
STK 4080/9080: Survival Analysis and Event History Analysis

Notes to the Exam, December 3rd, 2018

Nils Lid Hjort

Exercise 1: Multiple dangers

(a) That T = A−1(V ) ≤ t is the same as V ≤ A(t), so the cumulative distribution of such

a T becomes 1− exp{−A(t)}.
(b) Setting A(t) = log(1+t) equal to v leads to t = exp(v)−1, so the variable T = exp(V )−

1 has the distribution in question. I can simulate such lifetimes via Tj = exp(Vj)− 1,

with the Vj from the unit exponential. Its mean is

∫ ∞

0

{exp(v)− 1} exp(−v) dv,

which is infinite. This is also clear from the cdf of T directly, which is t/(t+ 1), with

density 1/(t+ 1)2, with a too fat tail for finiteness of its mean.

(c) Consider T = min(T1, . . . , Tk). Its survival distribution is

Pr{T ≥ t} = Pr{T1 ≥ t, . . . , Tk ≥ t} = exp{−A1(t)− · · · −Ak(t)},

with Aj the cumulative of αj . Hence A∗(t) = A1(t) + · · · + Ak(t) and α∗(s) =

α1(s) + · · ·+ αk(s).

(d) The probability in question is the ratio between

Pr{Tj ∈ [t, t+ ε], the others bigger than t} = αj(t)ε exp{−Aj(t)}
∏

ℓ 6=j

exp{−Aℓ(t)}

and

Pr{T ∈ [t, t+ ε]} =
k∑

ℓ=1

αℓ(t)ε exp
{
−

k∑

ℓ=1

Aℓ(t)
}
.

The ratio becomes

qj(t) =
αj(t)

α1(t) + · · ·+ αk(t)
.

(e) The cumulative hazard rate takes the form A1(t) + A2(t) + A3(t), which means T

can be represented as min(T1, T2, T3). Here 1.1 t
3/2
1

= v1 leads to T1 = (V1/1.1)
2/3;

1.2T2 = V2 leads to T2 = V2/1.2; and 1.3T
1/2
3

= V3 leads to T3 = (V3/1.3)
2, with

V1, V2, V3 independent unit exponentials.

Exercise 2: Frail lives

(a) We have

L(c) =

∫ ∞

0

exp(−cz)g(z) dz =
ba

Γ(a)

Γ(a)

(b+ c)a
= exp{−a log(1 + c/b)}.
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(b) The survival curve for a randomly sampled individual becomes

S∗(t) = E∗ S(t | z) = E∗ exp{−A(t)z} = L(A(t)).

With the Gamma (a, b), the survival curve becomes

S∗(t) = exp[−a log{1 +A(t)/b)}],

which means cumulative hazard

A∗(t) = a log{1 +A(t)/b},

which means hazard rate

α∗(s) = a
1

1 +A(t)/b

α(t)

b
=

a

b

α(t)

1 +A(t)/b
.

(c) An individual with frailty z has cumulative hazard A(t) + zt. Hence

S∗(t) = E∗ S(t | z) = E∗ exp{−A(t)− zt} = exp{−A(t)}L(t).

For the Gamma (a, b) frailty distribution, this becomes

S∗(t) = exp{−A(t)− a log(1 + t/b)},

with cumulative hazard rate

A∗(t) = A(t) + a log(1 + t/b),

and hazard rate

α∗(s) = α(s) +
a

b

1

1 + s/b
.

(d) For a constant α(s) = α, the above gives

α∗(s) = α+
a

b

1

1 + s/b
,

and for high s the second terms vanishes. Thus long-time survivors end up having the

same hazard as those with zero frailty.

(e) The cumulative hazard rate for an individual with frailties z1 and z2 is αz1t+z2t, and

S∗(t) = E∗ S(t | z) = E∗ exp(−αz1t− z2t) = L1(αt)L2(t),

in terms of the two Laplace transforms at work. With the two gammas, this yields

S∗(t) = exp{−b log(1 + αt/b)} exp{−a2 log(1 + t/b2)},

with cumulative hazard rate

A∗(t) = b log(1 + αt/b) + a2 log(1 + t/b2),

Exam STK 4080/9080, page 2 3.xii.2018



and hazard rate

α∗(s) =
α

1 + αs/b
+

a2
b2

1

1 + s/b2
.

Exercise 3: Comparing groups

(a) We have

Â1(t) =

∫ t

0

dN1(s)

Y1(s)
and Â2(t) =

∫ t

0

dN2(s)

Y2(s)
.

(b) With the usual martingales,

dM1(s) = dN1(s)− Y1(s)α1(s) ds and dM2(s) = dN2(s)− Y2(s)α2(s) ds,

which leads to

dÂ1(s) =
dM1(s)

Y1(s)
+ J1(s) dA1(s) and dÂ2(s) =

dM2(s)

Y2(s)
+ J2(s) dA2(s),

with the usual J1(s) = I{Y1(s) ≥ 1} and J2(s) = I{Y2(s) ≥ 1}. Hence, under the null
hypothesis where A1 and A2 are identical to a common A,

Hn(s){dÂ1(s)− dÂ2(s)} = Hn(s)
{dM1(s)

Y1(s)
− dM2(s)

Y2(s)

}
,

since Hn(s) = {Y1(s)Y2(s)}1/2/n is nonzero precisely when J1(s) and J2(s) are equal

to 1. Hence Zn is a difference of two independent martingales, and therefore a mar-

tingale.

(c) Under the null,

〈Zn, Zn〉(t) =
∫ t

0

Hn(s)
2

{ 1

Y1(s)2
d〈M1,M1〉(s) +

1

Y2(s)2
d〈M2,M2〉(s)

}

=

∫ t

0

Hn(s)
2

{α(s) ds

Y1(s)
+

α(s) ds

Y2(s)

}

=
1

n2

∫ t

0

J1J2Y1Y2

( 1

Y1

+
1

Y2

)
α(s) ds.

=
1

n2

∫ t

0

(Y1 + Y2)α(s) ds.

An estimator of the variance of Zn(t) is

σ̂(t)2 =
1

n2

∫ t

0

{Y1(s) + Y2(s)}dÂ(s),

with Â(t) an estimator of the common A(t). When using the natural

Â(t) =

∫ t

0

dN1 + dN2

Y1 + Y2

,

Exam STK 4080/9080, page 3 3.xii.2018



the Nelson–Aalen estimator based on the combined sample, we have

σ̂(t)2 =
N1(t) +N2(t)

n2
.

Other versions are available.

(d) We may plot Zn(t)/σ̂(t), which is approximately a standard normal, under the null,

for each t. We may also form tests based on maxc≤t≤d |Zn(t)|/σ̂(t), etc. Its limit dis-

tribution is the absolute maximum of a normalised Brownian motion over an interval.

(e) Under the null, it follows from central limit theory for martingales that
√
nZn(t) →d

W (t), a Gaußian martingale, with variance function v(t), the limit in probability of

n〈Zn, Zn〉(t), namely

v(t) =

∫ t

0

{y1(s) + y2(s)}α(s) ds,

with y1 and y2 the limit functions of Y1/n and Y2/n. It can be estimated using nσ̂(t)2,

which becomes as simple as {N1(t) +N2(t)}/n.

Exercise 4: Presidential survival regression

(a) The log-likelihood function becomes

ℓn(θ, γ, β1, β2) =

n∑

i=1

∫ τ

0

{logαi(s) dNi(s)− Yi(s)αi(s) ds}

=

n∑

i=1

{log θ + log γ + (γ − 1) log ti + girondeiβ1 + vipiβ2}δi

−
n∑

i=1

θtγi exp(β1girondei + β2vipi).

I’d throw this to an optimiser.

(b) Standard errors are estimated as the square roots of the diagonal elements of the

inverse of the 4× 4 Fisher information matrix,

Ĵobs = −∂2ℓn(η̂)

∂η∂ηt
,

writing η for the four parameters.

(c) The Wald ratios β̂j/κ̂j are too small in size to signal that any of the two coefficients

are different from zero. But

(γ̂ − 1)/κ̂ = (1.8258− 1)/0.2074 = 3.9816,

which convincingly shows that γ is bigger than 1. Det skulle bare mangle.

– quantum satis & the end –
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