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Problem 1

a

With Y (t) = ♯{T̃i ≥ t) = the number at risk at time t the Kaplan-Meier

estimator is given by

Ŝ(t) =
∏
T̃i≤t

[
1− Di

Y (T̃i)

]
assuming that there are no ties.

The expression in the brackets 1 − Di

Y (T̃i)
= P̂(T > T̃i|T > T̃i−) can

be interpreted as the (estimated) conditional probability of surviving at

time T̃i conditional on being alive at time t− and so also the conditional

probability of surviving from the previous event time. Then by the general

rule P(A ∩B) = P(A|B)P(B) we get the Kaplan-Meier estimator as Ŝ(t) =

P̂(T > t) = P̂(T > t|T > tk)P̂(T > tk|T > tk−1)P̂(T > tk−1|T > tk−2) · · · P̂(T > t1|T > t0)

where t0 = 0 < t1 < t2 < · · · < tk < t are the observed event times.

b

See the �le sketch1b.pdf. For percentile µp de�ned by S(µp) = 1 − p
we obtain the estimate µ̂p solving Ŝ(µ̂p) = 1 − p. Graphically we �nd the

estimate by drawing a horizontal line through y = 1 − p and reading o�

where this line crosses the Kaplan-Meier. Similarly a con�dence interval is

determined as the values µ̂L
p < µ̂U

p where the horizontal line crosses the lines

for the con�dence interval of the Kaplan-Meier estimator.

c

Very often Ŝ(tmax) > 0 where tmax is the maximum of the the right censoring

times. Then the estimator is not well de�ned for t > tmax and so neither is

the estimator of µ.

(Continued on page 2.)
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With uncensored data we get Ŝ(t) = 1− k
n where k is the number of Ti < t.

Then with T(1) < T(2) < · · · < T(n) the ordered Ti's we get

µ̂ = 1 ∗ T(1) +
n−1
n (T(2) − T(1)) +

n−2
n (T(3) − T(2)) + · · ·+ 1

n(T(n) − T(n−1))

= T(1)(1− n−1
n ) + T(1)(

n−1
n − n−2

n ) + · · ·+ T(n−1)(
2
n − 1

n) +
1
nT(n)

= 1
nT(1) +

1
nT(2) + · · ·+ 1

nT(n) = T

Alternatively one can realize the result graphically by inspecting the diagram

in the �le sketch1c.pdf with n = 7. Here each (horizontal) rectangle has

area 1
nT(k)) and the total area under the survival function becomes T .

Problem 2

a

The likelihood contributions can be written as, with f(t; θ) the density and

S(t; θ) the survival function of Ti

Li(θ) = f(T̃i; θ)
DiS(T̃i; θ) = α(T̃i; θ)

Di exp(−
∫ T̃i

0 α(t; θ)dt)

= exp(θDi) exp(− exp(θ)T̃i)

and thus li(θ) = log(Li(θ)) = θDi − exp(θ)T̃i.

The score contributions ui(θ), i.e. the derivatives of li(θ) with respect

to θ becomes ui(θ) = Di − T̃i exp(θ). Hence the score equals u(θ) =∑n
i=1Di − exp(θ)

∑n
i=1 T̃i = D• − exp(θ)R•. Putting this equal to zero

gives θ̂ = log(D•/R•).

b

We note that Ni(τ) = I(Di = 1, T̃i ≤ τ) = Di and

T̃i exp(θ) =

∫ τ

0
I(T̃i > t) exp(θ)dt =

∫ τ

0
Yi(t) exp(θ)dt.

Furthermore the intensity process of the counting process Ni(t) is given

by λi(t) = Yi(t)α(t; θ) = Yi(t) exp(θ). This means Mi(t) = Ni(t) −∫ t
0 Yi(s) exp(θ)ds is a martingale with expectation zero and so also ui(θ) =
Mi(τ) has expectation zero.

Moreover the predictable variation process of Mi(t) equals Λi(t) =∫ t
0 Yi(s) exp(θ)ds and so var(ui(θ)) = E[Λi(τ)] = E[

∫ τ
0 Yi(s) exp(θ)ds]

Finally the full score u(θ) = M•(τ) =
∑n

i=1Mi(τ), and has expectation

zero and variance given by E[
∫ τ
0 Y (s) exp(θ)ds] where Y (s) =

∑n
i=1 Yi(s).

c

We �nd I(θ) = − d
dθu(θ) = Λ(τ) =

∫ τ
0 Y (s) exp(θ)ds and so from b)

E[I(θ)] = E
∫ τ
0 Y (s) exp(θ)ds = var(u(θ)).

Inserting exp(θ̂) = D•/R• into I(θ) gives I(θ̂) = D• = N(τ). Thus we esti-
mate var(θ̂) by 1/I(θ̂) = 1/D•. Furthermore an approximate 95% con�dence

interval for α(t; θ) = exp(θ) is given by (D•/R•) exp(±1.96/
√
D•).

(Continued on page 3.)
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Problem 3

a

The Cox-model is given by individual hazards αi(t) = α0(t) exp(β
′xi). We

may �t the model by maximizing the partial likelihood

L(β) =
∏

i:D:i=1

exp(β′xi∑
j∈R(T̃i)

exp(β′xj)

which can be given the interpretation as the product over probabilities that

individual i with Di = 1 died at T̃i given that one of those in the risk set

R(T̃i) at T̃i died.

We see that all three covariates are strongly signi�cant. Women have a

hazard which estimated as being only 0.52 the hazard of men. Those who

are physically active have a hazard rate being 0.71 of the non-active and

people with higher cholesterol than the median has a mortality (hazard)

which 1.35 time that of an below median cholesterol individual (when other

factors are the same).

Approximate 95% con�dence intervals for the hazard ratios are exp(β̂j +

±1.96sej) where the β̂j are the estimates of βj and sej their standard

errors. We get intervals (0.449,0.602) for sex, (0.600,0.846) for activity and

(1.166,1.563) for cholesterol.

b

The idea of strati�ed Cox-regression is that the hazard can be written (in this

case) as αi(t) = α0xi1(t) exp(β2xi2 + β3xi3), that is with di�erent baselines

for men and women, but where log-hazard ratios β2 and β3 are the same

for men and women. Now there is no assumption of hazard ratios between

women and men being time-constant.

One may then calculate separate partial likelihood LM (β2, β3) for men
and LWβ2, β3) for women and combine this into a total strati�ed partial

likelihood L(β2, β3) = LM (β2, β3)LW (β2, β3).

To display the di�erences in risk between men and women one may calculated

seperate cumulative hazards for men and women by the Breslow-estimators,

possibly translated to survival functions.

These Breslow estimators of the baseline cumulative hazards can be given as

Âj(t) =

∫ t

0

dN•j(s)

S
(0)
j (s; β̂)

where N•j(s) =
∑

i:xi1=j Ni(s) and S
(0)
j (s; β̂) =

∑
i:xi1=j Yi(s) exp(β̂

′xi).
Here Ni(s) and Yi(s) are individual counting processes and indicators of

being at risk.

c

The additive hazards model can be written as

αi(t) = β0(t) + β1(t)xi1 + β3(t)xi3 + β3(t)xi3

(Continued on page 4.)
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where β0(t) is the hazard if all covariates are equal to zero and βj(t) are

regression functions being positive if there is a higher risk associated with

large than small xij at time t and negative in the opposite case. The e�ect

of the covariates is thus allowed to vary with time.

The plots shows estimates of Bj(t) =
∫ t
0 βj(s)ds. Thus when B̂0(t) is a

close to concave function this shows that the baseline hazard increases over

time. Furthermore B̂1(t) is decreasing ever more steeply, thus women have a

smaller hazard than men and the di�erence increases over time. For physical

activity we see a negative cumulative hazard, only slightly below zero up to

50 years, then decreasing more markedly and perhaps stabilizing towards 80

years (likely this last observation is not signi�cant). In correspondence with

the results from the Cox-regressions the hazard is smaller for the physical

active, but we estimate that the di�erence �rst increases and then possibly

vanishes when the individuals get into their 70's and 80's. For cholesterol the

high cholesterol group consistently has a higher hazard, but the association

is weak into the 60's or 70's and then increase more steeply.

d

The estimates B̂(t) = (B̂0(t), B̂2(t), B̂2(t), B̂3(t))
′ have increments dB̂(t) =

(dB̂0(t), dB̂2(t), dB̂2(t), dB̂3(t))
′ at event times T̃i, Di = 1. For these times

the increments are obtained as least squares estimates with the dNi(t) as
responses and covariates xijYi(t).

We can write dNi(t) = Yi(t)αi(t) + dMi(t) where dMi(t) are martingale

increments with expectation zero. After some algebra it is then possible to

show that the estimators of the estimated cumulative regression functions

can be written as the true cumulative regression functions plus a martingale

term with expectation zero as long as the design matrices at di�erent event

times have full rank. Thus the estimates are approximately unbiased.

(To do most of this algebra we note that the estimates dB̂(t) can be written

as

dB̂(t) = (X(t)⊤X(t))−1X(t)⊤dN(t)

where X(t) is the design-matrix and dN(t) vector the indicators of ecents

at time t. This vector of responses can be expanded to X(t)dB(t) + dM(t)
where dM(t) is the vector of the dMi(t)'s. Inserting this into the expression
for dB̂(t) we get, as long as the design matrix has full rank,

dB̂(t) = (X(t)⊤X(t))−1X(t)⊤(X(t)dB(t)+dM(t)) = dB(t)+(X(t)⊤X(t))−1X(t)⊤dM(t)

where the latter term is (vector of) martingale increment. It turns out that

for t such that the design matrix has full rank for s ≤ t

B̂(t) = B(t) +M⋆(t)

where the last term is a vector of martingales with expectation zero.)

END


