
Solutions to exercises to Week 36

Exercise 1.6

T is exponentially distributed with hazard rate α(t) = 2. We introduce the censored

survival time T̃ = min(T, 1), the event indicator D = I{T ≤ 1}, and the counting

process N(t) = I{T̃ ≤ t,D = 1}.

a) Sketch of N(t):

b) The intensity process λ(t) is given by

λ(t) dt = P ( dN(t) = 1 | past) =

{
α(t) dt for T̃ ≥ t

0 for T̃ < t

Thus we have

λ(t) = α(t)I{T̃ ≥ t} = 2 · I{T̃ ≥ t}

which gives

Λ(t) =

{
2t for t ≤ T̃

2T̃ for t > T̃

Sketch of Λ(t):
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c) Sketch of M(t) = N(t)− Λ(t):

Exercise 1.7

X(t) is a birth- and death process with X(0) = x0 > 0. Note that x0 is the initial
population size and X(t) is the population size at time t. The birth intensity is ϕ and
death intensity is µ, so that

P (X(t+ dt) = k |X(t−) = j ) =


jϕ dt k = j + 1
1− j(ϕ+ µ) dt k = j
jµ dt k = j − 1

We introduce the counting processes

Nb(t) = number of births in [0, t]

Nd(t) = number of deaths in [0, t]

The intensity process λb(t) of Nb(t) is given by

λb(t) dt = P ( dNb(t) = 1 | past)

From the past at time t, we know the value of X(t−). Further since a birth- and
death-process is a Markov process, once we know X(t−) all the other information on
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the past is irrelevant, i.e.

P{ dNb(t) = 1 | past, X(t−) = j}
= P{ dNb(t) = 1 |X(t−) = j}
= P{X(t+ dt) = j + 1 |X(t−) = j}
= jϕ dt

This gives

P ( dNb(t) = 1 | past) = X(t−)ϕ dt

and hence

λb(t) = X(t−)ϕ

In a similar manner we find that the intensity process λd(t) of Nd(t) takes the form

λd(t) = X(t−)µ

Exercise 1.8

X1, X2, . . . are iid random variables with hazard rate h(x). We let Tn = X1 + · · ·+Xn

for n = 1, 2, . . ., and consider the renewal process T = {T0, T1, T2, . . .}, where T0 = 0.
Corresponding to the renewal process, we may define the counting process:

N(t) =
∑
n≥1

I{Tn ≤ t}

The relation between these quantities is as illustrated below:
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The intensity process λ(t) of N(t) is given by

λ(t) dt = P ( dN(t) = 1 | past)

Note that from the past at time t we know the time of the last event (renewal), and
hence the time elapsed since this event. Further, since the times between events are
independent, all other information on the past is irrelevant once we know the time of
the last event. When Tj < t ≤ Tj+1 the situation may be illustrated as follows:

Thus we have that

P ( dN(t) = 1 | past, Tj < t ≤ Tj+1)

= P (t ≤ Tj+1 ≤ t+ dt |Tj, Tj < t ≤ Tj+1)

= P (t ≤ Tj +Xj+1 < t+ dt |Tj, Xj+1 ≥ t− Tj)

= P (t− Tj ≤ Xj+1 < t− Tj + dt |Tj, Xj+1 ≥ t− Tj)

= h(t− Tj) dt

This gives

P ( dN(t) = 1 | past) = h(t− TNt−)) dt

and hence we have

λ(t) = h(t− TNt−))

Exercise 1.9

T is a survival time with hazard rate α(t) and v > 0 is a constant. If we consider T
conditional on T > v, we say that the survival time is left-truncated.
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a) When t > v, the conditional survival function of T takes the form:

S(t | v) = P (T > t |T > v)

=
P (T > t, T > v)

P (T > v)

=
P (T > t)

P (T > v)

=
exp

(
−
∫ t

0
α(u) du

)
exp

(
−
∫ v

0
α(u) du

)
= exp

(
−
∫ t

v

α(u) du

)
If t ≤ v, then S(t | v) = 1.

Thus the hazard rate of T , given T > v, becomes [ cf. (1.4) in the ABG-book ]:

α(t | v) = −S ′(t | v)
S(t | v)

=

{
0 for t ≤ v

α(t) for t > v

By the argument on page 28 in the ABG-book, it follows that conditional on T > v,
the counting process N(t) = I{v < T ≤ t} has intensity process

λ(t) = α(t | v) I{T ≥ t} = α(t) I{v < t ≤ T}

Note that the intensity process is derived from the conditional distribution of T
given T > v.

b) We then consider the left-truncated and right-censored survival time T̃ = T ∧ u =
min(T, u) obtained by censoring the left-truncated survival time at u > v, and let

D = I{T̃ = T}.
By the argument on page 31 in the ABG-book, it follows that the counting process
N(t) = I{v < T̃ ≤ t,D = 1} has intensity process (derived from the conditional
distribution of T given T > v):

λ(t) = α(t | v) I{T̃ ≥ t} = α(t) I{v < t ≤ T̃}

Note that this is of the same form as (1.22) in the ABG-book, but with the at risk

indicator given by Y (t) = I{v < t ≤ T̃}, not by (1.23).

Exercise 1.10

We have n independent survival times T1, . . . , Tn, where Ti has hazard rate αi(t).
We introduce the counting processes Ni(t) = I{Ti ≤ t}; i = 1, . . . , n.
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a) By the result of example 1.17 on page 29 in the ABG-book, the counting processes
Ni(t) have intensity processes (i = 1, . . . , n)

λi(t) = αi(t)I{Ti ≥ t}

and the aggregated counting process N(t) =
∑n

i=1 Ni(t) has intensity process

λ(t) =
n∑

i=1

λi(t) =
n∑

i=1

αi(t)I{Ti ≥ t}

We let µi(t); i = 1, . . . , n; be known hazard functions (corresponding to known
population hazards).

(i) When αi(t) = α(t), we have

λ(t) =
n∑

i=1

α(t)I{Ti ≥ t} = α(t)
n∑

i=1

I{Ti ≥ t}

(ii) When αi(t) = µi(t)α(t), we have

λ(t) =
n∑

i=1

µi(t)α(t)I{Ti ≥ t} = α(t)
n∑

i=1

µi(t)I{Ti ≥ t}

(iii) When αi(t) = µi(t) + α(t), we have

λ(t) =
n∑

i=1

{µi(t)+α(t)} I{Ti ≥ t} =
n∑

i=1

µi(t)I{Ti ≥ t}+α(t)
n∑

i=1

I{Ti ≥ t}

b) The aggregated counting process N(t) satisfies the multiplicative intensity model if
there exist an observable left-continuous process Y (t) such that λ(t) = α(t)Y (t).

(i) The multiplicative intensity model is satisfied with
Y (t) =

∑n
i=1 I{Ti ≥ t}.

(ii) The multiplicative intensity model is satisfied with
Y (t) =

∑n
i=1 µi(t)I{Ti ≥ t}.

(iii) The multiplicative intensity model is not satisfied.
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