STK 4080/9080: Survival Analysis and Event History Analysis
Notes to the Exam, December 3rd, 2018
Nils Lid Hjort

Exercise 1: Multiple dangers

(a) That T = A=1(V) < tis the same as V < A(t), so the cumulative distribution of such
a T becomes 1 — exp{—A(t)}.

(b) Setting A(t) = log(1+t) equal to v leads to t = exp(v)—1, so the variable T' = exp(V)—
1 has the distribution in question. I can simulate such lifetimes via T; = exp(V}) — 1,

with the V; from the unit exponential. Its mean is

/Ooo{exp(v) — 1} exp(—v) dw,

which is infinite. This is also clear from the cdf of T directly, which is ¢/(¢t 4 1), with
density 1/(t + 1)2, with a too fat tail for finiteness of its mean.

(c¢) Consider T' = min(71,...,Ty). Its survival distribution is
Pr{T' >t} =Pr{T1 >t,..., T >t} = exp{—A1(t) — - — Ax(t)},

with A; the cumulative of a;. Hence A*(t) = Ai(t) + --- + Ax(t) and a*(s) =
a1(s) 4+ -+ + ag(s).
(d) The probability in question is the ratio between

Pr{T} € [t,t + ¢], the others bigger than t} = o;(t)e exp{—A4;(t)} H exp{—A¢(t)}
&)

and
K

k
Pr{T € [t,t +¢|} = ZCEg(t)é—f exp{— ZAg(t)}.
=1

(=1

The ratio becomes
a;(t) .
a(t) + - + ()

qj(t) =

(e) The cumulative hazard rate takes the form A;(t) + Aa(t) + As(t), which means T’
can be represented as min(7y,T5,T5). Here 1.175“;’/2 — vy leads to T} = (V3/1.1)%/3;
12Ty = V, leads to Ty = V5/1.2; and 1.3T3/% = V3 leads to T3 = (V3/1.3)2, with
Vi, Vo, V3 independent unit exponentials.

Exercise 2: Frail lives

(a) We have

b*  T'(a)
I'(a) (b+c)e

L(c) = /000 exp(—cz)g(z)dz = = exp{—alog(1 +¢/b)}.
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(b) The survival curve for a randomly sampled individual becomes
S*(t) =E"S(t|z) = E* exp{—A(t)z} = L(A(t)).
With the Gamma (a, b), the survival curve becomes
§*(t) = exp[—alog{1 + A(t)/b)}],
which means cumulative hazard
A*(t) = alog{1 + A(t)/b},

which means hazard rate

. 1 alt) _a  afb)
1+A®)/b b b1+ A(t)/b

a*(s) =

(¢) An individual with frailty z has cumulative hazard A(t) + zt. Hence
S*(t) =E*S(t|z) = E* exp{—A(t) — 2t} = exp{—A(t) } L(t).
For the Gamma (a,b) frailty distribution, this becomes
S*(t) = exp{—A(t) — alog(1 +t/b)},
with cumulative hazard rate
A*(t) = A(t) + alog(1 +t/b),

and hazard rate

(d) For a constant a(s) = «, the above gives

a 1

o' (8>:a+5—1—|—s/b’

and for high s the second terms vanishes. Thus long-time survivors end up having the
same hazard as those with zero frailty.

(e) The cumulative hazard rate for an individual with frailties z; and 29 is az1t + zot, and
S*(t) =E*S(t]|z) = E* exp(—az1t — zot) = Ly (at)La(t),
in terms of the two Laplace transforms at work. With the two gammas, this yields
S*(t) = exp{—blog(1 + at/b)} exp{—az log(1l + t/b2)},
with cumulative hazard rate

A*(t) = blog(1l + at/b) + az log(1 + t/bs),
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and hazard rate

“(5) = — 2 I S
N T T asb b1+ s/by

Exercise 3: Comparing groups

(a) We have
-~ . ¢ le(S) an -~ . t dNQ(S)
M=) e A0= e

(b) With the usual martingales,
dMi(s) = dNi(s) — Yi(s)ai(s)ds and dMas(s) = dNo(s) — Ya(s)aa(s)ds,

which leads to

-~ dM1 (S)

dA,(s) = a0 dMs(s)

YQ(S)

with the usual Jy(s) = I{Y1(s) > 1} and Ja(s) = I{Y2(s) > 1}. Hence, under the null
hypothesis where A; and A, are identical to a common A,

+ Ji(s)dA;(s) and dAs(s) = + Jo(s) dAs(s),

-~ -~ dM1<S) dMQ(S)
H,(s){dA;(s) — dA — o, { _ }
(M (5) o)} = Ho () G2 = 2
since H,(s) = {Y1(s)Ya(s)}*/?/n is nonzero precisely when J;(s) and J(s) are equal
to 1. Hence Z,, is a difference of two independent martingales, and therefore a mar-
tingale.

(¢) Under the null,

(Zns Z) / Hl (13)2 d(My, M) (s) + 1/2(18)2 d(MQ,M2>(s)}
(s)ds «a(s)ds
/ O V)
_ ﬁ/o JlJQm/Q(Yi1 n Y%)a(s) ds.

= %/0 (Y1 + Y2)a(s) ds.

An estimator of the variance of Z,,(t) is

- I 7
307 = 5 [ (i) + V(o))
0
with g(t) an estimator of the common A(t). When using the natural

~ t ANy + dNy
At) = _,
() /0 Yi+Y,
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the Nelson—Aalen estimator based on the combined sample, we have

_ Ni(8) + Na(t)

3(15)2 )
Other versions are available.

(d) We may plot Z,(t)/a(t), which is approximately a standard normal, under the null,
for each t. We may also form tests based on max.<i<q|Zy(t)|/0(t), etc. Its limit dis-

tribution is the absolute maximum of a normalised Brownian motion over an interval.

(e) Under the null, it follows from central limit theory for martingales that /nZ,(t) —4
W (t), a GauBian martingale, with variance function v(t), the limit in probability of
n{Zy, Zn)(t), namely

Mﬂ=éﬁﬂ$+m@ﬂd@®,

with y; and ys the limit functions of Y; /n and Y3 /n. It can be estimated using no(t)?,
which becomes as simple as {Ny(t) + Na(t)}/n.

Exercise 4: Presidential survival regression

(a) The log-likelihood function becomes
n (0,7, B1, B2) = Z/ {log avi(s) ANy (s) — Yi(s)ai(s) ds}
i=1"70

= Z{log 0 +log~y + (v — 1)logt; + gironde; 31 + vip, 52 }d;
i=1

n
- Z 0t exp (S gironde; + Bavip;).
i=1
I'd throw this to an optimiser.

(b) Standard errors are estimated as the square roots of the diagonal elements of the
inverse of the 4 x 4 Fisher information matrix,

- PLG)
obs — anant )

writing 7 for the four parameters.

(c) The Wald ratios 3]- /K; are too small in size to signal that any of the two coefficients
are different from zero. But

(7 —1)/7 = (1.8258 — 1)/0.2074 = 3.9816,

which convincingly shows that v is bigger than 1. Det skulle bare mangle.

— quantum satis € the end —
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