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This is the exam project set for STK 4090/9090, spring semester 2020. It is made available

on the course website as of Friday June 12, 11:11, and candidates must submit their

written reports by Tuesday June 23, 12:12 (or earlier), to the Inspera System at the

Department of Mathematics. Due to the korona situation there’s no supplementary four-

hour no-book exam this time. Reports may be written in nynorsk, bokmål, riksmål,

English or Latin, and should be text-processed (TeX, LaTeX, Word). Give your student-

web identification number on the first page. Write concisely (in der Beschränkung zeigt

sich erst der Meister; brevity is the soul of wit; kratkostь – sestra talanta). Relevant

figures need to be included in the report. Copies of relevant parts of machine programmes

used (in R, or matlab, or similar) are also to be included, perhaps as an appendix to the

report. Candidates are required to work on their own (i.e. without cooperation with any

others). They are graciously allowed not to despair should they not manage to answer all

questions well.

Importantly, by handing in your report to the Inspera system you guarantee that you’ve

read, understood, and confirmed the points of the self-declaration form (available at the

course website). Also, your report should contain one separate extra page, the student’s

one-page summary of the exam project report, which should briefly tell its readers about

how the work has proceeded, and also contain a brief self-assessment of its quality. You

may make this the very last page of your report.

This exam set contains four exercises and comprises six pages.

Exercise 1

Itj f̊arr̊a n̊alles. You need to access and upload the dataset allwars-data, available at

the course website. It contains data pairs (xi, zi) for all n0 = 95 gruesome interstate wars

with at least 1000 battle deaths (as per well-maintained and publicly available databases

for such matters, specifically the Correlates of War project), from the Franco-Spanish

war in 1823 to the invasion of Iraque in 2003. Here xi is the time where war i started,

with dates transformed via months and days to decimals, so that the Korean war started

at x60 = 1950.483, etc.; and zi is the number of battle deaths. Figure A displays the

(xi, log zi) data (one may exp the vertical scale to perhaps understand a bit better the

deeper horror of these numbers).
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In the present exercise we shall mostly work only with the xi, not the battle deaths,

and more specifically with the between-times

wi = xi+1 − xi for i = 1, . . . , n,

say, with n = n0 − 1 = 94. Apart from a brief excursion in question (g) we leave work

on battle deaths, and yet other features and connections and predictions and analyses of

statistical sightings of better angels, to other occasions.
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Figure A: The onset time xi and log battle deaths count log zi for the last 95
major interstate wars, those with zi ≥ 1000.

(a) There are both empirical studies and certain theoretical arguments, also for many

other types of violence phenomena, pointing to the interesting and non-obvious suppo-

sition that the between-times ought to be approximately independent and identically

exponentially distributed. In other words and terms, the wi will behave as waiting

times in a Poisson process with constant rate. Fit the model

f(w, λ) = λ exp(−λw) for w > 0

to the w1, . . . , wn data, via maximum likelihood. Assuming the model holds, give a

90 percent confidence interval for λ.

(b) Broader models emerge by taking the wi given λ to be exponential with this parameter

λ, but to take the λ not as a single constant, but coming from a distribution of

such rates. Assume that λ comes from a Gamma distribution with parameters (a, b),

i.e. with density proportional to λa−1 exp(−bλ). Show that this leads to the density

g(w, a, b) =
aba

(b+ w)a+1
for w > 0.
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(c) Fit also this two-parameter model to the w1, . . . , wn data, using maximum likelihood,

and give approximate standard errors for the estimates (â, b̂). Give the estimated

mean and standard deviation for this distribution of λ values. Construct a version

of Figure B, which has the empirical cumulative distribution function along with the

fitted parametric cumulatives for the one-parameter and two-parameter models.
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Figure B: The empirical distribution function for the between-wars time data
(black curve), along with the two fitted parametric cumulatives F (w, λ̂) and

G(w, â, b̂).

(d) For the one-parameter model, find a formula for the probability p = p1(λ) that the

time between two consecutive wars is at least w0 = 3.00 years. Construct and display a

full confidence distribution for this probability parameter, say cc1(p), again assuming

that the model holds.

(e) Then supplement the above cc1(p) with the similar confidence curve cc2(p), now using

the two-parameter model, starting with a formula p = p2(a, b) for the probability that

the waiting time between two wars is at least w0 = 3.00 years. Read off (approximate)

90 percent confidence intervals for p, under the one-parameter and the two-parameter

models.

(f) Which of the two models might be best?

(g) Why do the nations so furiously rage together? / Why do the people imagine a vain

thing? Perhaps the size of a war influences the eagerness with which cohorts of

humankind again decide to embark on the next war? Fit the model where wi =

xi+1 − xi is an exponential with parameter λi = λ0 exp(βvi), where vi = log zi, and

comment on your findings. (And sing along, in C major.)
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(h) Above various analyses have been based on the observed between-war times, up to

w94 = x95 − x94. There is also information in the fact that since onset time x95 =

2003.219, there have gudsigforbyde as of June 1, 2020, been no further interstate wars

(well, according to the operative definitions of the Correlates of War project). Explain

how this may be used to modify or update your previous analyses.

Exercise 2

Shall I compare thee to a, well, better estimator? For this exercise, assume Y1, . . . , Yn

are i.i.d. on the unit interval, from a positive density. The parametric model to be worked

with has density f(y, a) = aya−1, with a an unknown positive parameter.

(a) Write down the log-likelihood function, and find a formula for the maximum likelihood

(ML) estimator, â. Assume first that the parametric model is correct, so there is a

value a0 such that f(y, a0) has generated the data. Find the limiting distribution of√
n(â− a0).

(b) We now take an interest in the median of the distribution, say µ = F−1( 1
2
, a), in

terms of the cumulative F (y, a). Find the ML estimator µ̂ for µ, and also the limiting

distribution for
√
n(µ̂− µ0), with µ0 = F−1( 1

2
, a0) the true median.

(c) An alternative median estimator is of course the sample median itself, say Mn. Find

the limiting distribution for
√
n(Mn − µ0), still under parametric model conditions.

(d) Discuss how much might be lost by being ‘statistically conservative’, using the non-

parametric sample median, instead of the ML estimator, provided the model is correct.

In which cases might the sample median nevertheless be the better method?

(e) Suppose now that the true density g generating the data is a Beta density with param-

eters (a, b) = (0.333, 1.222), rather than being of the parametric form above. Explain

what the ML estimator â is aiming for, and find the associated limit distribution.

(f) Suppose you have a dataset y1, . . . , yn on the unit interval, with say n = 100, assumed

to follow a Beta distribution, but with parameters (a, b) unknown. How can you test

whether the simpler model studied above, with density aya−1, holds?

Exercise 3

Brownian motion virrer as a virrevandring. Let W = {W (t): t ∈ [0, 1]} be a

standard Brownian motion on the unit interval – it starts at W (0) = 0, and its increments

are independent over disjoint intervals, with W (t)−W (s) ∼ N(0, t− s) for s < t.

(a) Simulate ten paths of this process, and display them in a diagram. For your ten paths,

compute the empirical mean and standard deviation of the ten values of W (1), and

comment briefly on this.

(b) For t ∈ (0, 1), find the distribution of W (t) given that W (1) = 0.
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(c) Consider the process

U(t) =
W (t)√

t
for t > 0.

Find the correlation between U(s) and U(t), for s ≤ t.

(d) Consider the variable

Xm =
1

m

m∑

i=1

W (i/m).

Find the distribution of this Xm, and show that Xm →d N(0, 1/3) as m grows.

(e) Show that Xm also has the limit X =
∫ 1

0
W (t) dt.

(f) Consider now i.i.d. variables Y1, Y2, . . . with mean zero and variance one, and with

partial sums S1 = Y1, S2 = Y1 + Y2, etc. Show using the Donsker theorem that

An =
1

n3/2

n∑

i=1

Si →d A ∼ N(0, 1/3).

(g) Show that
n∑

i=1

Si = nY1 + (n− 1)Y2 + · · ·+ 2Yn−1 + Yn,

and use the Lindeberg theorem to give another proof of An →d N(0, 1/3).

Exercise 4

Normally limits are normal, but not always. Here we shall indeed work with variables

with mean zero and variance one, where the sample averages have nonnormal limits. The

basic construction is as follows. Let U1, U2, . . . be i.i.d., with mean zero and variance

one, and with moment-generating function M0(s) = E exp(sUi) finite in a neighbourhood

around zero; in particular, all moments for the Ui are finite. Let independently of these

J1, J2, . . . be independent Bernoulli variables with Pr{Ji = 1} = 1/i, Pr{Ji = 0} = 1−1/i.

Then form

Zn =
1√
n

n∑

i=1

Ji
√
i Ui =

n∑

i=1

Ji
√

i/nUi.

A picture to have in mind is that most of the terms will be zero, with non-zero contributions

becoming both more rare and more big as time proceeds.

(a) Show that there will with probability one be infinitely many Ji = 1, i.e. non-zero

terms in the Zn sum as n grows.

(b) Show that the terms Ji
√
iUi have mean zero and variance one; hence also the nor-

malised sample average Zn has mean zero and variance one. Find also an expression

for the kurtosis

κn = EZ4
n − 3

of Zn, and show that κn → 1

2
a4, where a4 = EU4

i . Compare this to what we are ‘used

to’ from the Lindeberg theorem.
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(c) We already know from point (b) that if Zn has a limit distribution, it can’t be normal.

Working with the moment-generating function, show that

Mn(t) = E exp(tZn) =

n∏

i=1

[
1 +

1

i
{M0(t

√
i/n)− 1}

]
,

for all t around zero for which M0(t) is finite.

(d) Here one may show that

n∏

i=1

[
1 +

1

i
{M0(t

√
i/n)− 1}

]
→ exp

{∫ 1

0

M0(t
√
x)− 1

x
dx

}
. (∗)

Work first with Special Case One, where we let Ui have the simple symmetric two-

point distribution Pr{Ui = 1} = Pr{Ui = −1} = 1

2
. Find the limiting kurtosis for Zn

in this case. Show that

M0(s) =
1

2
es + 1

2
e−s = 1 + (1/2!)s2 + (1/4!)s4 + · · · ,

and use this to find an infinite-sum expression for the limit of Mn(t). Have you now

proved that Zn has a limit distribution?

(e) Then work with Special Case Two, where the Ui have a double exponential distribu-

tion, of the form

f(u) = 1

2

√
2 exp(−

√
2|u|)

on the real line (the
√
2 factor is there to ensure variance one). Find the moment-

generating function M0(s) for the Ui, and then the moment-generating function M(t)

for the limit distribution of Zn.

(f) For most cases, regarding the distribution for the Ui, it is hard to learn the explicit

distribution for Zn (even in cases where there might be a clear distribution for its

limit). For Special Case Two, however, attempt to find the explicit distribution for

Zn, for any given n.

(g) I do not define this question as the most important one, on this occasion, but please

attempt to prove the limit result of (*).
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