STK 4080/9080: Survival Analysis and Event History Analysis Notes to the Exam, December 3rd, 2018 Nils Lid Hjort

Exercise 1: Multiple dangers

- (a) That $T = A^{-1}(V) \le t$ is the same as $V \le A(t)$, so the cumulative distribution of such a T becomes $1 \exp\{-A(t)\}$.
- (b) Setting $A(t) = \log(1+t)$ equal to v leads to $t = \exp(v) 1$, so the variable $T = \exp(V) 1$ has the distribution in question. I can simulate such lifetimes via $T_j = \exp(V_j) 1$, with the V_j from the unit exponential. Its mean is

$$\int_0^\infty \{\exp(v) - 1\} \exp(-v) \,\mathrm{d}v,$$

which is infinite. This is also clear from the cdf of T directly, which is t/(t+1), with density $1/(t+1)^2$, with a too fat tail for finiteness of its mean.

(c) Consider $T = \min(T_1, \ldots, T_k)$. Its survival distribution is

$$\Pr\{T \ge t\} = \Pr\{T_1 \ge t, \dots, T_k \ge t\} = \exp\{-A_1(t) - \dots - A_k(t)\},\$$

with A_j the cumulative of α_j . Hence $A^*(t) = A_1(t) + \cdots + A_k(t)$ and $\alpha^*(s) = \alpha_1(s) + \cdots + \alpha_k(s)$.

(d) The probability in question is the ratio between

$$\Pr\{T_j \in [t, t+\varepsilon], \text{the others bigger than } t\} = \alpha_j(t)\varepsilon \exp\{-A_j(t)\}\prod_{\ell \neq j}\exp\{-A_\ell(t)\}$$

and

$$\Pr\{T \in [t, t+\varepsilon]\} = \sum_{\ell=1}^{k} \alpha_{\ell}(t)\varepsilon \exp\left\{-\sum_{\ell=1}^{k} A_{\ell}(t)\right\}.$$

The ratio becomes

$$q_j(t) = \frac{\alpha_j(t)}{\alpha_1(t) + \dots + \alpha_k(t)}.$$

(e) The cumulative hazard rate takes the form $A_1(t) + A_2(t) + A_3(t)$, which means T can be represented as $\min(T_1, T_2, T_3)$. Here $1.1 t_1^{3/2} = v_1$ leads to $T_1 = (V_1/1.1)^{2/3}$; $1.2 T_2 = V_2$ leads to $T_2 = V_2/1.2$; and $1.3 T_3^{1/2} = V_3$ leads to $T_3 = (V_3/1.3)^2$, with V_1, V_2, V_3 independent unit exponentials.

Exercise 2: Frail lives

(a) We have

$$L(c) = \int_0^\infty \exp(-cz)g(z) \, dz = \frac{b^a}{\Gamma(a)} \frac{\Gamma(a)}{(b+c)^a} = \exp\{-a\log(1+c/b)\}.$$

(b) The survival curve for a randomly sampled individual becomes

$$S^*(t) = \mathbf{E}^* S(t \,|\, z) = \mathbf{E}^* \, \exp\{-A(t)z\} = L(A(t)).$$

With the Gamma (a, b), the survival curve becomes

$$S^*(t) = \exp[-a\log\{1 + A(t)/b)\}],$$

which means cumulative hazard

$$A^{*}(t) = a \log\{1 + A(t)/b\},\$$

which means hazard rate

$$\alpha^*(s) = a \frac{1}{1 + A(t)/b} \frac{\alpha(t)}{b} = \frac{a}{b} \frac{\alpha(t)}{1 + A(t)/b}.$$

(c) An individual with frailty z has cumulative hazard A(t) + zt. Hence

$$S^*(t) = E^* S(t \mid z) = E^* \exp\{-A(t) - zt\} = \exp\{-A(t)\}L(t).$$

For the Gamma (a, b) frailty distribution, this becomes

$$S^*(t) = \exp\{-A(t) - a\log(1 + t/b)\},\$$

with cumulative hazard rate

$$A^{*}(t) = A(t) + a\log(1 + t/b),$$

and hazard rate

$$\alpha^*(s) = \alpha(s) + \frac{a}{b} \frac{1}{1+s/b}.$$

(d) For a constant $\alpha(s) = \alpha$, the above gives

$$\alpha^*(s) = \alpha + \frac{a}{b} \frac{1}{1 + s/b},$$

and for high s the second terms vanishes. Thus long-time survivors end up having the same hazard as those with zero frailty.

(e) The cumulative hazard rate for an individual with frailties z_1 and z_2 is $\alpha z_1 t + z_2 t$, and

$$S^*(t) = E^* S(t \mid z) = E^* \exp(-\alpha z_1 t - z_2 t) = L_1(\alpha t) L_2(t),$$

in terms of the two Laplace transforms at work. With the two gammas, this yields

$$S^*(t) = \exp\{-b\log(1+\alpha t/b)\}\exp\{-a_2\log(1+t/b_2)\},\$$

with cumulative hazard rate

$$A^*(t) = b \log(1 + \alpha t/b) + a_2 \log(1 + t/b_2),$$

and hazard rate

$$\alpha^*(s) = \frac{\alpha}{1 + \alpha s/b} + \frac{a_2}{b_2} \frac{1}{1 + s/b_2}.$$

Exercise 3: Comparing groups

(a) We have

$$\widehat{A}_1(t) = \int_0^t \frac{\mathrm{d}N_1(s)}{Y_1(s)}$$
 and $\widehat{A}_2(t) = \int_0^t \frac{\mathrm{d}N_2(s)}{Y_2(s)}$.

(b) With the usual martingales,

 $dM_1(s) = dN_1(s) - Y_1(s)\alpha_1(s) ds$ and $dM_2(s) = dN_2(s) - Y_2(s)\alpha_2(s) ds$,

which leads to

$$d\widehat{A}_{1}(s) = \frac{dM_{1}(s)}{Y_{1}(s)} + J_{1}(s) dA_{1}(s) \text{ and } d\widehat{A}_{2}(s) = \frac{dM_{2}(s)}{Y_{2}(s)} + J_{2}(s) dA_{2}(s),$$

with the usual $J_1(s) = I\{Y_1(s) \ge 1\}$ and $J_2(s) = I\{Y_2(s) \ge 1\}$. Hence, under the null hypothesis where A_1 and A_2 are identical to a common A,

$$H_n(s)\{d\hat{A}_1(s) - d\hat{A}_2(s)\} = H_n(s)\left\{\frac{dM_1(s)}{Y_1(s)} - \frac{dM_2(s)}{Y_2(s)}\right\},\$$

since $H_n(s) = \{Y_1(s)Y_2(s)\}^{1/2}/n$ is nonzero precisely when $J_1(s)$ and $J_2(s)$ are equal to 1. Hence Z_n is a difference of two independent martingales, and therefore a martingale.

(c) Under the null,

$$\begin{split} \langle Z_n, Z_n \rangle(t) &= \int_0^t H_n(s)^2 \Big\{ \frac{1}{Y_1(s)^2} \, \mathrm{d} \langle M_1, M_1 \rangle(s) + \frac{1}{Y_2(s)^2} \, \mathrm{d} \langle M_2, M_2 \rangle(s) \Big\} \\ &= \int_0^t H_n(s)^2 \Big\{ \frac{\alpha(s) \, \mathrm{d} s}{Y_1(s)} + \frac{\alpha(s) \, \mathrm{d} s}{Y_2(s)} \Big\} \\ &= \frac{1}{n^2} \int_0^t J_1 J_2 Y_1 Y_2 \Big(\frac{1}{Y_1} + \frac{1}{Y_2} \Big) \alpha(s) \, \mathrm{d} s. \\ &= \frac{1}{n^2} \int_0^t (Y_1 + Y_2) \alpha(s) \, \mathrm{d} s. \end{split}$$

An estimator of the variance of $Z_n(t)$ is

$$\widehat{\sigma}(t)^2 = \frac{1}{n^2} \int_0^t \{Y_1(s) + Y_2(s)\} \,\mathrm{d}\widehat{A}(s),$$

with $\widehat{A}(t)$ an estimator of the common A(t). When using the natural

$$\widehat{A}(t) = \int_0^t \frac{\mathrm{d}N_1 + \mathrm{d}N_2}{Y_1 + Y_2},$$

the Nelson-Aalen estimator based on the combined sample, we have

$$\widehat{\sigma}(t)^2 = \frac{N_1(t) + N_2(t)}{n^2}.$$

Other versions are available.

- (d) We may plot $Z_n(t)/\widehat{\sigma}(t)$, which is approximately a standard normal, under the null, for each t. We may also form tests based on $\max_{c \leq t \leq d} |Z_n(t)|/\widehat{\sigma}(t)$, etc. Its limit distribution is the absolute maximum of a normalised Brownian motion over an interval.
- (e) Under the null, it follows from central limit theory for martingales that $\sqrt{n}Z_n(t) \rightarrow_d W(t)$, a Gaußian martingale, with variance function v(t), the limit in probability of $n\langle Z_n, Z_n \rangle(t)$, namely

$$v(t) = \int_0^t \{y_1(s) + y_2(s)\}\alpha(s) \,\mathrm{d}s,$$

with y_1 and y_2 the limit functions of Y_1/n and Y_2/n . It can be estimated using $n\hat{\sigma}(t)^2$, which becomes as simple as $\{N_1(t) + N_2(t)\}/n$.

Exercise 4: Presidential survival regression

(a) The log-likelihood function becomes

$$\ell_n(\theta, \gamma, \beta_1, \beta_2) = \sum_{i=1}^n \int_0^\tau \{\log \alpha_i(s) \, \mathrm{d}N_i(s) - Y_i(s)\alpha_i(s) \, \mathrm{d}s\}$$
$$= \sum_{i=1}^n \{\log \theta + \log \gamma + (\gamma - 1)\log t_i + \operatorname{gironde}_i\beta_1 + \operatorname{vip}_i\beta_2\}\delta_i$$
$$- \sum_{i=1}^n \theta t_i^\gamma \exp(\beta_1 \operatorname{gironde}_i + \beta_2 \operatorname{vip}_i).$$

I'd throw this to an optimiser.

(b) Standard errors are estimated as the square roots of the diagonal elements of the inverse of the 4×4 Fisher information matrix,

$$\widehat{J}_{\rm obs} = -\frac{\partial^2 \ell_n(\widehat{\eta})}{\partial \eta \partial \eta^{\rm t}},$$

writing η for the four parameters.

(c) The Wald ratios $\hat{\beta}_j/\hat{\kappa}_j$ are too small in size to signal that any of the two coefficients are different from zero. But

$$(\hat{\gamma} - 1)/\hat{\kappa} = (1.8258 - 1)/0.2074 = 3.9816,$$

which convincingly shows that γ is bigger than 1. Det skulle bare mangle.

– quantum satis ${\mathcal E}$ the end –