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Abstract

Exercises and Lecture Notes collected here are indeed for the Survival and Event History

Analysis course STK 4080 / 9080, autumn semester 2018. The exercises will complement

those given in the course book Aalen, Borgan, Gjessing, Survival and Event History Analysis:

A Process Point of View, Springer, 2008.

1. Ancient Egyptian lifelengths

How long is a life? A unique set of lifelengths in Roman Egypt was collected by W. Spiegelberg in

1901 (Ägyptische und griechische Eigennamen aus Mumienetiketten der römischen Kaiserzeit) and

analysed by (the very famous) Karl Pearson (1902) in the very first volume of (the very famous)

Biometrika. The data set contains the age at death for 141 Egyptian mummies in the Roman

period, 82 men and 59 women, dating from the last century b.C. The lifelengths vary from 1 to 96

years, and Pearson argued that these can be considered a random sample from one of the better-

living classes in that society, at a time when a fairly stable and civil government was in existence

(as we recall, the violent ‘tax revolt’ with ensuing long-lasting complications took place under

Antoninus Pius later, in 139 AD). To access the data, go to egypt-data at the course website,

reading them into your computer via

tt <- scan("egypt-data",skip=5)

Pearson did not attempt to fit any parametric models for these data, but discussed differences

between the Egyptian age distribution and that of England 2000 years later. The purpose of

the present exercise is to analyse aspects of the data by comparing the nonparametric survival

curve (here a simplified version of the Kaplan–Meier curves, since there is no censoring; all the old

Egyptians are dead) with a couple of parametric curves, in particular the Weibull.

(a) We start with the natural nonparametric estimate of the survival curve S(t) = Pr{T ≥ t}.
Let the data be t1, . . . , tn (either the full set, or the subset for men, or that of the women).

Since this is just a binomial probability, for each fixed t, we may put up the empirical survival

function

Semp(t) = (1/n)

n∑
i=1

I{ti ≥ t} for t > 0.

Show that ESemp(t) = S(t) and that VarSemp(t) = (1/n)S(t){1− S(t)}.
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(b) Compute the empirical survival curves, for men and for women, say Sm,emp(t) and Sw,emp(t),

and display them in the same diagram, cf. Figure 0.1 below.

(c) Then consider the two-parameter Weibull model [note the Swedish pronunciation], which has

a cumulative distribution of the form

F (t, a, b) = 1− exp{−(at)b} for t > 0,

with a and b positive parameters (typically unknown). (i) Find a formula for the median of

the distribution. (ii) Show that the probability of surviving age t, given that one has survived

up to t0, is exp[−{(at)b− (at0)b}], for t > t0. (iii) Show that the density can be expressed as

f(t, a, b) = exp{−(at)b}abbtb−1 for t > 0.

(d) Find formulae for the 0.20- and 0.80-quantiles, and set these equal to the observed 0.20- and

0.80-quantiles for the data. This yields two equations with two unknowns, which you can

solve. In this fashion, find estimates (ã, b̃) for the men and for the women.

(e) While quantile fitting is a perfectly sensible estimation method, a more generally versatile

method is that of maximum likelihood (ML), which will also be used later on in the course.

By definition, the ML estimates (â, b̂) are the parameter values maximising the log-likelihood

function

`n(a, b) =

n∑
i=1

log f(ti, a, b) =

n∑
i=1

{−(ati)
b + b log a+ log b+ (b− 1) log ti}.

This can be maximised numerically, as soon as you can programme the log-likelihood func-

tion. With data stored in your computer, called tt, try this, using R’s powerful non-linear

minimiser nlm:

logL <- function(para)

{

a <- para[1]

b <- para[2]

hei <- -(a*tt)^b + b*log(a) + log(b) + (b-1)*log(tt)

sum(hei)

}

# then:

minuslogL <- function(para)

{-logL(para)}

# then:

nils <- nlm(minuslogL2,c(0.20,1.00),hessian=T)

ML <- nils$estimate

It gives you the required ML estimates (â, b̂). Carry out this estimation scheme, for the men

and the women separately.

(f) I find (0.0270, 1.3617) for the men and (0.0347, 1.5457) for the women. Display the two

estimated Weibull survival curves, perhaps along with the two nonparametric ones, as in my

Figure 0.1 here. Compute the estimatead median lifelengths, for men and for women, and

comment.
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Figure 0.1: Survival curves from Roman era Egypt, two for men (black) and two for women (red). The step-functions

are the empirical survival curves, type Kaplan–Meier; the continuous curves are the fitted Weibull curves.

(g) Compute and display also the estimated Weibull hazard rates, for men and for women.

Comment on what you find.

(h) Considerations above invite statistical testing of the hypothesis H0 that men and women

of Roman era Egypt had the same lifelength distributions. Compute and display the 90%

confidence bands

Sm,emp(t)± 1.645 τ̂m(t), Sw,emp(t)± 1.645 τ̂w(t),

where

τ̂m(t)2 = (1/nm)Sm,emp(t){1− Sm,emp(t)},

τ̂w(t)2 = (1/nw)Sw,emp(t){1− Sw,emp(t)},

the estimated variances. (We shall learn formal tests along such lines in the course.)

(i) Above I’ve forced you through the loops of things for one particular parametric model,

namely the Weibull. Now do all these things for the Gamma(a, b) model too, with density

{ba/Γ(a)}ta−1 exp(−bt). Part of the point here is that this does not imply a doubling of your

work efforts; you may edit your computer programmes, at low work cost, to accommodate
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other parametric models, once you’ve been through one of them. The Weibull does a slightly

better job than the Gamma, it turns out.

“Either man is constitutionally fitter to survive to-day [than two thousand years ago], or he is

mentally fitter, i.e. better able to organise his civic surroundings. Both conclusions point perfectly

definitely to an evolutionary progress.” – Karl Pearson, 1902.

2. Did men live longer than women in Ancient Egypt?

As a follow-up to the Ancient Egypt analysis of Exercise 1, consider the following attempt to

quantify more accurately the extent to which men and women had different lifelengths then.

(a) Plot the difference in survival function D(t) = Sm,emp(t) − Sw,emp(t), and also the ratio

funcion Sm,emp(t)/Sw,emp(t). Comment on what these plots indicate.

(b) Find an expression for the variance κ(t)2 of D(t). Then construct and compute an empirical

estimate, say κ̂(t).

(c) Plot both D(t) and the band D(t)±1.645 κ̂(t). What is the interpretation of this band? What

are your conclusions, regarding lifelengths in ancient Egypt? What are the likely reasons for

differences you spot?

3. Survival functions and hazard rates

Consider a lifetime variable T with density f and cumulative distribution function F on the halfline

(so, in particular, the distribution is continuous). Define the hazard rate function α as

α(t) dt = Pr{T ∈ [t, t+ dt] |T ≥ t},

for a small time window [t, t+ dt]; more formally,

α(t) = lim
ε→0

(1/ε)Pr{T ∈ [t, t+ ε] |T ≥ t}.

(a) First define the survival function as

S(t) = Pr{T ≥ t} = 1− F (t).

What are its basic properties?

(b) Show that in fact α(t) = f(t)/S(t). So from knowledge of f we can always find the hazard

rate from α = f/(1− F ).

(c) Define also the cumulative hazard rate function as A(t) =
∫ t

0
α(s) ds. Show that

F (t) = 1− exp{−A(t)} and f(t) = α(t) exp{−A(t)}.

(d) Let T have the exponential distribution with density f(t, θ) = θ exp(−θt). Find its survival

function and hazard rate.

(e) For the Weibull distribution, with F (t) = 1 − exp{−(at)b}, with the hazard rate function,

and display it in a plot, for a = 3.33 and b equal to 0.9, 1.0, 1.1.
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(f) Consider the Gamma distribution with parameters (a, b), which has the density

f(t, a, b) =
ba

Γ(a)
ta−1 exp(−bt) for t > 0.

Show that the mean and variance are a/b and a/b2. Take b = 2.22, compute the hazard rates

for a equal to 0.8, 1.0, 1.2, and display these in a diagram. Give explicit formulae for the

survival function and hazard rate for the case of a = 2.

(g) Consider a lifetime distribution with hazard rate α(t) = 1/(1 + t). Find its survival function

and density.

4. Maximum likelihood estimation with censored data

If we have observed independent lifetime data t1, . . . , tn, from a suitable parametric density f(t, θ),

the ML estimator is found by maximising the log-likelihood function
∑n
i=1 log f(ti, θ). This exercise

looks into the required amendments in the case of censored data, say (t1, δ1), . . . , (tn, δn), with

δi = I{ti is the observed lifetime} =

1 if ti is the observed lifelength,

0 if ti is the censored value.

So, in the case of δi = 0, this means that the real lifetime, say t0i , is at least as large as ti, but we

do not know more than that.

(a) Assume that the parametric model is given and perhaps primarily thought about via its

hazard rate function, say α(t, θ). Assume first that all ti correspond to genuinely observed

lifetimes, i.e. that there is no censoring. Show that the log-likelihood function above can be

expressed as

`n(θ) =

n∑
i=1

{logα(ti, θ)−A(ti, θ)},

with A(t, θ) the cumulative hazard function for the model.

(b) For the very simple exponential model, with α(t, θ) = θ, write up the log-likelihood function

from the exression under (a), and show that the ML estimator is θ̂ = n/
∑n
i=1 ti = 1/t̄.

(c) Then consider the general case with censoring, i.e. some of the δi are equal to zero. Show

that the log-likelihood function can be written

`n(θ) =
∑
δi=1

log f(ti, θ) +
∑
δi=0

logS(ti, θ) =

n∑
i=1

{δi logα(ti, θ)−A(ti, θ)}.

Sometimes the first expression is more practical to work with, sometimes the second; also, as

will be seen later, the second expression lends itself more easily to general counting process

models.

(d) For the simple exponential model, again, but now with censoring, show that the ML estimator

is θ̂ =
∑n
i=1 δi/

∑n
i=1 ti, generalising the non-censored case above.

(e) Generalise the previous situation to the model where the hazard rate is α(t) = α0(t)θ, with

a known basis hazard function α0 but with unknown multiplicative parameter θ.
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5. Counting process, at-risk process, intensity process, martingale

The eternal golden braid, for modelling and analysing survival and event history data, is the

quadruple (N,Y, λ,M)! The ingredients are the counting process N , the at-risk process Y , the

intensity process λ, and the martingale M . These matters are of course tended to in the ABG

book, in several chapters, with various setups, specialisations, and generalisations. This particular

exercise gives a separate, brief, and partial introduction to these four items, in the context of

survival data. These are of the form (t1, δ1), . . . , (tn, δn), as for Exercise 4. The distribution is

continuous, so there are no ties among the ti.

(a) The counting process N counts the number of observed events, over time:

N(t) = #{observed events over [0, t]} =

n∑
i=1

I{ti ≤ t, δi = 1}.

It starts out at zero, at time zero, and then increases with jump size 1 each time a new

observation is recorded.

(b) The at-risk process counts those individuals who are still at tisk, for each given time point:

Y (t) = #{individuals at risk just before time t} =

n∑
i=1

I{ti ≥ t}.

The ‘just before’ thing can be formalised, e.g. via left continuity. The point is that an

individual belongint to the risk set at time t, with this definition, can have his or her event

in the time window [t, t+ ε]. Note that Y (t) counts both those ti with δi = 1 and those with

δi = 0 (since we do not know yet when events occur, or when censoring might occur).

(c) The intensity process λ(s) can be defined in severeal ways, cf. the ABG book, and with

somewhat different, but related, motivations and interpretations. The simplest way, in this

framework, might be

λ(s) ds = Pr{N [s, s+ ds] = 1 | Fs−}.

First,

dN(s) = N [s, s+ ds] = N(s+ ds)−N(s−)

is the numer of observed events inside the small time window [s, s+ ds]. Second, Fs− is the

full history of everything that has been observed up to just before time s, i.e. over [0, s). In

the present setup of survival data (i.e. without complications of more complex event history

constructions), the relevant information in all of Fs− is simply ‘how many are still at risk’,

i.e. Y (s).

(d) In this setup, show that

dN(s) | Fs− ∼ Bin(Y (s), α(s) ds),

a simple binomial situation with Y (s) at risk and with a small probability α(s) ds. Show

that

Pr{dN(s) = 0 | Fs−} = 1− Y (s)α(s) ds+O((ds)2),

Pr{dN(s) = 1 | Fs−} = Y (s)α(s) ds+O((ds)2),

Pr{dN(s) ≥ 2 | Fs−} = O((ds)2),
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with order notation g(ε) = O(ε2) meaning that g(ε) is of order ε2 (more precisely, is not of

a bigger order), defined as g(ε)/ε2 remaining bounded as ε → 0. The above means that all

the action here is in 0 (high chance) and 1 (slim chance, but important, and sooner or later

it will kick in). In particular, show from (c) that

λ(s) = Y (s)α(s).

This is a special case of Aalen’s multiplicative intensity model (stemming from his Berkeley

PhD thesis 1975, then from his Annals of Statistics paper 1978, and further discussed and

used and generalised in dozens of books and a few hundreds of journal articles, etc.).

(e) Then consider the random process

M(t) = N(t)−
∫ t

0

λ(s) ds = N(t)−
∫ t

0

Y (s)α(s) ds.

Demonstrate that it has the magical martingale property,

E {dM(s) | Fs−} = 0,

with dM(s) = M(s+ ds)−M(s) the martingale increment.

(f) Show that the process

K(t) = M(t)2 −
∫ t

0

Y (s)α(s) ds

also is a martingale. We shall see later, in the course and in exercises, that various central

properties flow from these martingales, including results on limiting normality for classes of

estimators.

(g) Consider again the situation of Exercise 4, with log-likelihood functions for censored data.

With the golden quadruple on board, show that the log-likelihood function also can be

expressed as

`n(θ) =

n∑
i=1

{δi logα(ti, θ)−A(ti, θ)} =

∫ τ

0

{logα(s, θ) dN(s)− Y (s)α(s, θ) ds}.

Here the integral of a function with respect to a counting process is defined, simply, as∫ τ

0

g(s) dN(s) =

n∑
i=1

g(ti)δi,

a sum of the function evaluated precisely at the observed timelengths.

6. A parametric step-function for the hazard rate

Consider independent lifetime data of the form (t1, δ1), . . . , (tn, δn), as met with in Exercises 4

and 5, and assume they stem from a common distribution with hazard rate α(s). We wish to

estimate the cumulative hazard rate A(t) =
∫ t

0
α(s) ds. This can famously be done using the

Nelson–Aalen estimator, see the following exercise, but I start out working through a parametric

version, via a step-function. When the windows become small, this parametric estimator will

actually converge to the Nelson–Aalen.
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(a) Consider the parametric model where the hazard rate is a step-function, i.e. constant over

windows. Suppose [0, τ ] is the full time window of relevance (i.e. with a sufficiently big end-

point τ), with windows Wj = [sj−1, sj) for j = 1, . . . , k, and 0 = s0 < s1 < · · · < sk = τ .

The model is then of the form

α(s) = αj on time window Wj for j = 1, . . . , k.

Using the log-likelihood expression of Exercise 5, show that the log-likelihood function can

be written as

`n(α1, . . . , αk) =

k∑
j=1

∫
Wj

{logα(s) dN(s)− Y (s)α(s) ds} =

k∑
j=1

(∆Nj logαj −Rjαj),

in which

∆Nj = N(Wj) = N(sj)−N(sj−1) and Rj =

∫
Wj

Y (s) ds.

So ∆Nj is the number of observed events, and Rj is the ‘total time at risk’, over window Wj .

(b) Show the ML estimators for the local constants become

α̂j =
∆Nj
Rj

=
∆Nj∫

Wj
Y (s) ds

for j = 1, . . . , k. The ML estimator of the full cumulative hazard rate is hence the integral

of the estimated step-function, which becomes the piecewise linear

Â(t) =



α̂1t for t ∈W1,

α̂1s1 + α̂2(t− s1) for t ∈W2,

α̂1s1 + α̂2(s2 − s1) + α̂3(t− s2) for t ∈W3,

etc.

(c) Find the Hessian matrix

J(α) = −∂2`n(α1, . . . , αk)/∂α∂αt,

and show that it is diagonal. I write α for the full parameter vector (α1, . . . , αk) where con-

venient. Find also ‘the observed information’, which is this minus the second order derivative

matrix computed at the ML. Show indeed that

Ĵ = J(α̂) = diag(R2
1/∆N1, . . . , R

2
k/∆Nk).

Large-sample theory, dealt with later in the course and in ABG Ch. 5, says that

α̂ ≈d Nk(α, Ĵ−1).

Show that this translates to the α̂j being approximately unbiased, normal, and independent,

with

Var α̂j
.
= ∆Nj/R

2
j .
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(d) Argue, perhaps heuristically, that when the time windows become carefully small, then the

above Â(t) is in effect a nonparametric estimator of the cumulative hazard function, approx-

imately unbiased and normal, and with variance estimable by

κ̂(t)2 =
∑

windows left of t

∆Nj
(Rj/dj)2

,

with dj = sj − sj−1 the width of window Wj . Since Rj/dj = (1/dj)
∫
Wj

Y (s) ds, this is close

to Y (s∗j ), with s∗j the mid-point of Wj . A further approximation, which becomes correct in

a fine-tuned large-sample setup with cells becoming small at the right rate, is then

κ̂(t)2 =

∫ t

0

dN(s)

Y (s)2
.

Via the step-function model, and some extra analysis, we have essentially reinvented the

Nelson–Aalen estimator, along with its properties; see Hermansen and Hjort (2015).

7. The Nelson–Aalen estimator

Consider again independent lifetime data of the form (t1, δ1), . . . , (tn, δn), as met with in Exercises

4, 5, 6, and assume they stem from a common distribution with hazard rate α(s). In the previous

exercise I set up a step-function model for α(s), which led to an almost nonparametric estimator for

the cumulative A(t) =
∫ t

0
α(s) ds. The canonical nonparametric estimator is indeed this fine-tuned

limit, namely the Nelson–Aalen estimator.

(a) We start with the definition, using the counting process and at-risk process notation of

Exercise 5 (and used in the book). The Nelson–Aalen estimator for A(t) is

Â(t) =

∫ t

0

dN(s)

Y (s)
=
∑
ti≤t

δi
Y (ti)

.

Again, the integral with respect to a counting process is simply the finite sum over the

appropriate integrand, over the observed event times. It is easy to make a programme

computing Â(t). Do this, for a dataset of your choice, perhaps simulated. Often one is

content to compute and plot Â(t) just at the observed values ti, in which case a simpler

programme than the one below can be put up, but in various contexts it is useful to compute,

plot, compare for a full fine grid of values, say, as here. This little programme requires that

the (ti, δi) are predefined as tt and delta.

eps <- 0.001

tval <- seq(0,20,by=eps)

Yval <- 0*tval

DeltaNval <- 0*tval

# then:

for (j in 1:length(tval))

{

tnow <- tval[j]

Yval[j] <- sum(1*(tt >= tnow))

ok <- 1*(tt >= tnow)*(tt < tnow+eps)*delta
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DeltaNval[j] <- sum(ok)

}

# then:

jumps <- DeltaNval/Yval

Ahat <- cumsum(jumps)

matplot(tval,Ahat,type="l",xlab="time",ylab="look at Nelson-Aalen")

(b) Then we ought to spend a few minutes thinking about why the Nelson–Aalen Â(t) is a natural

estimator of A(t). Using the martingale M of Exercise 5, we may write

dN(s) = Y (s)α(s) ds+ dM(s) = structure + random fluctuations,

which implies

dN(s)/Y (s) = α(s) ds+ noise.

Argue that this points to the Nelson–Aalen.

(c) With a bit of heuristics, we have

Â(t)−A(t) =

∫ t

0

dN(s)

Y (s)
−A(t)

.
=

∫ t

0

dM(s)

Y (s)
=

∫ t

0

1

ŷ(s)

dM(s)

n
,

where ŷ(s) = Y (s)/n is a steadily more precise estimate of its limit in probability, say

y(s) = Pr{T ≥ s, C ≥ s}, with C the censoring mechanism. It follows that

Zn(t) =
√
n{Â(t)−A(t)} .=

∫ t

0

1

ŷ(s)

dM(s)√
n

.

But M(t)/
√
n →d V (t), say, a zero-mean Gaussian martingale with incremental variances

Var dV (s) = y(s)α(s) ds, by results in ABK (Chs. 4, 5). This, at least heuristically, is seen

to imply

Zn(t)→d Z(t) =

∫ t

0

1

y(s)
dV (s),

which is another zero-mean Gaussian martingale with incremental variances

Var dZ(s) = Var
dV (s)

y(s)
=
α(s) ds

y(s)
.

(d) So the Nelson–Aalen is for large samples approximately unbiased, approximately normal, and

with variance

σ(t)2 = Var Â(t)
.
=

1

n

∫ t

0

α(s) ds

y(s)
.

Give arguments supporting the estimator

σ̂(t)2 =

∫ t

0

dN(s)

Y (s)2
.

So a programme for the Nelson–Aalen just needs a few lines more to produce also σ̂(t). In

particular, confidence bands are now easy to construct, say

Â(t)± 1.645 σ̂(t) for t ∈ [0, τ ],

where [0, τ ] is a relevant time window for the data. Try to show that this band contains the

true A(t) with probability converging to 0.90, for each fixed t.
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8. IUD expulsion

Data have been collected for IUD use for n = 100 women (I believe they stem from a Stanford PhD

1975, with data later on forwarded to and worked with by Aalen, then to Borgan and myself). The

iud-data file has three columns: the index i = 1, . . . , n; the time ti to ‘event’, measured in days,

from the first day of use; and an index for ‘event’, from 1 (she’s pregnant!, which however does

not happen here), to 2 (expulsion), to 3 and 4 (removal for pains, or bleeding, or other medical

reasons), to yet other categories 5, 6, 7, 8, 9 of less interest here.
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Figure 0.2: Estimated cumulative hazard rate for time to expulsion of IUD, via the nonparametric Nelson–Aalen

estimator and the parametric frailty model.

(a) Fit first the simple model that takes the hazard rate to be a constant θ. Under this model,

what is the estimated median time to expulsion, for women using IUD (supposing they do not

quit on their own)? (I have no idea whether these 1975 IUD data would look very differently

now.) Compute also `n,0,max = `n,0(θ̂), the attained log-likelihood maximum for that model.

(b) Then assume that each woman has an exponential IUD expulsion time, say θ, but that this

parameter varies from woman to woman, according to a Gamma distribution (a, b). Show

that the survival function in the population then becomes

S(t) = Pr{IUD still in place at time t} =
1

(1 + t/b)a
= exp{−a log(1 + t/b)}.
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(c) Show that the ensuing hazard rate function becomes

α(t) =
a/b

1 + t/b
=

θ0

1 + t/b
,

writing for emphasis θ0 = a/b for the mean value of the Gamma distribution of the women’s

random intensities. If b is large, the variance of the random θ is small, and we’re back to the

simpler model with a common θ0 for all IUD users.

(d) Fit the expulsion data to this two-parameter model. Produce a version of Figure 0.2, with

both the parametric and nonparametric Nelson–Aalen estimates. Does the model appear to

fit? Under this two-parameter model, what is the estimated median time until expulsion

(again, assuming the woman does not quit on her own)? Compute also `n,max = `n(â, b̂), the

attained log-likelihood maximum for this model, and compare to the corresponding number

for the simpler model.

(e) In addition to producing a version of Figure 0.2, pertaining to cumulative hazard, make a

simular figure for the estimated survival functions (parametric and nonparametric), i.e. the

probability that the IUD is not yet expulsed.

9. Convergence in probability

I’ve scissored in Exercises 9, 10, 11, 12, 13, 14, 15, 16 from a Nils Collection from the course STK

4011, Autumn 2014. These exercises will not be dicussed in the present STK 4080-9080 course,

except perhaps in passing. They might be useful so some of the students for making certain

details clearer, regarding the machinery of large-sample approximations (involving various aspects

of convergence in distribution – what it is, why being interested in it, how to prove it, how to use

it). So students are advised to glance through these exercises. In Exercises 17, 18, 19 and yet

others, the STK 4011 type material is extended to the STK 4080 world of counting processes and

martingales.

So, consider a sequence of random variables V1, V2, . . .. We say that Vn converges in probability

to the constant a, and write Vn →pr a, if

Pr(|Vn − a| ≤ ε)→ 1 for all ε > 0

as n → ∞. The definition extends easily to the case where the limit in probability is a random

variable V rather than a constant, and is also equivalent to

Pr(|Vn − V | ≥ ε)→ 0 for all ε > 0.

For most of our applications inside the STK 4011 course the probability limit will in fact be a

constant, however, i.e. not a random variable per se.

(a) Show that if Vn →pr a and h(v) is a function continuous at a, then h(Vn)→pr h(a).

(b) Extend the previous result to the case where the probability limit is a random variable, i.e. if

Vn →pr V and h(v) is continuous on the domain of V , then h(Vn) →pr h(V ). (Explain also

why the proof indicated in the book’s exercises is not fully correct [tsk tsk].)

(c) Suppose An →pr a and Bn →pr b. Show that An + Bn →pr a + b and that AnBn →pr ab.

Attempt to generalise these results; in effect, h(An, Bn)→pr h(a, b) provided h is continuous

at position (a, b).
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10. The Law of Large Numbers

Let X1, X2, . . . be a sequence of i.i.d. variables, with EXi = ξ and VarXi = σ2.

(a) Show that the sequence of averages X̄n = n−1
∑n
i=1Xi converges in probability to ξ, i.e. that

X̄n →pr ξ. You may use Chebyshov’s inequality (neravenstvo Qebyxëva). The Law of

Large Numbers (LLN) says that we still have X̄n →pr ξ, even without further assumptions

that the mean is finite, i.e. even if the variance is infinite; the proof becomes more complicated,

however.

(b) Suppose the variance σ2 is finite. Show that

S2
n = n−1

n∑
i=1

(Xi − X̄n)2 →pr σ
2.

Explain why this also implies that Sn →pr σ. We say that Sn is a consistent estimator for

the parameter σ; similarly, X̄n is consistent for the mean parameter ξ.

(c) Suppose that also the third moment is finite. Show that

Tn = n−1
n∑
i=1

(Xi − X̄n)3 →pr γ3 = E (Xi − ξ)3,

and that the so-called empirical skewness converges to the theoretical skewness:

κ̂3 = n−1
n∑
i=1

(Xi − X̄n

Sn

)3

=
Tn
S3
n

→pr κ3 = E
(Xi − ξ

σ

)3

.

(d) Generalise the above to the case of higher order moments.

11. Convergence in distribution

Let V1, V2, . . . be a sequence of random variables. We say that Vn converges in distribution to V ,

and write Vn →d V to indicate this, if

Fn(t) = Pr(Vn ≤ t)→ F (t) = Pr(V ≤ t) for all t = CF

as n→∞, where CF is the set of points at which the cdf F of the limit distribution is continuous.

In particular, if this limit distribution is continuous, Vn →d V if Fn(t)→ F (t) for all t.

(a) Show that if V →d V , then

Pr(Vn ∈ (a, b])→ Pr(V ∈ (a, b])

for all intervals (a, b] for which a, b are continuity points. If Vn →d N(0, 1), where this is

accepted and traditional short-hand notation for the more cumbersome ‘Vn →d V , where

V ∼ N(0, 1)’, etc., then Pr(|Vn| ≤ 1.96)→ 0.95, etc.

(b) For an i.i.d. sample U1, . . . , Un from the uniform distribution on (0, 1), let Mn = maxi≤n Ui =

U(n). Find the limit distribution of Vn = n(1−Mn).

(c) Suppose the Vn and the V have distributions on the integers 0, 1, 2, . . ., with probabilities

Pr(Vn = j) = fn(j) and Pr(V = j) = f(j) for j = 0, 1, 2, . . .. Prove that Vn →d V is

equivalent to convergence of these probabilities, i.e. fn(j)→ f(j) for each j.

13



(d) Suppose Vn is a binomial (n, pn) where npn → λ, a positive parameter. Show that Vn →d

Pois(λ). This is how the Poisson distribution first saw light, in 1837 (though a much earlier

account, containing more or less the same approximation results, is by de Moivre in 1711).

(e) Generalise the above result to the following ‘law of small numbers’. Let X1, X2, . . . be in-

dependent binomials (1, pi) with small probabilities p1, p2, . . ., and consider Vn =
∑n
i=1Xi,

the number of events after n trials. Show that if
∑n
i=1 pi → λ and δn = maxi≤npi → 0,

then Vn →d Pois(λ). Show also that these conditions are also necessary for convergence to a

Poisson.

12. Convergence of densities

Suppose that Vn and V have densities fn and f .

(a) Show that if fn(v) → f(v) for all v, then there is also convergence of their cumulatives,

i.e. Fn(v)→ F (v) for all v. In other words, convergence of density functions implies conver-

gence in distribution.

(b) If fn → f as above, show the somewhat stronger result∫
|fn(v)− f(v)|dv → 0.

This is called ‘L1 convergence’, and is also equivalent to convergence in the supremum prob-

ability difference metric,

∆(Pn, P ) = sup
all A
|Pn(A)− P (A)| → 0.

(c) Work with the density of the tm, the t distribution with m degrees of freedom, and show that

it converges to the famous N(0, 1) density as m→∞.

(d) For an i.i.d. sample U1, . . . , Un from the uniform distribution on the unit interval, consider

the median Mn, where we for simplicity take n = 2m + 1 to be odd, so that Mn = U(m+1).

Work out the density for Mn and then the density gn(v) for Vn =
√
n(Mn − 1

2 ). Show that

in fact

gn(v)→ 1√
2π

2 exp(−2v2),

where you may need Stirling’s formula, m!
.
= mm exp(−m)

√
2πm. Thus

√
n(Mn − 1

2 ) →d

N(0, 1
4 ).

(e) Give an approximation formula for Pr(0.49 ≤ Mn ≤ 0.51), and determine how big n needs

to be in order for this probability to be at least 0.99.

13. The portmanteau theorem for convergence in distribution

The definition of convergence in distribution given above, in therms of their cumulative distribution

functions, is somewhat cumbersome and not easy to work with, so we need reformulations and

alternative conditions.

For random variables Vn and V with cumulative distribution functions Fn and F , correspond-

ing also to probability measures Pn(A) = P (Vn ∈ A) and P (A) = P (V ∈ A) (where the point is

that also more complicated sets A may be worked with than only intervals), consider the following

statements:

14



(i) Vn →d V , i.e. Fn(v)→ F (v) for continuity points v, as defined above.

(ii) lim inf Pn(O) ≥ P (O) for all open sets O.

(iii) lim supPn(F ) ≤ P (F ) for all closed sets F .

(iv) limPn(A) = P (A) for all sets A for which its boundary set ∂(A) = Ā−Ao has P -probability

zero. Here Ā is the smallest closed set containing A and A0 is the biggest open set inside

A; thus ∂(A) for the interval (a, b) would be the two-point set {a, b}, and likewise for [a, b],

(a, b], [a, b).

(v) Eh(Vn)→d Eh(V ) for each continuous and bounded h : R → R.

The purpose of this exercise is to show that in fact (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv) ⇐⇒
(v), i.e. these five conditions are equivalent. This is the ‘portmanteau theorem’ for convergence in

distribution, due, I believe, to Aleksandrov (1943).

(a) Show that (i) ⇒ (ii). Use the mathematical analysis fact that a given open set O may be

represented as a finite or countable union of disjoint open intervals (ai, bi).

(b) Show that (ii) ⇒ (iii), by using the fact that a set F is closed if and only if its complement

F c is open. This also gives (iii) ⇒ (ii).

(c) Show that (iii) ⇒ (iv).

(d) Show that (iv) ⇒ (v), as follows. Take a bounded continuous function h, and for simplicity

stretch and scale it so that it lands inside [0, 1]. Then argue that

Eh(Vn) =

∫ 1

0

P (h(Vn) ≥ x) dx and Eh(V ) =

∫ 1

0

P (h(V ) ≥ x) dx.

This is related to the general fact that for any nonnegative random variable Y with cumulative

distribution function G, say, we have

EY =

∫ ∞
0

{1−G(y)} dy =

∫ ∞
0

P (Y ≥ y) dy.

Convergence of Eh(Vn) to Eh(V ) then follows by showing that P (h(Vn) ≥ x) converges to

P (h(V ) ≥ x) for all x except for at most a countable number of exceptions. Lebesgue’s

theorem on convergence of integrals may be called upon.

(e) Finally show that (e)⇒ (a). For given v at which F is continous, build a continuous bounded

function hε so that hε(x) = 1 for x ≤ v and hε(x) = 0 for x ≥ v + ε, where ε is positive and

small. Play a similar game with another function being 1 to the left of v − ε and 0 to the

right of v.

14. The continuity theorem

Show that if Vn →d V and g is continuous, then g(Vn) →d g(V ). The g function here may be

unbounded, so exp(Vn)→d exp(V ) etc.

(a) Suppose Vn →d N(0, σ2). Show that V 2
n /σ

2 →d χ
2
1. What is the limit of |Vn|/σ?
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(b) Assume that nonnegative variables X1, X2, . . . are such that the sequence of geometric means

converges in distribution, say Gn = (X1 · · ·Xn)1/n → U . Show that

n−1
n∑
i=1

logXi →d V,

and identify the limit V .

(c) Suppose again that Vn →d V . Show that exp(tVn)→d exp(tV ), for each given t. When can

we expect this to lead to

Mn(t) = E exp(tVn)→M(t) = E exp(tV ) ?

(d) One can indeed show a counterpart to the above, stated and used in the book without a proof:

If Mn(t) → M(t), for each t in some neighbourhood (−δ, δ) around zero, then Vn →d V . A

full proof of this may be found in ‘Hjorts lille grønne’ from 1979 (‘Kompendium for sannsyn-

lighetsregning III’, used in a course on large-sample theory for probability and statistics here

at the Department of Mathematics at the University of Oslo for some fifteen years), or in

e.g. Billingsley’s Convergence of Probability Measures (1999). It involves characteristic func-

tions and inversion formuale, giving us formulae for distributions in terms of such functions.

15. Slutsky–Cramér Rule

Certain very useful rules, sometimes called the Slutsky Rules, but equally due to Harald Cramér,

rule. They can be presented in various ways, depending also on what precisely one has learned in

advance.

(a) If Xn →d X and Yn →pr 0, show that XnYn →pr 0. To prove this, start from

Pr(|XnYn| ≥ ε) = Pr(|XnYn| ≥ ε, |Xn| ≤M) + Pr(|XnYn| ≥ ε, |Xn| > M)

≤ Pr(|Yn| ≥ ε/M) + P (|Xn| > M),

from which it follows that lim supP (|XnYn| ≥ ε) ≤ r(M), where

r(M) = lim supP (|Xn| > M).

Show from convergence in distribution that r(M) may be made arbitrarily small; hence

XnYn →pr 0.

(b) If Xn →d X and Yn →pr 0, show that Xn + Yn →d X.

(c) Now change the above assumptions to Xn →d X and Yn →pr y, with a y non-zero constant.

Use the above to show that XnYn →d Xy, Xn + Yn →d X + y and Xn/Yn →d X/y.

(d) Try also to show that as long as g(x′, y′) is continuous on the domain of X and at position

y, then g(Xn, Yn)→d g(X, y). Explain how this generalises the previous results.

16. The Central Limit Theorem
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LetX1, X2, . . . be i.i.d. and for simplicity here with mean zero and standard deviation one. Consider

Zn =
√
nX̄n = n−1/2

n∑
i=1

Xi,

where it is to be noted that Zn has mean zero and variance one, for each n. The Central Limit

Theorem (the CLT) says that Zn →d N(0, 1), i.e. that

P (a ≤
√
nX̄n ≤ b)→ P (a ≤ N(0, 1) ≤ b) for all intervals (a, b).

A full proof, without further assumptions, needs e.g. characteristic functions, see ‘Hjorts lille

grønne’ (1979) or Billingsley (1999). A satisfactory proof may however be given for the case

of Xi having a moment-generating function M(t) = E exp(tX) being finite in a neighbourhood

around zero, appealing to the result about convergence of moment-generating functions discussed

in Exercise xx.

Under the above conditions, show that

M(t) = 1 + 1
2 t

2 + 1
6E, X3

i t
3 + 1

24EX4
i t

4 + · · · = 1 + 1
2 t

2 + r(t),

say, where r(t) is small enough to make r(t)/t2 → 0 as t → 0. Now work through the details to

learn that

Mn(t) = E exp(tZn) = M(t/
√
n)n = {1 + 1

2 t
2/n+ r(t/

√
n)} → exp( 1

2 t
2) = E exp(tZ),

where Z ∼ N(0, 1).

Show from the CLT that if Xn is binomial (n, p), then

Xn − np
{np(1− p)}1/2

→d N(0, 1),

and that if Yn is Pois(n), then
Yn − n√

n
→d N(0, 1).

Show finally that if Zn ∼ χ2
n, then

Zn − n√
2n

→d N(0, 1).

17. The delta method

The delta method is a very useful and largely easy to use class of tools for approximating the

distribution of variables which are functions of simpler variables. So, if Wn is a complicated

creature, but after all a function h(Xn, Yn, Zn) of simpler fellows Xn, Yn, Zn, the idea is to first

work out things for these, and then go back to Wn afterwards. This is particularly fruitful when the

Xn, Yn, Zn in question have tight distributions, with relatively small variances, say around a, b, c.

Then a Taylor argument says

Wn = h(Xn, Yn, Zn)

= h(a, b, c) + h∗1(a, b, c)(Xn − a) + h∗2(Yn − b) + h∗3(Zn − c) + smaller order terms,

where h∗1, h
∗
2, h
∗
3 are the partial derivatives of h(x, y, z), computed at position (a, b, c). A further

highly useful application of this is when (Xn, Yn, Zn) is exactly or approximately multinormal,

since this implies that the sum on the right hand side is approximately normal, with variance

τ2
n = (h∗)tΣnh

∗,

17



in terms of h∗ = (h∗1, h
∗
2, h
∗
3)t and the variance matrix Σn of (Xn, Yn, Zn).

When you’ve understood the essence of the above (model this as a survival time via a para-

metric model, estimate its parameters, and calculate the median time until you’ve comprehended

this essence), you’ve also understood the basics of the delta method.

(a) Show that if a vector Yn has mean ξn and variance matrix Σn, then the transformed variable

Wn = htYn = h1Yn,1 + · · ·+ hpYn,p

has mean htξn and variance matrix htΣnh (with p the length of the Yn variable). So far

there is no approximation going on.

(b) Assume now that Wn = h(Yn), with a function h which is not linear, but perhaps approxi-

mately linear in a neighbourhood of ξn = EYn, and that Yn has reasonably high probability

of being inside this neighbourhood. Argue that

EWn ≈ (h∗)tξn and VarWn ≈ (h∗)tΣnh
∗,

with h∗ is the partial derivatives vector ∂h(y)/∂y, evaluated at position ξn.

(c) Results of type (b) are very useful, but not very precise. The delta method, in one of its several

versions, is a precise limit distribution version of the above. Consider the one-dimensional

situation, and assume that
√
n(Yn− ξ)→d Z, for an appropriate limit variable Z. Show that

if h(y) is smooth, with a derivative at ξ, then

√
n{h(Yn)− h(ξ)} →d h

′(ξ)Z.

Show in addition that if Z is normal, say Z ∼ N(0, τ2), then the limit is a N(0, h′(ξ)2τ2).

(d) Then generalise to the vector case. Show that

√
n(Yn − ξ)→d Z implies

√
n{h(Yn)− h(ξ)} →d (h∗)tZ,

if h(y) = h(y1, . . . , yp) has a derivative h∗ at position ξ. Show in particular that

√
n(Yn − ξ)→d Np(0,Σ) implies

√
n{h(Yn)− h(ξ)} →d (h∗)tZ ∼ N(0, (h∗)tΣh∗).

(e) An easy example: When Xn is binomial (n, p) it’s been known since around 1738 that Xn ≈d
N(np, np(1− p)), which also means, in the language limit theorems, that

√
n(Xn/n− p)→d

N(0, p(1− p)). Find the limit distributions of

√
n{exp(4.44Xn/n)− exp(4.44, p)} and

√
n(2 arcsin

√
Xn/n− 2 arcsin

√
p).

How can this second result be used to set a confidence interval for p?

(f) Then go back to the Nelson–Aalen estimator of Exercise 7 (and met frequently later on, also

in this collection of exercises). Show that

√
n{log Â(t)− logA(t)} →d W (t),

where W (t) is a zero-mean normal with variance

VarW (t) =
1

A(t)2

∫ t

0

α(s) ds

y(s)
.

Explain in detail how this may be used to set a confidence interval for first logA(t), and

then, by exp-ing, for A(t).
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18. More on martingales

We’ve met the full eternal golden quadruple (N,Y, λ,M) in Exercise xx. Here I go through more

details regarding the martinale machinery and its basic properties. The standard setup so far is

for the survival data framework of data (t1, δ1), . . . , (tn, δn), as with Exercises xx xx, for which

M(t) = N(t)−
∫ t

0
Y (s)α(s) ds, but more general versions will be met later on in the course of the

course.

(a) We start out with the notion of ‘a growing history of information’, formalised as Ft being

the sigma-algebra of all available information for the time window [0, t]. Formally, a sigma-

algebra is a set of sets, (i) containing the empty-set; (ii) containing all complements (so if B

is in, then so is Bc); (iii) containing all countable unions (so if B1, B2, . . . are in, then ∪∞j=1Bj

is in). Similarly, Ft− is all information available ‘a milli-second before t’, formally the limit

of Ft−ε as ε → 0. Thus Fs− contains the value of Y (s − 0.33) and N(s − 0.11), and even

Y (s), but not N(t+ 0.07, and not dN(s) = N(s+ ds)−N(s).

(b) A process M = {M(t) : t ≥ 0} is a martingale, with respect to the filtration {Ft : t ≥ 0},
provided M(0) = 0 and

E {dM(s) | Fs−} = 0 for each s,

where dM(s) = M(s+ ds)−M(s) is a small increment for M . Show that E dM(s) = 0 and

that M(t) =
∫ t

0
dM(s) also has mean zero.

(c) In the survival setup of Exercise xx, where dM(s) = dN(s) − Y (s)α(s) ds, show again that

M is a martingale, and find Var {dM(s) | Fs−}.

(d) Next we need the (predictable) variance process, say 〈M,M〉(t), defined via

d〈M,M〉(s) = Var {dM(s) | Fs−}.

Integrating up, or summing over a million small cells, gives

〈M,M〉(t) =

∫ t

0

Var {dM(s) | Fs−}.

Note that this is a random process, summing up a host of small conditional variances. For

the survival analysis setup, show that

〈M,M〉(t) =

∫ t

0

Y (s)α(s) ds.

For this setup, the variance process is hence identical to the so-called compensator
∫ t

0
Y α ds

of the counting process N .

(e) Now consider any function H = {H(s) : s ≥ 0}, and form its integral with respect to the

martingal M :

K(t) =

∫ t

0

H(s) dM(s) for t ≥ 0.

It may be defined generally as the fine limit of Riemann type sums
∑
j H(sj){M(sj+1) −

M(sj)}, when the cells [sj , sj+1) become smaller, but for the present purposes of the survival

setup it is sufficient to agree on∫ t

0

H dM =

∫ t

0

H(s){dN(s)− Y (s)α(s) ds} =
∑
ti≤t

H(ti)δi −
∫ t

0

H(s)Y (s)α(s) ds.
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Now show that K =
∫
H dM is also a martingale, provided H is previsible, in the sense that

the value of H(s) is known when Fs− is known. Examples would be Y (s − 0.14)1/3 and

Y (s)1/2, but not, for example, Y (s+ 0.03).

(f) When H is previsible (with respect to the same filtration of growing history), such that

K =
∫ ·

0
H dM is another martingale, show that

〈
∫ ·

0

H dM,

∫ ·
0

H dM〉(t) =

∫ t

0

H(s)2 d〈M,M〉(s).

(g) For the survival data setup, consider the random function

K(t) =

∫ t

0

J(s)

Y (s)1/2
dM(s),

where J(s) = I{Y (s) ≥ 1} is equal to 1 with very high probability (unless s becomes large).

The point is that 1/Y (s) isn’t defined when Y (s) = 0, and we take J(s)/Y (s) to be zero in

case of Y (s) = 0, which also means J(s) = 0. Show that K is a martingale, with variance

process

〈K,K〉(t) = A∗(t) =

∫ t

0

J(s)α(s) ds,

which with very high probability is equal to A(t) itself.

(h) Consider now two martingales, say M1 and M2, with respect to the same filtration. We

define their (predictable) covariance process 〈M1,M2〉 via

d〈M1,M2〉(s) = cov{dM1(s),dM2(s) | Fs−},

again with notation dMj(s) = Mj(s+ ds)−Mj(s). If

Mi(t) = Ni(t)−
∫ t

0

Yi(s)α(s) dss

is the little martingale associated with individual i only, so that Ni(t) = I{ti ≤ t, δi = 1}
and Yi(t) = I{ti get}, taking on values 0 and 1 only, show that

〈Mi,Mj〉(t) = 0 for i 6= j,

whereas 〈Mi,Mi〉(t) = Yi(t)α(s) ds .

(i) Finally, at this stage, consider two martingales M1 and M2, along with two previsible pro-

cesses H1 and H2, such that K1 =
∫ ·

0
H1 dM1 and K2 =

∫ ·
0
H2 dM2 become martingales.

Show that

〈K1,K2〉(t) = 〈
∫ ·

0

H1 dM1,

∫ ·
0

H2 dM2〉(t) =

∫ t

0

H1H2 d〈M1,M2〉(s).

In particular, if M1 and M2 are orthogonal, meaning that their covariance process is zero,

then also
∫ ·

0
H1 dM1 and

∫ ·
0
H2 dM2 are orthogonal, even if H1 and H2 might be dependent

in complicated ways. It suffices that M1 and M2 have uncorrelated increments.

19. Central limit theorems and their partial sums processes
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Ceci n’est pas une pipe and this is not a course on advanced limit theorems from probability theory.

We nevertheless need results on approximate normality of various important estimators and test

statistics, and insights into why and how such approximations hold help us also in constructing

yet new estimators and tests. I therefore include two exercises on limit theorems for ‘sums of

small variables’, with the following exercise, pertaining to martingales and weighted martingales,

of particular relevance for the course and its curriculum. The present exercise relates to the simpler

universe of independent summands, where we’re in the realm of classical Central Limit Theorems

(from de Moivre and Laplace, around 1740, to Lindeberg 1922, Alan Turing 1925, Donsker 1950,

and onwards, with several hundreds of books and several thousands of ournal articles). A point

conveyed in this exercise, and more fully needed and relied upon in the following exercise, is that

we care not only about a sum
∑n
i=1Xi being approximately normal, but about the full partial-sum

process
∑
i≤[nt]Xi being close to a Gaußian martingale.

The statistical practical use of these mathematical and probabilistical theorems of proofs con-

sists in translating ‘the variable or process Mn tends to a Gaußian variable or process V when n

travels all the way to infinity’ to ‘the distribution of Mn is approximately that of a normal or of a

full Gaußian process’, and then to translate this further to practical confidence intervals, confidence

bands, tests with a given significance level like 0.05, etc.

(a) Let me begin with a simple setup, involving a sequence X1, X2, . . . of i.i.d. random variables,

with mean zero and finite standard deviation σ. Consider the cumulative sum process

Mn(t) =
∑
i≤[nt]

Xi for t ≥ 0.

Here [nt] is the largest integer smaller than or equal to nt. The Mn process is 0 on [0, 1/n),

is X1 on [1/n, 2/n), is X1 + X2 on [2/n, 3/n), etc.; also, Mn(1) =
∑n
i=1Xi. Show that Mn

is a martingale, with VarMn(t) = [nt]σ2.

(b) Show that 〈Mn,Mn〉(t) = [nt]σ2, and consequently that the scaled process, Mn/
√
n, also a

martingale, has variance process

〈Mn/
√
n,Mn/

√
n〉(t) = ([nt]/n)σ2 → σ2t.

Verify that the famous central limit theorem (CLT) implies that

Mn(1)/
√
n = n−1/2

n∑
i=1

Xi →d N(0, σ2).

(c) Rather more generally, there is a famous generalisation of the central limit theorem to the full

random cum-sum process Mn, called Donsker’s Theorem (from around 1950, see Billingsley

1968), which says that

Mn(·)/
√
n→d V (·),

where the limit is a Gaußian process with mean zero, independent increments, and VarV (t) =

σ2t. In fact, such a V is the same as a Brownian motion process W , scaled with σ. The

Brownian motion is defined as a zero-mean process where increments are independent and

with W (t2) −W (t1) ∼ N(0, t2 − t1). The limit in distribution takes places inside the space

D[0, τ ] of all right-continuous functions x : [0, τ ]→ R with left-hand limits, and with a certain
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(natural) topology, that of Skorohod. Look into the ‘this is saying much more’ statement,

and give an example. The point is partly that from Mn →d V follows

Hn = h(Mn)→d H = h(V ),

for every continuous h : D[0, τ ] → R, like h1(x) = max |x(t)|, h2(x) = maxx(t) − minx(t),

h3(x) the amount of time x is above zero, etc.

(d) Before I jump into martingales with dependence on the past, in the next exercise, let me point

to the variation of the above where the random variables being summed are independent, but

with different distributions. This is the important extension of the classical i.i.d. CLT to the

Lindeberg (or Lyapunov) case – after J.W. Lindeberg, Finnish farmer and mathematician,

who wrote up his famous paper in 1922, with what is known later on as ‘Lindeberg conditions’,

translatable as ‘weak conditions securing that nothing goes wrong, so that the limit is normal’.

So consider independent X1, X2, . . ., independent with zero means, but perhaps different

distributions, and standard deviations σ1, σ2, . . .. Form as above the process

Mn(t) =
∑
i≤[nt]

Xi for t ≥ 0,

where the variance is
∑
i≤nt σ

2
i . Show that Mn is a marginale, with

〈Mn/
√
n,Mn/

√
n〉(t) = (1/n)

∑
i≤nt

σ2
i .

The Lindeberg theorem says, or, rather, implies, in this context, that if the variances are

such that this function tends to a positive limit v(t), and if the Lindeberg condition holds,

then Mn(t)/
√
n→d N(0, v(t)) for each t, and there is also full process convergence

Mn(·)/
√
n→d V (·),

where V (·) is a Gaußian martingale, with variance v(t). The Lindeberg condition, in this

case, is that

Ln(ε) =
1

n

n∑
i=1

EX2
i I{|Xi| ≥ ε

√
n} → 0 for each ε > 0.

There are various alternatives and generalisations and extensions and modifications, explain-

ing why ‘Lindeberg condition’ is a portmanteau word. I record one of these, for the case

where B2
n =

∑n
i=1 σ

2
i is not of the order O(n). Then Zn =

∑n
i=1Xi/Bn tends to the stan-

dard normal, provided

L∗n(ε) =

n∑
i=1

E
∣∣∣Xi

Bn

∣∣∣2I{∣∣∣Xi

Bn

∣∣∣ ≥ ε}→ 0 for each ε > 0.

(e) [xx just a bit about the proof, with moment generating functions; can be extended to mar-

tingales, via clever enough conditioning, etc.]

(f) Let Y1, Y2, . . . , be independent Bernoulli 0–1 variables, with probabilities pi = Pr{Yi = 1},
and consider the normalised sum

Zn =

∑n
i=1(Yi − pi)

{
∑n
i=1 pi(1− pi)}1/2

.

Show that Zn →d N(0, 1) if and only if
∑∞
i=1 pi =∞.
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20. Martingales have Gaußian process limits

Here I go through a few things having to do with the remarkable and powerful machinery of

martingale limit theorems, but without the finer details. Such finer details are partly in the ABG

book’s Section 2.3; see also their appendix B.3, and the Helland (1982) journal article, for clear

(but demanding) accounts. The overall message is that yes, lo & behold, a martingale Mn(t),

indexed by sample size n, is approximately normal, for each t, when n grows. Even more, the full

random process Mn = {Mn(t) : t ≥ 0} tends in distribution, when properly scaled, to a full Gaußian

martingale process, with independent and normally distributed increments (which is saying much

more than merely ‘for each t, the distribution of Mn(t) is close to a normal’). All these results are

important and for this course very useful generalisations of those briefly surveyed in the previous

exercise, which is concerned with independent summands; for survival analysis models and methods

we very much need results with even complicated dependencies on the past.

(a) Let X1, X2, . . . be a sequence of variables for which

E (Xn | Fn−1) = 0 for n = 2, 3, . . . ,

where Fn−1 means the previous history (X1, . . . , Xn−1). Show that

Mn(t) =
∑
i≤[nt]

Xi for t ≥ 0

is a martingale. Note that Xn can depend on the past in even complicated ways, as long as

its conditional mean is zero.

(b) Show that

〈Mn,Mn〉(t) =
∑
i≤[nt]

Vi, where Vi = Var (Xi | Fi−1).

In the easier special case of independence, as with the previous exercise, the 〈Mn,Mn〉(t) is

just the sum of the variances of the Xi; here it is rather the sum of the conditional variances

(and these are random).

(c) There are now various theorems which say that if (i) 〈Mn,Mn〉(t)→pr v(t) for each t and (ii)

some Lindeberg type condition holds, then there is full process convergence Mn(t)→d V (t), a

Gaußian martingale with variance v(t). Show that V (t) has the same distribution as W (v(t)),

with W standard Brownian motion.

(d) Now consider a more complicated process, namely

Kn(t) =
∑
i≤[nt]

HiXi for t ≥ 0,

where the sequence of H1, H2, . . . are previsible, meaning that Hi is known once Fi−1 is

known. Show that Kn is a martingale, with

〈Kn,Kn〉(t) =
∑
i≤[nt]

H2
i ∆〈Mn,Mn〉i =

∑
i≤[nt]

H2
i Var (Xi | Fi−1).

These are parallels to what we’ve seen and worked with in Exercise 9.
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(e) Since a martingale limit theorem is a martingale limit theorem, deduce that as long as (i)

〈Kn,Kn〉(t) →pr q(t) for each t and (ii) some Lindeberg type condition holds for Kn, then

there is full process convergence Kn(t) →d Q(t) = W (q(t)), a Gaußian martingale with

variance q(t). Note that such Kn processes can be much more complicated than simpler

sums of independent components processes.

(f) [xx indication of proof. an example. xx]

(g) [xx one or two more points here, the typical use of these theorems, exemplified by nelson–aalen

normality below. xx]

0 20 40 60 80

0
1

2
3

4
5

6

age

cu
m

ul
at

iv
e 

ha
za

rd
s,

 m
en

 a
nd

 w
om

en

Figure 0.3: Estimated cumulative hazard rates for lives lived in Ancient Egypt, for men (black) and women (red).

The full, fat curves are the Nelson–Aalen estimates, the dotted lines are approximate 90% pointwise

confidence bands.

21. More on the Nelson–Aalen estimator

Here are a few more technical details and supplementing remarks regarding the Nelson–Aalen

estimators, compared to statements reached in Exercise 7. So we work, again, with

Â(t) =

∫ t

0

dN(s)

Y (s)
=
∑
ti≤t

δi
Y (ti)

.

We define 0/0 as 0 when time has run long enough to have Y (s) = 0, i.e. nobody left.
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(a) Note that this construction makes sense also in event history analysis setups, for each intensity

direction, so to speak. There would then be Nelson–Aalen estimators of the form

Âi,j(t) =

∫ t

0

dNi,j(s)

Yi(s)
,

from box i to box j on the map of possible stations to occupy, with Yi(s) the number at risk

in box i at time just before s, and dNi,j(s) the number of those for which an event occurs

inside the short time interval [s, s+ ds). – For the rest of this exercise, we’re in the simpler

survival setup, though.

(b) With M(t) = N(t)−
∫ t

0
Y (s)α(s) ds the martingale, show that

Â(t) =

∫ t

0

J(s)

Y (s)
dN(s) = A∗(t) +

∫ t

0

J(s)

Y (s)
dM(s),

where J(s) = I{Y (s) ≥ 1}. Find a formula for Pr{J(s) = 1}, and show that it is very cose

to 1, unless s is growing big.

(c) Show that Â−A∗ is a martingale, with variance process

〈Â−A∗, Â−A∗〉(t) =

∫ t

0

J(s)

Y (s)2
d〈M,M〉(s) =

∫ t

0

J(s)

Y (s)
α(s) ds.

(d) Show then that the variance of Â(t) − A∗(t), which is very nearly the same as the variance

of Â(t), can be expressed as

σ(t)2 = E

∫ t

0

J(s)

Y (s)
α(s) ds.

Argue that a natural estimator of

σ̂(t)2 =

∫ t

0

dN(s)

Y (s)2
=
∑
ti≤t

δi
Y (ti)2

.

This is about the same as covered inside Exercise 7, but now with a bit more detail.

(e) A somewhat more elaborate version of the variance estimator above is

σ̂(t)2 =
∑
ti≤t

1

Y (ti)
p̂i(1− p̂i) =

∑
ti≤t

1

Y (ti)

∆N(ti)

Y (ti)

{
1− ∆N(ti)

Y (ti)

}
.

First, we use ∆N(ti), the number of events observed inside [ti, ti + ε), for a small ε, in the

case of ties (the theory says that we should not have two events at the very same time, but

in practice data are not always given with very fine time precision). Second, going through

arguments above one learns that the variance of dN(s) given the past enters the variance

process arguments, and this conditional variance is Y (s)p(1− p), with the small p = α(s) ds.

In the mathematical fine limit, where ds becomes infinitesimal, p(1−p) = p, so to speak, but

it is possible that the above variance estimator is just slightly better when Y (s) is relatively

small; then the estimate p̂ = ∆N(t)/Y (t) is not so small, etc.

(f) But we can’t quite live on with just a sensible estimator of the sensible variance of a sensible

estimator; we need approximate normality, in order to construct confidence intervals and
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bands, tests, comparisons, etc. So let us prove the
√
n{Â(t) − A(t)} has a normal limit

process. First, show that

√
n{A∗(t)−A(t)} →pr 0, for each t,

which means that it is enough to find the limit distribution in question for the simpler

Zn(t) =
√
n{Â(t)−A∗(t)}.

But this is a martingale. Show that

ŷ(s) = Y (s)/n→pr y(s), for each s,

under mild conditions on the censoring distribution. Show that

〈Zn, Zn〉(t) =

∫ t

0

nJ(s)

Y (s)
α(s) ds→pr v(t) =

∫ t

0

1

y(s)
α(s) ds.

This secures, with a small extra technical argument having to do with Lindeberg conditions

(see ABG, Ch. 2, or Helland, 1982, or Hjort, 1990b), that

Zn(·)→d V (·) = W (v(·)),

a time-transformed Brownian motion, with variance VarV (t) = v(t).

(g) The final statement we need under our belts is that σ̂(t) is consistent for σ(t), or more

properly that nσ̂(t)2 converges in probability to the limit of nσ(t)2, which is the v(t) above.

Try to prove this.

(h) From these statements prove that

Â(t)−A(t)

σ̂(t)
=

√
n{Â(t)−A(t)}√

nσ(t)

σ(t)

σ̂(t)
→d N(0, 1),

for each t. In particular, show from this that

Pr{A(t) ∈ Â(t)± zσ̂(t)} → Pr{−z ≤ N(0, 1) ≤ z},

yielding pointwise confidence bands, tests for hypotheses of the type A = A0, etc.

22. More on Ancient Egypt

Slip into your Wellsian time machine and go back in time to Roman Era Egypt (cf. Exercises 1, 2).

Compute and display the Nelson–Aalen estimators for the cumulative hazards for men and women.

Supplement these with approximate pointwise 90% confidence bands. In other words, attempt to

reproduce Figure 0.3. Also, plot the function

D(t) = Âw(t)− Âm(t),

estimated cumulative hazard difference, unfortunate women minus fortunate men (this was a time

of relative peace and no wars, before the later tax revolt etc.), along with an approximate 90%

confidence band. What are your conclusions?

23. The Kaplan–Maier estimator

26



As ABG argue, the cumulative hazards of the world are more versatile and useful tools, particularly

in more complex event history setups, than ‘only’ the task of estimating the survival curve S(t) =

Pr{T ≥ t} for survival data (t1, δ1), . . . , (tn, δn). The canonical nonparametric estimator for S(t)

remains however an important quantity, and this is the Kaplan–Meier estimator (from JASA,

1958). Its definition is

Ŝ(t) =
∏
[0,t]

{
1− dN(s)

Y (s)

}
=
∏
ti≤t

{
1− δi

Y (ti)

}
.

(a) For non-censored data, say t1 < · · · < tn, show that Ŝ(t) becomes the simpler empirical

survival function

Ŝemp(t) = (1/n)

n∑
i=1

I{ti ≥ t} = 1− Femp(t).

(b) We do have the easy formula S = exp(−A), binding together the survival curve and the

cumulative hazard, so it is not at all forbidden to start with the Nelson–Aalen and then exp

its minus to arrive at

S̃(t) = exp{−Â(t)}.

The A = − log(1−F ) formula is valid only for continuous distributions, however, so that par-

ticular connection is not as straightforward for non-continuous step-function type estimators

as Â and Ŝ. You may however attempt to prove that the Kaplan–Meier Ŝ and Aalen-related

estimator are quite close; in particular, when n increases,

√
n[Ŝ(t)− exp{−Â(t)}]→pr 0.

This means that these two related estimators have the same large-sample properties. Proving

the above is easier when working on the log-scale; attempt to show that

√
n[Â(t) + log Ŝ(t)}]→pr 0.

This has to do with − log(1− x) = x+ 1
2x

2 + 1
3x

3 + · · · , which is very close to simply x for

small x, etc.

(c) [xx briefly on how to assess and estimate the variance of Ŝ(t). the Greenwood formula (from

1926!). limiting normality and confidence bands. xx]

24. The Hjort estimators of A and S, from Bayesian nonparametrics

The Nelson–Aalen and Kaplan–Meier estimators have nice generalisations to the Bayesian non-

parametrics setting. Hjort (1985a, 1990b) introduced Beta processes as the natural class of priors

for cumulative hazard rates. The starting point is to work with

dA(s) =
dF (s)

F [s,∞)
and F (t) = 1−

∏
[0,t]

{1− dA(s)},

and then to form a prior process A(t) =
∫ t

0
dA(s) with independent and almost Beta distributed

increments,

dA(s) ∼ Beta[c(s) dA0(s), c(s){1− dA0(s)}].

Here A0(t) =
∫ t

0
α0(s) ds is the prior mean and c(s) a strength-of-prior function (e.g. a constant).

Existence of such a process is non-trivial, as sums of Beta variables are not Beta distributed, but

such Beta processes are shown to exist as proper time-coninuous limits.
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Hjort (1985a, 1990b) shows that A |data is a new and updated Beta process, with c(s) updated

to c(s) + Y (s) and the prior mean A0(t) updated to the Bayesian nonparametrics estimator

ÂB(t) = E{A(t) |data} =

∫ t

0

c(s)α0(s) ds+ dN(s)

c(s) + Y (s)
.

Similarly, there is a natural Bayesian nonparametrics estimator of the survival curve,

ŜB(t) = E{S(t) |data} =
∏
[0,t]

{
1− c(s)α0(s) ds+ dN(s)

c(s) + Y (s)

}
.

When c(s) becomes small, or the data volume grows, these are then close to the Nelson–Aalen

and Kaplan–Meier estimators. In yet other words, the Nelson–Aalen Â and Kaplan–Meier Ŝ may

be given the interpretation of being Bayesian nonparametrics estimators under a non-informative

Nils-Beta process prior, where c(s)→ 0.

(a) Choose your own prior parameters α0(s) and c(s) for the Ancient Egypt data, perhaps the

same for men and women, and plot the resulting Bayes estimators ÂB(t) and ŜB(t), for men

and women.

(b) Hjort (1990b) shows that

Var {A(t) |data} =

∫ t

0

dÂB(s){1− dÂB(s)}
c(s) + Y (s) + 1

.

For the Ancient Egypt data, again, plot the band

ÂB(t)± 1.645 {Var {A(t) |data}}1/2,

for men and for women, and comment.

(c) If you wish you may also simulate say 50 full realisations of A |data, or S |data (or for any

other quantity in which you may take an interest), via independent small increments

dA(s) |data ∼ Beta[c(s) dA0(s) + dN(s), c(s){1− dA0(s)}+ Y (s)− dN(s)],

and display these in a diagram. See the Nils Exercises and Lecture Notes (Spring 2018) from

the Bayesian Nonparametrics course STK 9190, e.g. Exercise 28 with figures.

(e) [xx i include a figure here, with simulated realisations of A and of S, given data, perhaps Old

Egypt. xx]

25. Wald ratios

It is useful to learn about the basic machinery involved in what is often called ‘Wald ratios’ or ‘Wald

tests’ (after Abraham Wald, decision theorist, co-inventor of sequential testing, minimaxologist,

admissibilist, etc.; born 1902 in Transylvania, died 1950 in a plane-crash in India). Suppose θ̂ is

an estimator of a parameter θ. The basic idea is then to work with

W =
θ̂ − θ
τ̂

,

with τ̂ an estimate of the standard deviation of θ̂, sometimes called ‘the standard error’, even

though the ‘the’ in question is problematic, since there might be several ways in which to arrive at

the τ̂ estimate for the underlying standard deviation τ . The slightly more pedantic label would or

could be ‘a standard error for θ̂’, but this is not often used.
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(a) With n the sample size in question, suppose that
√
n(θ̂ − θ)→d N(0, κ2) (this happens very

often, across a wide range of statistical situations). Show that
√
n(θ̂ − θ)/κ →d N(0, 1). In

the notation above, κ/
√
n is then an approximation to the standard deviation τ = τn of θ̂.

(b) Assume in addition that κ̂ is a consistent estimator of κ. Show that τ̂n = κ̂/
√
n has the

property that τ̂n/τn →pr 1, and that this implies

Wn =
θ̂ − θ
τ̂n

=

√
n(θ̂ − θ)
κ̂

κ

κ̂
→d N(0, 1).

(c) Consider the confidence interval

CIn = θ̂ ± 1.96 τ̂n = [θ̂ − 1.96 κ̂/
√
n, θ̂ + 1.96 κ̂/

√
n].

Show that

Pr{θ ∈ CIn} → 0.95,

and give a clear interpretation of the use of this statement.

(d) So Wald ratios lead to confidence intervals – and also to tests. Suppose you need to test the

null hypothesis H0 that θ = 0 (or any other fixed null value). Consider the test statistic

Zn =
θ̂

τ̂n
=

√
nθ̂

κ̂
.

If you decide to reject H0 if and only if |Zn| ≥ 2.576, what is the (approximate, or limiting)

significance level of your test?

(e) The Wald ratio test used above may also be used to read off a p-value:

p = Pr{|Zn| ≥ |Zn,obs| |H0}
.
= Pr{|N(0, 1)| ≥ |Zn,obs|},

where Zn,obs is the actually observed value of the Zn statistic. Note that the defining prob-

ability is computed under the null hypothesis. Show that the test which rejects H0 if and

only if p ≤ 0.01 is equivalent to the test above.

(f) There’s a classic correspondence between confidence intervals, on one hand, and tests (well,

two-sided tests, primarily), on the other. (i) First, suppose you have constructed a clever

95% confidence interval for θ, say CIn. Then decide to reject H0 : θ = θ0 by accepting it if θ0

is inside, and rejecting it if θ0 is outside. Show that this test has level 0.05. (ii) Second, turn

the mirror: Suppose you have first constructed a 0.05 test for each θ = θ0 null hypothesis.

Then collect all the accepted ones together in a set, say Cn. Show that Prθ{θ ∈ Cn} = 0.95,

for each θ. – Most often, this Cn is an interval, but in some cases it might be e.g. a union of

three subintervals. We may still call it a confidence set, or region.

(g) From these generalities we may turn back to STK 4080-9080 matters. The points above

may be broadly applied, in model after model, and are indeed used, in chapter after chapter,

in the ABG book. The ingredients behind a successful Wald ratio operation, so to speak,

in a situation where θ is a sufficiently interesting parameter, are (i) construction of a good

estimator θ̂; (ii) showing that θ̂ is approximately normal, and approximately unbiased; (iii)

finding a good estimator τ̂ for the standard deviation τ of θ̂; (iv) showing consistency, in the

sense of τ̂ /τ →pr 1. Then you’re very much in business, and can apply the machinery above

– without having to reinvent the gutenbergian printing machine of 1449 each time.

29



26. Inference for the median (and other quantiles)

Consider survival data (t1, δ1), . . . , (tn, δn), with Nelson–Aalen estimator Â and Kaplan–Meier

estimator Ŝ. It is useful to have a machinery for inference for the median (or other quantiles).

(a) Suppose we need to test that the median m = med(S) = S−1( 1
2 ) is equal to given m0. The

Wald ratio approach leads to a statistic of the form

Zn =
m̂−m0

τ̂
,

where m̂ = Ŝ−1( 1
2 ) is the median computed via the Kaplan–Meier, and τ̂ is a proper estimate

of the standard deviation of m̂. First note that the Ŝ moves in jumps, so a bit of care is

required to define the median; we typically take

m̂ = min{t : Ŝ(t) ≤ 1
2}.

Secondly, we need to understand the mathematics of the (approximate) variance τ2
n of m̂, and

after that an estimate τ̂ . This is absolutely possible [xx may return to this in later exercise

xx], but it is easier to circumvent the problem via a transformation.

(b) Explain that testing m = m0 is the same as testing S(m0) = 1
2 , which again is the same as

testing A(m0) = log 2.

(c) But testing A(m0) = log 2 (or another fixed value) is easy, via a Wald ratio:

Zn(m0) =
Â(m0)− log 2

σ̂(m0)
.

Explain that the test rejecting m = m0 if |Zn(m0)| ≥ 1.645 has (approximate) level 0.10.

(d) Instead of testing some given m0 value, construct the set Cn of all m0 for which Zn(m0) ∈
[−1.645, 1.645]. Show how this can be done, and explain that this constitues a 90% confidence

interval for the unknown median m = S−1( 1
2 ).

(e) Generalise the above to the case of a general quantile, say µ(q) = S−1(q) for a given q inside

(0, 1).

(f) Go again back in time, to Ancient Egypt, of Exercise 1 etc. Use the machinery above to test

the hypothesis that the median for the men’s distribution is equal to 25.0 years, and then

the same task for the women’s distribution. Then find 90% confidence intervals for these

two medians. (This particular dataset is simpler than in the general case, in that there is no

censoring, with all δi = 1; use the general machinery from this exercise, though.)

27. Confidence bands for the cumulative hazard and survival functions

Consider again survival data of the familiar form (t1, δ1), . . . , (tn, δn), leading to the Nelson–Aalen

estimator Â and Nelson–Aalen estimator Ŝ. These are nonparametric estimators of the cumulative

hazard rate A(t) =
∫ t

0
α(s) ds and survival curve S(t). Here I discuss how to construct confidence

bands for these two crucial quantities.
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(a) For notation and some properties of the Â, see Exercise 20. We have seen there that

Â(t) ≈d N(A(t), σ̂(t)),

in the precise sense that

Zn(t) =
Â(t)−A(t)

σ̂(t)
→d Z(t) ∼ N(0, 1).

Show that this implies that the band

Bn(t) = Â(t)± 1.96 σ̂(t) = [Â(t)− 1.96 σ̂(t), Â(t) + 1.96 σ̂(t)]

is an approximate 95% pointwise confidence band, in the sense of

Pr{A(t) ∈ Bn(t)} → 0.95 for each t.

(b) Explain how this can be used to test the null hypothesis H0(t) that A(t) is equal to some

given A0(t).

(c) Sometimes we need something more, however, namely a somewhat bigger band, say B∗n(t),

which covers the full A(t) across some time interval [a, b], as opposed to merely at a given

value t. Such bands may be constructed in different ways. Hjort (1985a, inside a long

discussion contribution to the SJS Lecture 1984 by P.K. Andersen and Ø. Borgan, and with

various other points) proposed the following. I work with

B∗n(t) = Â(t)± c σ̂(t) = [Â(t)− c σ̂(t), Â(t) + c σ̂(t)],

and wish to scale c such that it succeeds in being a 95% simultaneous confidence band over

the time window [a, b]. What is needed is then

Pr{A(t) ∈ B∗n(t) for all t ∈ [a, b]} → 0.95.

Show that this corresponds to

Pr{Mm ≤ c} → 0.95,

where

Mn = max
t∈[a,b]

∣∣∣ Â(t)−A(t)

σ̂(t)

∣∣∣.
(d) From earlier results, of Exercise 20 and elsewhere, show that

Zn(t) =
Â(t)−A(t)

σ̂(t)
=
Â(t)−A(t)

σn(t)

σn(t)

σ̂(t)
→d Z(t) =

W (v(t))√
v(t)

,

where W (v(t)) is a Gaußian martingale with independent increments and variance

v(t) =

∫ t

0

α(s) ds

y(s)
.

Argue that this implies

Mn = max
t∈[a,b]

|Zn(t)| →d M = max
t∈[a,b]

|Z(t)|.

The threshold level c can then, in principle, be read off from the limit distribution, i.e. that

of M .
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(e) Here we’re helped by first showing that

M = max
t∈[a,b]

∣∣∣W (v(t))√
v(t)

∣∣∣ = max
s∈[v(a),v(b)]

∣∣∣W (s)√
s

∣∣∣.
Show that this lead to the following recipe: first, obtain estimates v̂(a) and v̂(b), via

v̂(t) = n

∫ t

0

dN(s)

Y (s)2
= nσ̂(t)2.

Then simulate say 105 paths of Brownian motion W (s) over the interval

[v̂(a), v̂(b)] = [nσ̂(a)2, nσ̂(b)2],

and record for each run the value of M , the maximal value of W (s)/
√
s over that interval.

You’ve now simulated the M distribution, and can read off c as the 0.95 quantile. Congratu-

lations, you’ve now found the c which works for problem (c). [xx we’ll do this in an exercise

later on, with a given dataset. xx]

(f) For a Brownian motion W = {W (s) : s ≥ 0}, consider the rescaled and time-transformed

process W ∗, with W ∗(s) = W (cs)/
√
c, where c is a positive constant. Take a cup of tea (as

the preeminent botanist RObert Brown did in 1827, indirectly pointing to a problem which

was not mathematically solved until Einstein wrote a paper on this in 1905). Show that W ∗

is another Brownian motion. Show also that the variable

M = Ma,b = max
a≤s≤b

|W (s)/
√
s|

above has the property that Ma,b has the same distribution as Mca,cb, for any positive scaling

factor c. So M1.13,2.23 has the same distribution as M113,223, etc.

(g) Explain how you can use such a plot to test whether A(t) is equal to a given A0(t) over a

given time interval.

(h) Explain finally how you can translate pointwise and simultaneous confidence bands for A(t)

to such bands for the survival curve S(t) = exp{−A(t)}.

28. The pornoscope data

Consider the pornoscope data of ABG’s Example 3.6, given in their Table 3.1. The Drosophila

are the Lords of the Flies (but don’t read the 1954 book who won its author the Nobel in 1983;

it’s bleaker than Bleak House). Compute and display the Nelson–Aalen estimators for the time

until mating, along with 90% confidence bands. Construct first the relatively easy 90% pointwise

confidence bands, and then try to follow the recipe of Exercise 26 to construct also 90% simultaneous

confidence bands, valid for the time window [10 minutes, 40 minutes] (yes, these creatures jump

to sex pretty quickly).

[xx more here, also on ‘survival’, which here means ‘no sex please’. add figures: the two Â(t),

with bands, and the running test of A1(t)−A2(t). and S1(t) and S2(t) to illustrate that the median

time to sex is high. xx]

29. Australian drug addicts in clinics
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Access the dataset heroin2-data and how it downloaded to your computer. It consists of data

(t, δ, x1, x2, x3) for n = 238 Australian drug users, with t the time spent in clinic (where I’ve

converted the original scale of days to years); δ the usual indicator for non-censoring; x1 the daily

methadone dosage (here converted to a scale from zero to about 1.1); x2 equal to 1 or 0 depending

on whether the person has been to jail or not; and x3 equal to 1 or 2 reflecting the person is in

clinic 1 or clinic 2.

The Cox regression model is that of proportional hazards, with hazard rates

αi(s) = α0(s) exp(xi,1β1 + xi,2β2 + xi,3β3) for i = 1, . . . , n,

for the at the outset random time ti a user will stay in the clinic.
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Figure 0.4: Estimated curves for staying yet longer in the clinic, for four types of users, all with methadone dosage

x1 = 0.60 (which is close to the average value). The two black curves are for clinic 1, the two red curves

are for clinic 2; also, the full curves are for users who have been to prison, the slanted curves for users

who have not been to prison.

(a) Carry out basic Cox regression analysis for the βj coefficients, via something along these

lines:

library("survival")

heroin <- matrix(scan("heroin2-data",skip=7),byrow=T,ncol=6)
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#

tt <- heroin[ ,2] # time, in years

delta <- heroin[ ,3] # 63% observed, 37% censored

x1 <- heroin[ ,4] # methadone dose

x2 <- heroin[ ,5] # prison or not

x3 <- heroin[ ,6] # clinic

nn <- length(tt) # 238

# here we go:

showme <- coxph(Surv(tt,delta) ~ x1 + x2 + x3)

summary(showme)

Give an interpretation of what the coxph machinery delivers here. Which coefficients are

significantly present, and what does it mean, for Australian drug users?

(b) Try to duplicate the essence of this table, by programming the log-partial-likelihood function

yourself,

`n(β) =

n∑
i=1

{xt
iβ − logSn(ti, β)} δi =

n∑
i=1

∫ τ

0

{xt
iβ − logSn(s, β)} dNi(s),

with

Sn(s, β) =
∑

risk set

exp(xt
jβ) =

n∑
j=1

Yj(s) exp(xt
jβ).

When having made such a logPL programme, check that it works, by asking for something

like logPL(c(-2.22,0.44,-1.11)). Then throw it to an optimiser, to find both the Cox

estimators β̂j and their standard errors (estimated standard deviations):

nils <- nlm(minuslogPL,c(0,0,0),hessian=T)

cox <- nils$estimate

Jhat <- nils$hessian

se <- sqrt(diag(solve(Jhat)))

show <- cbind(cox,se,cox/se)

print(round(show,4))

That the standard errors actually can be computed (rather simply) in this fashion has to do

with the large-sample approximation

Var β̂
.
= Ĵ−1,

with Ĵ = −∂2`n(θ̂)/∂β∂βt the Hessian matrix of second order derivatives at the maximising

point (the anglophied world is winning, apparently, regarding this term; it really ought to be

‘Hesse matrix’, just ask Ludwig Otto Hesse, 1811–1874, but then people won’t understand

you). See ABG Section 2.1 for this, along with a few Nils Exercises below.

(c) In addition to issues essentially related to the βj , one needs to estimate and assess also

cumulative hazard rates A(t |x) = A0(t) exp(xt
iβ) and survival curves

S(t |x) = Pr{T ≥ t |x} = exp{−A(t |x)} = exp{−A0(t)r(x)},
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with r(x) = exp(xtβ). These tasks involve estimation of the cumulative baseline hazard

function A0(t) =
∫ t

0
α0(s) ds, for which we use the so-called Breslow–Aalen estimator,

Â0(t) =

∫ t

0

∑n
i=1 dNi(s)∑n

i=1 Yi(s) exp(xt
iβ̂)

.

Give a motivation for this Â0, and compute it.

(d) Choose a given type of Australian drug user, with specific covariates x0 = (x1,0, x2,0, x3,0),

of your choice. Compute and plot and behold the estimated cumulative hazard rate Â(t |x0)

and survival function Ŝ(t |x0). Explain how the survival function ought to be interpreted

here.

(e) Try to duplicate a version of Figure 0.4.

(f) Check for possible interaction effects, for methadone dose and clinic.

30. Maximum likelihood estimators are approximately unbiased!,

approximately multinormal!, and their variance matrix can be estimated too!

This exercise is meant to be a brief going-through of what happens with maximum likelihood (ML)

estimators in the classical terrain of regular models without censoring. There are basically four

wondrously important and now easy-to-use results about such estimators, say θ̂ for an underlying

parameter vector θ = (θ1, . . . , θp):

(i) the distribution of θ̂ is approximately multinormal;

(ii) the ML is approximately unbiased;

(iii) its variance matrix can be estimated (relatively easily) as part of the process;

(iv) results (i)-(ii)-(iii) carry over to any focus parameter, say using φ̂ = φ(θ̂) for estimating

φ = φ(θ), via the delta method.

These methods and results (with variations and extensions, e.g. to regression models) are in con-

stant use, also in a long list of R and software packages (e.g. for standard errors and Wald ratios

and p-values for all generalised linear models, etc.).

The importance and supreme usefulness of these results relate also to the fact that they hold

for any parametric model, all the usual ones plus those you might feel a need to invent tomorrow.

Going through the points below is meant to give you ‘the basics’ about these points, and why

they hold. The point will then be that a good understanding of these issues and methods, for the

easier classical terrain, will help you when it comes to extensions, generalisations, modifications, for

the partly more complicated world of models and estimators in this course, e.g. ML in parametric

survival analysis models (ABG Ch. 5) and Cox estimators in the Cox regression model (ABG

Ch. 4).

Consider now data points y1, . . . , yn, i.i.d. from a given parametric model, with density f(y, θ),

smooth in its parameters. We use θ0 to indicate the true parameter value. The log-likelihood

function is

`n(θ) =

n∑
i=1

log f(yi, θ),
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since there is no censoring or other complications. We shall need for the 1st and 2nd derivatives,

Un(θ) =

n∑
i=1

∂ log f(yi, θ)

∂θ
=

n∑
i=1

u(yi, θ),

In(θ) =

n∑
i=1

∂2 log f(yi, θ)

∂θ∂θt
=

n∑
i=1

u(yi, θ).

Note that Un(θ) is a p-dimensional vector function and that In(θ) is a p× p-matrix function.

(a) Using the Central Limit Theorem, show that

(1/
√
n)Un(θ0)→d U ∼ Np(0, J0),

with

J0 = Varu(y, θ0) = −E
∂2 log f(y, θ0)

∂θ∂θt

the so-called Fisher information matrix, computed at the true parameter value. That these

two expressions defining J0 are equal is part of the game, and is called the Bartlett identity

(show it, that part is not hard). The u(y, θ) is called the score function of the model, and

must assume here that it has a finite variance matrix.

(b) Using the Law of Large Numbers, show that

Jn = −(1/n)In(θ0)→pr J0.

(c) From the defining properties of the ML, argue via Taylor that

0 = Un(θ̂) = Un(θ0) + In(θ0)(θ̂ − θ0) + δn,

where δn ought to be small in size.

(d) From this, deduce that
√
n(θ̂ − θ0) = J−1

n Un(θ0) + δ′n,

where δ′n is small. Argue that

√
n(θ̂ − θ0)→d J

−1
0 U ∼ J−1

0 Np(0, J0) ∼ Np(0, J
−1
0 ).

This is the ‘mathematical version’ of the basic result about ML estimation in regular models.

(e) By carrying
√
n over, we reach the ‘practical version’ of the same result, namely that

θ̂ ≈d Np(θ0, Σ̂),

with estimated variance matrix

Σ̂ = (1/n)Ĵ−1
0 = Ĵ−1

obs,

writing now

Ĵobs = −∂
2`n(θ̂)

∂θ∂θt
= nĴ0

for the so-called Fisher’s observed information matrix.
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(f) Note that Ĵobs increases with sample size, since Ĵobs/n tends to J0. Explain that when a

dataset is doubled, from size n to 2n, the lengths of the confidence intervals go down with

a factor of around
√

2. How many more data points would you need, compared to the n

you already have access to, if you need your confidence intervals do have (approximately)

half-as-long widths?

(g) A basic fact about the multinormal distribution is that if X ∼ Np(ξ,Σ), then the quadratic

form (X − ξ)tΣ−1(X − ξ) has a χ2
p distribution. Argue from this that

Qn = n(θ̂ − θ0)tĴ0(θ̂ − θ0) = (θ̂ − θ0)tĴobs(θ̂ − θ0)→d χ
2
p.

Explain how this may be used to test H0 : θ = θfix, for any given θfix, and also how a 90%

confidence region can be constructed for the unknown θ0.

(h) Then the extension of the above results to focus parameters: Suppose a parameter φ =

φ(θ) = φ(θ1, . . . , θp) is of importance, a smooth function of the model parameters. The true

parameter value is φ0 = φ(θ0). Show that the ML of φ is simply φ̂ = φ(θ̂). Show also that φ̂

is approximately normal, approximately unbiased, and with an easy estimate for its standard

deviation, via the delta method of Exercise 17. Specifically,

√
n(φ̂− φ0)→d N(0, κ2), with κ2

0 = ctJ−1
0 c,

where c = ∂φ(θ0)/∂θ. The practical translation of this statement, directly useful for a long

list of applications, is that

φ̂ ≈d N(φ0, κ̂
2),

with

κ̂2 = (1/n)κ̂2
0 = (1/n)ĉtĴ−1

0 ĉ = ĉtĴ−1
obsĉ,

and ĉ = ∂φ(θ̂)/∂θ the gradient vector of partial derivatives calculated at the ML position.

(i) [xx briefly: outside model conditions, the sandwich matrix, etc. xx]

(j) I list as a separate point the following couple of comments. First, what is shown in the course

of the points above usually takes much more splace and time in regular textbooks (with lots

of details having to do with regularity conditions implying remainder terms tending to zero

etc.); I think Lehmann’s classic 1983 book needs some fifteen pages to go reach the most

crucial result (d), for example. So my proof, which is really ‘a good indication of a proof’, is

considerably shorter. For more details, also regarding the important extensions of the above

to regression models (as for Poisson and logistic regression, etc.), see Claeskens and Hjort

(2008, Ch. 2) or Schweder and Hjort (2016, Appendix). Clean, concise proofs are available,

with all details taken proper care of, in the case of log-concave densities; see Hjort and Pollard

(1993).

31. The likelihood theory works also for censored data

Exercise 30 deals with the classic terrain of independent and fully observed data points, and

establishes the basic results for maximum likelihood (ML) and a few related quantities and tools.

This has been a veritable success story, in probability theory and statistics, since about 1922, when

Sir Ronald A. Fisher invented the ML, to the present. It was not so easy to lift these machines
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to the world of survival analysis models, however, since the censoring business makes the models,

the estimators, and their behaviour, more complicated. Among the first papers dealing with these

issues, sorting out limiting normality under good conditions, etc., are Borgan (1984), then Hjort

(1985a, 1986, 1992); cf. also the broad treatment in ABG (Ch. 5).

Consider survival data of the usual form (ti, δi) for individuals i = 1, . . . , n, and assume that

the hazard rate is of a suitable parametric form α(s, θ). Examples include the exponential, the

Weibull, the gamma, the Gompertz, the log-normal, etc. Below, let θ0 denote the true parameter

value.

(a) Check that you are able to deduce several (equivalent) expressions for the log-likelihood

function, met also in several earlier exercises:

`n(θ) =
∑
δi=1

log f(ti, θ) +
∑
δi=0

logS(ti, θ)

=

n∑
i=1

{δi logα(ti, θ)−A(ti, θ)}

=

∫ τ

0

{logα(s, θ) dN(s)− Y (s)α(s, θ) ds}.

Here τ is an upper bound for the time window under consideration.

(b) We attempt to follow the path of Exercise 30, and start with the first derivative. Consider

therefore the random function

Un(θ) =
∂`n(θ)

∂θ
=

∫ τ

0

ψ(s, θ) {dN(s)− Y (s)α(s, θ) ds},

with ψ(s, θ) = ∂ logα(s, θ)/∂θ.

(c) At the true parameter value, show that Un(θ0) =
∫ τ

0
ψ(s, θ0) dM(s), involving the martingale

M(t) = N(t)−
∫ t

0
Y (s)α(s, θ0) ds. Hence Un(θ0) is very conveniently a martingale (perhaps

Borgan, 1984, was the first to realise this key point, in decent generality), evaluted at the

end-point τ .

(d) Show that

〈(1/
√
n)Un(θ0), (1/

√
n)Un(θ0)〉 = (1/n)

∫ τ

0

ψ(s, θ0)ψ(s, θ0)t d〈M,M〉(s)

= (1/n)

∫ τ

0

ψ(s, θ0)ψ(s, θ0)tY (s)α(s, θ0) ds,

and that this converges in probability to the matrix

J0 =

∫ τ

0

ψ(s, θ0)ψ(s, θ0)ty(s)α(s, θ0) ds.

It is assumed that Y (s)/n tends uniformly in probability to a limit function y(s). Conclude

from martingale limit theorems, cf. previous exercises, that

(1/
√
n)Un(θ0)→d U ∼ Np(0, J0).

So we’re in good shape, with the required result for the first derivative random function,

though it tooks more work and more advanced limit theory than for the i.i.d. case of Exercise

30.
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(e) Next up is the second derivative p× p matrix function. Show that

In(θ) =
∂2`n(θ)

∂θ∂θt

=

∫ τ

0

[
ψ∗(s, θ){dN(s)− Y (s)α(s, θ) ds} − ψ(s, θ)ψ(s, θ)tY (s)α(s, θ) ds

]
,

where ψ∗(s, θ) = ∂2 logα(s, θ)/∂θ∂θt.

(e) Try to show, whether this means ‘prove’ or ‘make very plausible’, that

−(1/n)In(θ0)→pr J0.

(f) So we’re in good shape, and have essentially been able to modify and extend the simpler

arguments of Exercise 30 for the present more complicated world of survival models, partly

thanks to the martingale theory. Conclude that for the ML estimator θ̂, we have

√
n(θ̂ − θ0)→d J

−1
0 U ∼ Np(0, J

−1
0 ).

This is the clear extension of the classical ML result for i.i.d. data to the world of survival

models, involving now a new definition of the J0 matrix.

(g) For the special case of no censoring, and with time window the full half-line, corresponding

to τ = ∞, show indeed that J0 becomes equal to the Fisher information matrix of Exercise

30.

(h) We need a good estimator of J0. There are several options, actually. The perhaps simplest to

work with, since it comes out of computer optimisation programmes, as the Hessian matrix,

is

Ĵ0 = − 1

n

∂2(θ̂)

∂θ∂θt
.

Try to prove that Ĵ0 →pr J0, i.e. that it is consistent. Another estimator, which also works,

based on the form of J0, is

J̃0 = (1/n)

∫ τ

0

Y (s)ψ(s, θ̂)ψ(s, θ̂)tα(s, θ̂) ds.

(h) For a simple illustration, consider the exponential model with a constant hazard rate, α(s, θ) =

θ. Find an expression for the ML estimator θ̂, and check each step of the arguments above.

Put up the limit distribution for
√
n(θ̂ − θ0). How much is lost in precision, if the censoring

distribution is another exponential, with rate γ?

32. Parametric hazard rate regression models

Importantly, the full machinery above extends nicely to the case of regression models, and this is

76% of ABG’s Chapter 5, regarding both the basic methods and the ensuing type of results. The

setting is that of survival data (ti, δi, xi), with a covariate vector xi of length p. We start from

αi(s) = α(s, θ) exp(xt
iβ),

for i = 1, . . . , n. Show that the log-likelihood function may be expressed as

`n(θ, β) =

n∑
i=1

∫ τ

0

[
{logα(s, θ) + xt

iβ} dNi(s)− Yi(s)α(s, θ) exp(xt
iβ) ds

]
.
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Now go back Down Under, to the n = 238 Australian drug users in the two clinics, cf. Exercise

29. There we applied Cox’s semiparametric model, with an unspecified baseline hazard function.

Now try the parametric machinery, with two models: (i) that of the constant baseline hazard,

α0(s) = θ; and (ii) that of a Weibull type baseline hazard, α0(s) = θ exp(γs). Plot the Breslow–

Aalen estimator Â0(t) alongside the parametrically fitted versions, and comment on your findings.

[xx a bit more her. confidence interval for γ. xx]

33. [xx more on this, for the Cox regression model. xx]

[xx well: to be written, very soon. for survival regression data (ti, δi, xi), Cox’s log-partial-

likelihood,

`n(β) =

n∑
i=1

{xt
iβ − logSn(ti, β)} δi =

n∑
i=1

∫ τ

0

{xt
iβ − logSn(s, β)} dNi(s),

with

Sn(s, β) =
∑

risk set

exp(xt
jβ) =

n∑
j=1

Yj(s) exp(xt
jβ).

programme is: work with 1st and 2nd derivatives, and aim for a parallel story to those of Exercises

30 and 31 (even if the going gets tougher). point to Andersen and Gill (1982) and Hjort and

Pollard (1993). xx]
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