(t) = \sum_{i=1}^{n} \{\mu_i(t) + \alpha(t)\} I\{T_i \ge t\} = \sum_{i=1}^{n} \mu_i(t) I\{T_i \ge t\} + \alpha(t) \sum_{i=1}^{n} I\{T_i \ge t\}$$

- b) The aggregated counting process N(t) satisfies the multiplicative intensity model if there exist an observable left-continuous process Y(t) such that $\lambda(t) = \alpha(t)Y(t)$.
 - (i) The multiplicative intensity model is satisfied with $Y(t) = \sum_{i=1}^{n} I\{T_i \ge t\}.$
 - (ii) The multiplicative intensity model is satisfied with $Y(t) = \sum_{i=1}^{n} \mu_i(t) I\{T_i \ge t\}.$
 - (iii) The multiplicative intensity model is not satisfied.