STK 4080/9080: Survival Analysis and Event History Analysis
 Notes to the Exam, December 3rd, 2018
 Nils Lid Hjort

Exercise 1: Multiple dangers

(a) That $T=A^{-1}(V) \leq t$ is the same as $V \leq A(t)$, so the cumulative distribution of such a T becomes $1-\exp \{-A(t)\}$.
(b) Setting $A(t)=\log (1+t)$ equal to v leads to $t=\exp (v)-1$, so the variable $T=\exp (V)-$ 1 has the distribution in question. I can simulate such lifetimes via $T_{j}=\exp \left(V_{j}\right)-1$, with the V_{j} from the unit exponential. Its mean is

$$
\int_{0}^{\infty}\{\exp (v)-1\} \exp (-v) \mathrm{d} v
$$

which is infinite. This is also clear from the cdf of T directly, which is $t /(t+1)$, with density $1 /(t+1)^{2}$, with a too fat tail for finiteness of its mean.
(c) Consider $T=\min \left(T_{1}, \ldots, T_{k}\right)$. Its survival distribution is

$$
\operatorname{Pr}\{T \geq t\}=\operatorname{Pr}\left\{T_{1} \geq t, \ldots, T_{k} \geq t\right\}=\exp \left\{-A_{1}(t)-\cdots-A_{k}(t)\right\}
$$

with A_{j} the cumulative of α_{j}. Hence $A^{*}(t)=A_{1}(t)+\cdots+A_{k}(t)$ and $\alpha^{*}(s)=$ $\alpha_{1}(s)+\cdots+\alpha_{k}(s)$.
(d) The probability in question is the ratio between

$$
\operatorname{Pr}\left\{T_{j} \in[t, t+\varepsilon], \text { the others bigger than } t\right\}=\alpha_{j}(t) \varepsilon \exp \left\{-A_{j}(t)\right\} \prod_{\ell \neq j} \exp \left\{-A_{\ell}(t)\right\}
$$

and

$$
\operatorname{Pr}\{T \in[t, t+\varepsilon]\}=\sum_{\ell=1}^{k} \alpha_{\ell}(t) \varepsilon \exp \left\{-\sum_{\ell=1}^{k} A_{\ell}(t)\right\} .
$$

The ratio becomes

$$
q_{j}(t)=\frac{\alpha_{j}(t)}{\alpha_{1}(t)+\cdots+\alpha_{k}(t)} .
$$

(e) The cumulative hazard rate takes the form $A_{1}(t)+A_{2}(t)+A_{3}(t)$, which means T can be represented as $\min \left(T_{1}, T_{2}, T_{3}\right)$. Here $1.1 t_{1}^{3 / 2}=v_{1}$ leads to $T_{1}=\left(V_{1} / 1.1\right)^{2 / 3}$; $1.2 T_{2}=V_{2}$ leads to $T_{2}=V_{2} / 1.2$; and $1.3 T_{3}^{1 / 2}=V_{3}$ leads to $T_{3}=\left(V_{3} / 1.3\right)^{2}$, with V_{1}, V_{2}, V_{3} independent unit exponentials.

Exercise 2: Frail lives

(a) We have

$$
L(c)=\int_{0}^{\infty} \exp (-c z) g(z) \mathrm{d} z=\frac{b^{a}}{\Gamma(a)} \frac{\Gamma(a)}{(b+c)^{a}}=\exp \{-a \log (1+c / b)\}
$$

(b) The survival curve for a randomly sampled individual becomes

$$
S^{*}(t)=\mathrm{E}^{*} S(t \mid z)=\mathrm{E}^{*} \exp \{-A(t) z\}=L(A(t))
$$

With the Gamma (a, b), the survival curve becomes

$$
\left.S^{*}(t)=\exp [-a \log \{1+A(t) / b)\}\right]
$$

which means cumulative hazard

$$
A^{*}(t)=a \log \{1+A(t) / b\}
$$

which means hazard rate

$$
\alpha^{*}(s)=a \frac{1}{1+A(t) / b} \frac{\alpha(t)}{b}=\frac{a}{b} \frac{\alpha(t)}{1+A(t) / b} .
$$

(c) An individual with frailty z has cumulative hazard $A(t)+z t$. Hence

$$
S^{*}(t)=\mathrm{E}^{*} S(t \mid z)=\mathrm{E}^{*} \exp \{-A(t)-z t\}=\exp \{-A(t)\} L(t)
$$

For the Gamma (a, b) frailty distribution, this becomes

$$
S^{*}(t)=\exp \{-A(t)-a \log (1+t / b)\}
$$

with cumulative hazard rate

$$
A^{*}(t)=A(t)+a \log (1+t / b)
$$

and hazard rate

$$
\alpha^{*}(s)=\alpha(s)+\frac{a}{b} \frac{1}{1+s / b} .
$$

(d) For a constant $\alpha(s)=\alpha$, the above gives

$$
\alpha^{*}(s)=\alpha+\frac{a}{b} \frac{1}{1+s / b},
$$

and for high s the second terms vanishes. Thus long-time survivors end up having the same hazard as those with zero frailty.
(e) The cumulative hazard rate for an individual with frailties z_{1} and z_{2} is $\alpha z_{1} t+z_{2} t$, and

$$
S^{*}(t)=\mathrm{E}^{*} S(t \mid z)=\mathrm{E}^{*} \exp \left(-\alpha z_{1} t-z_{2} t\right)=L_{1}(\alpha t) L_{2}(t),
$$

in terms of the two Laplace transforms at work. With the two gammas, this yields

$$
S^{*}(t)=\exp \{-b \log (1+\alpha t / b)\} \exp \left\{-a_{2} \log \left(1+t / b_{2}\right)\right\}
$$

with cumulative hazard rate

$$
A^{*}(t)=b \log (1+\alpha t / b)+a_{2} \log \left(1+t / b_{2}\right)
$$

and hazard rate

$$
\alpha^{*}(s)=\frac{\alpha}{1+\alpha s / b}+\frac{a_{2}}{b_{2}} \frac{1}{1+s / b_{2}} .
$$

Exercise 3: Comparing groups

(a) We have

$$
\widehat{A}_{1}(t)=\int_{0}^{t} \frac{\mathrm{~d} N_{1}(s)}{Y_{1}(s)} \quad \text { and } \quad \widehat{A}_{2}(t)=\int_{0}^{t} \frac{\mathrm{~d} N_{2}(s)}{Y_{2}(s)}
$$

(b) With the usual martingales,

$$
\mathrm{d} M_{1}(s)=\mathrm{d} N_{1}(s)-Y_{1}(s) \alpha_{1}(s) \mathrm{d} s \quad \text { and } \quad \mathrm{d} M_{2}(s)=\mathrm{d} N_{2}(s)-Y_{2}(s) \alpha_{2}(s) \mathrm{d} s
$$

which leads to

$$
\mathrm{d} \widehat{A}_{1}(s)=\frac{\mathrm{d} M_{1}(s)}{Y_{1}(s)}+J_{1}(s) \mathrm{d} A_{1}(s) \quad \text { and } \quad \mathrm{d} \widehat{A}_{2}(s)=\frac{\mathrm{d} M_{2}(s)}{Y_{2}(s)}+J_{2}(s) \mathrm{d} A_{2}(s)
$$

with the usual $J_{1}(s)=I\left\{Y_{1}(s) \geq 1\right\}$ and $J_{2}(s)=I\left\{Y_{2}(s) \geq 1\right\}$. Hence, under the null hypothesis where A_{1} and A_{2} are identical to a common A,

$$
H_{n}(s)\left\{\mathrm{d} \widehat{A}_{1}(s)-\mathrm{d} \widehat{A}_{2}(s)\right\}=H_{n}(s)\left\{\frac{\mathrm{d} M_{1}(s)}{Y_{1}(s)}-\frac{\mathrm{d} M_{2}(s)}{Y_{2}(s)}\right\}
$$

since $H_{n}(s)=\left\{Y_{1}(s) Y_{2}(s)\right\}^{1 / 2} / n$ is nonzero precisely when $J_{1}(s)$ and $J_{2}(s)$ are equal to 1 . Hence Z_{n} is a difference of two independent martingales, and therefore a martingale.
(c) Under the null,

$$
\begin{aligned}
\left\langle Z_{n}, Z_{n}\right\rangle(t) & =\int_{0}^{t} H_{n}(s)^{2}\left\{\frac{1}{Y_{1}(s)^{2}} \mathrm{~d}\left\langle M_{1}, M_{1}\right\rangle(s)+\frac{1}{Y_{2}(s)^{2}} \mathrm{~d}\left\langle M_{2}, M_{2}\right\rangle(s)\right\} \\
& =\int_{0}^{t} H_{n}(s)^{2}\left\{\frac{\alpha(s) \mathrm{d} s}{Y_{1}(s)}+\frac{\alpha(s) \mathrm{d} s}{Y_{2}(s)}\right\} \\
& =\frac{1}{n^{2}} \int_{0}^{t} J_{1} J_{2} Y_{1} Y_{2}\left(\frac{1}{Y_{1}}+\frac{1}{Y_{2}}\right) \alpha(s) \mathrm{d} s \\
& =\frac{1}{n^{2}} \int_{0}^{t}\left(Y_{1}+Y_{2}\right) \alpha(s) \mathrm{d} s
\end{aligned}
$$

An estimator of the variance of $Z_{n}(t)$ is

$$
\widehat{\sigma}(t)^{2}=\frac{1}{n^{2}} \int_{0}^{t}\left\{Y_{1}(s)+Y_{2}(s)\right\} \mathrm{d} \widehat{A}(s),
$$

with $\widehat{A}(t)$ an estimator of the common $A(t)$. When using the natural

$$
\widehat{A}(t)=\int_{0}^{t} \frac{\mathrm{~d} N_{1}+\mathrm{d} N_{2}}{Y_{1}+Y_{2}}
$$

the Nelson-Aalen estimator based on the combined sample, we have

$$
\widehat{\sigma}(t)^{2}=\frac{N_{1}(t)+N_{2}(t)}{n^{2}} .
$$

Other versions are available.
(d) We may plot $Z_{n}(t) / \widehat{\sigma}(t)$, which is approximately a standard normal, under the null, for each t. We may also form tests based on $\max _{c \leq t \leq d}\left|Z_{n}(t)\right| / \widehat{\sigma}(t)$, etc. Its limit distribution is the absolute maximum of a normalised Brownian motion over an interval.
(e) Under the null, it follows from central limit theory for martingales that $\sqrt{n} Z_{n}(t) \rightarrow_{d}$ $W(t)$, a Gaußian martingale, with variance function $v(t)$, the limit in probability of $n\left\langle Z_{n}, Z_{n}\right\rangle(t)$, namely

$$
v(t)=\int_{0}^{t}\left\{y_{1}(s)+y_{2}(s)\right\} \alpha(s) \mathrm{d} s
$$

with y_{1} and y_{2} the limit functions of Y_{1} / n and Y_{2} / n. It can be estimated using $n \widehat{\sigma}(t)^{2}$, which becomes as simple as $\left\{N_{1}(t)+N_{2}(t)\right\} / n$.

Exercise 4: Presidential survival regression

(a) The log-likelihood function becomes

$$
\begin{aligned}
\ell_{n}\left(\theta, \gamma, \beta_{1}, \beta_{2}\right)= & \sum_{i=1}^{n} \int_{0}^{\tau}\left\{\log \alpha_{i}(s) \mathrm{d} N_{i}(s)-Y_{i}(s) \alpha_{i}(s) \mathrm{d} s\right\} \\
= & \sum_{i=1}^{n}\left\{\log \theta+\log \gamma+(\gamma-1) \log t_{i}+\operatorname{gironde}_{i} \beta_{1}+\operatorname{vip}_{i} \beta_{2}\right\} \delta_{i} \\
& \quad-\sum_{i=1}^{n} \theta t_{i}^{\gamma} \exp \left(\beta_{1} \operatorname{gironde}_{i}+\beta_{2} \operatorname{vip}_{i}\right) .
\end{aligned}
$$

I'd throw this to an optimiser.
(b) Standard errors are estimated as the square roots of the diagonal elements of the inverse of the 4×4 Fisher information matrix,

$$
\widehat{J}_{\mathrm{obs}}=-\frac{\partial^{2} \ell_{n}(\widehat{\eta})}{\partial \eta \partial \eta^{\mathrm{t}}}
$$

writing η for the four parameters.
(c) The Wald ratios $\widehat{\beta}_{j} / \widehat{\kappa}_{j}$ are too small in size to signal that any of the two coefficients are different from zero. But

$$
(\widehat{\gamma}-1) / \widehat{\kappa}=(1.8258-1) / 0.2074=3.9816,
$$

which convincingly shows that γ is bigger than 1 . Det skulle bare mangle.

