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Problem 1

a

With Y (t) = ]{T̃i ≥ t) = the number at risk at time t the Kaplan-Meier
estimator is given by

Ŝ(t) =
∏
T̃i≤t

[
1− Di

Y (T̃i)

]
assuming that there are no ties.

The expression in the brackets 1 − Di

Y (T̃i)
= P̂(T > T̃i|T > T̃i−) can

be interpreted as the (estimated) conditional probability of surviving at
time T̃i conditional on being alive at time t− and so also the conditional
probability of surviving from the previous event time. Then by the general
rule P(A ∩B) = P(A|B)P(B) we get the Kaplan-Meier estimator as Ŝ(t) =

P̂(T > t) = P̂(T > t|T > tk)P̂(T > tk|T > tk−1)P̂(T > tk−1|T > tk−2) · · · P̂(T > t1|T > t0)

where t0 = 0 < t1 < t2 < · · · < tk < t are the observed event times.

b

See the file sketch1b.pdf. For percentile µp defined by S(µp) = 1 − p
we obtain the estimate µ̂p solving Ŝ(µ̂p) = 1 − p. Graphically we find the
estimate by drawing a horizontal line through y = 1 − p and reading off
where this line crosses the Kaplan-Meier. Similarly a confidence interval is
determined as the values µ̂Lp < µ̂Up where the horizontal line crosses the lines
for the confidence interval of the Kaplan-Meier estimator.

c

Very often Ŝ(tmax) > 0 where tmax is the maximum of the the right censoring
times. Then the estimator is not well defined for t > tmax and so neither is
the estimator of µ.

(Continued on page 2.)
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With uncensored data we get Ŝ(t) = 1− k
n where k is the number of Ti < t.

Then with T(1) < T(2) < · · · < T(n) the ordered Ti’s we get

µ̂ = 1 ∗ T(1) + n−1
n (T(2) − T(1)) + n−2

n (T(3) − T(2)) + · · ·+ 1
n(T(n) − T(n−1))

= T(1)(1− n−1
n ) + T(1)(

n−1
n −

n−2
n ) + · · ·+ T(n−1)(

2
n −

1
n) + 1

nT(n)
= 1

nT(1) + 1
nT(2) + · · ·+ 1

nT(n) = T

Alternatively one can realize the result graphically by inspecting the diagram
in the file sketch1c.pdf with n = 7. Here each (horizontal) rectangle has
area 1

nT(k)) and the total area under the survival function becomes T .

Problem 2

a

The likelihood contributions can be written as, with f(t; θ) the density and
S(t; θ) the survival function of Ti

Li(θ) = f(T̃i; θ)
DiS(T̃i; θ)

1−Di = α(T̃i; θ)
Di exp(−

∫ T̃i
0 α(t; θ)dt)

= exp(θDi) exp(− exp(θ)T̃i)

and thus li(θ) = log(Li(θ)) = θDi − exp(θ)T̃i.
The score contributions ui(θ), i.e. the derivatives of li(θ) with respect

to θ becomes ui(θ) = Di − T̃i exp(θ). Hence the score equals u(θ) =∑n
i=1Di − exp(θ)

∑n
i=1 T̃i = D• − exp(θ)R•. Putting this equal to zero

gives θ̂ = log(D•/R•).

b

We note that Ni(τ) = I(Di = 1, T̃i ≤ τ) = Di and

T̃i exp(θ) =

∫ τ

0
I(T̃i > t) exp(θ)dt =

∫ τ

0
Yi(t) exp(θ)dt.

Furthermore the intensity process of the counting process Ni(t) is given
by λi(t) = Yi(t)α(t; θ) = Yi(t) exp(θ). This means Mi(t) = Ni(t) −∫ t
0 Yi(s) exp(θ)ds is a martingale with expectation zero and so also ui(θ) =
Mi(τ) has expectation zero.

Moreover the predictable variation process of Mi(t) equals Λi(t) =∫ t
0 Yi(s) exp(θ)ds and so var(ui(θ)) = E[Λi(τ)] = E[

∫ τ
0 Yi(s) exp(θ)ds]

Finally the full score u(θ) = M•(τ) =
∑n

i=1Mi(τ), and has expectation
zero and variance given by E[

∫ τ
0 Y (s) exp(θ)ds] where Y (s) =

∑n
i=1 Yi(s).

c

We find I(θ) = − d
dθu(θ) = Λ(τ) =

∫ τ
0 Y (s) exp(θ)ds and so from b)

E[I(θ)] = E
∫ τ
0 Y (s) exp(θ)ds = var(u(θ)).

Inserting exp(θ̂) = D•/R• into I(θ) gives I(θ̂) = D• = N(τ). Thus we esti-
mate var(θ̂) by 1/I(θ̂) = 1/D•. Furthermore an approximate 95% confidence
interval for α(t; θ) = exp(θ) is given by (D•/R•) exp(±1.96/

√
D•).

(Continued on page 3.)
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Problem 3

a

The Cox-model is given by individual hazards αi(t) = α0(t) exp(β′xi). We
may fit the model by maximizing the partial likelihood

L(β) =
∏

i:D:i=1

exp(β′xi)∑
j∈R(T̃i)

exp(β′xj)

which can be given the interpretation as the product over probabilities that
individual i with Di = 1 died at T̃i given that one of those in the risk set
R(T̃i) at T̃i died.
We see that all three covariates are strongly significant. Women have a
hazard which estimated as being only 0.52 the hazard of men. Those who
are physically active have a hazard rate being 0.71 of the non-active and
people with higher cholesterol than the median has a mortality (hazard)
which 1.35 time that of an below median cholesterol individual (when other
factors are the same).
Approximate 95% confidence intervals for the hazard ratios are exp(β̂j +

±1.96sej) where the β̂j are the estimates of βj and sej their standard
errors. We get intervals (0.449,0.602) for sex, (0.600,0.846) for activity and
(1.166,1.563) for cholesterol.

b

The idea of stratified Cox-regression is that the hazard can be written (in this
case) as αi(t) = α0xi1(t) exp(β2xi2 + β3xi3), that is with different baselines
for men and women, but where log-hazard ratios β2 and β3 are the same
for men and women. Now there is no assumption of hazard ratios between
women and men being time-constant.

One may then calculate separate partial likelihood LM (β2, β3) for men
and LW (β2, β3) for women and combine this into a total stratified partial
likelihood L(β2, β3) = LM (β2, β3)LW (β2, β3).
To display the differences in risk between men and women one may calculated
seperate cumulative hazards for men and women by the Breslow-estimators,
possibly translated to survival functions.
These Breslow estimators of the baseline cumulative hazards can be given as

Âj(t) =

∫ t

0

dN•j(s)

S
(0)
j (s; β̂)

where N•j(s) =
∑

i:xi1=j
Ni(s) and S

(0)
j (s; β̂) =

∑
i:xi1=j

Yi(s) exp(β̂′xi).
Here Ni(s) and Yi(s) are individual counting processes and indicators of
being at risk.

c

The additive hazards model can be written as

αi(t) = β0(t) + β1(t)xi1 + β3(t)xi3 + β3(t)xi3

(Continued on page 4.)
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where β0(t) is the hazard if all covariates are equal to zero and βj(t) are
regression functions being positive if there is a higher risk associated with
large than small xij at time t and negative in the opposite case. The effect
of the covariates is thus allowed to vary with time.

The plots shows estimates of Bj(t) =
∫ t
0 βj(s)ds. Thus when B̂0(t) is a

close to concex function this shows that the baseline hazard increases over
time. Furthermore B̂1(t) is decreasing ever more steeply, thus women have a
smaller hazard than men and the difference increases over time. For physical
activity we see a negative cumulative hazard, only slightly below zero up to
50 years, then decreasing more markedly and perhaps stabilizing towards 80
years (likely this last observation is not significant). In correspondence with
the results from the Cox-regressions the hazard is smaller for the physical
active, but we estimate that the difference first increases and then possibly
vanishes when the individuals get into their 70’s and 80’s. For cholesterol the
high cholesterol group consistently has a higher hazard, but the association
is weak into the 60’s or 70’s and then increase more steeply.

d

The estimates B̂(t) = (B̂0(t), B̂2(t), B̂2(t), B̂3(t))
′ have increments dB̂(t) =

(dB̂0(t), dB̂2(t), dB̂2(t), dB̂3(t))
′ at event times T̃i, Di = 1. For these times

the increments are obtained as least squares estimates with the dNi(t) as
responses and covariates xijYi(t).

We can write dNi(t) = Yi(t)αi(t) + dMi(t) where dMi(t) are martingale
increments with expectation zero. After some algebra it is then possible to
show that the estimators of the estimated cumulative regression functions
can be written as the true cumulative regression functions plus a martingale
term with expectation zero as long as the design matrices at different event
times have full rank. Thus the estimates are approximately unbiased.

(To do most of this algebra we note that the estimates dB̂(t) can be written
as

dB̂(t) = (X(t)>X(t))−1X(t)>dN(t)

where X(t) is the design-matrix and dN(t) vector the indicators of ecents
at time t. This vector of responses can be expanded to X(t)dB(t) + dM(t)
where dM(t) is the vector of the dMi(t)’s. Inserting this into the expression
for dB̂(t) we get, as long as the design matrix has full rank,

dB̂(t) = (X(t)>X(t))−1X(t)>(X(t)dB(t)+dM(t)) = dB(t)+(X(t)>X(t))−1X(t)>dM(t)

where the latter term is (vector of) martingale increment. It turns out that
for t such that the design matrix has full rank for s ≤ t

B̂(t) = B(t) +M?(t)

where the last term is a vector of martingales with expectation zero.)

END


