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Abstract

These are Exercises and Lecture Notes for the new course on Statistical Large-Sample Theory,

STK 4090 (Master level) or STK 9090 (PhD level), for spring semester 2020. They are partly

taken from earlier collections, from other courses of mine, but are supplemented with new

ones, also from empirical processes.

1. Illustrating the Central Limit Theorem (CLT)

Consider the variable

Zk = (X1 + · · ·+Xk − kµ)/(
√
kσ) =

√
k(X̄k − µ)/σ,

where the Xi are i.i.d. and uniform on the unit interval; here µ = 1/12 and σ = 1/
√

12 are the

mean and standard deviation, respectively. Your task is to simulate sim = 104 realisations of the

variable Zk, for say k = 1, 2, 3, 5, 10, 25, and display the corresponding histograms. Observe how

the distribution of Zk comes closer and closer to the standard normal, as k increases. To illustrate

just how close, consider the case of k = 6, for example, and attempt to test the hypothesis that the

104 data points you have simulated come from the standard normal. Comment on your findings.

2. Illustrating the Law of Large Numbers (LLN)

Simulate say 104 variables X1, X2, . . . drawn from the unit exponential distribution. Compute and

display the sequence

Wn = n−1
n∑
i=1

(Xi − X̄n)3 for n = 1, 2, 3, . . . ,

where X̄n = n−1
∑n
i=1Xi. Comment on your picture, and show indeed that Wn converges in

probability. Generalise your finding.

3. The continuity lemma for convergence in probability

There are actually two ‘continuity lemmas’ for convergence in probability.

(a) Suppose Xn →pr a, with a being a constant. Show that if g is a function continuous at point

x = a, then indeed g(Xn)→pr g(a).
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(b) Suppose more generally that Xn →pr X, with the limit being a random variable. Show that

if g is a function that is continuous in the set in which X falls, then g(Xn)→pr g(X).

Comments: (i) To prove (b), use uniform continuity over closed and bounded intervals. (ii) In

situations of relevance for this course, part (a) will be the more important. The typical application

may be that consistency of θ̂n for θ implies consistency of g(θ̂n) for g(θ).

4. The maximum of uniforms

Let X1, . . . , Xn be i.i.d. from the uniform [0, θ] distribution, and let Mn = maxi≤nXi.

(a) Show that Mn →pr θ (i.e. the maximum observation is a consistent estimator of the unknown

endpoint).

(b) Find the limit distribution of Vn = n(θ −Mn), and use this result to find an approximate

95% confidence interval for θ.

5. Distribution functions

For a real random variable X, consider its distribution function F (t) = Pr{X ≤ t}. Show that

F is right continuous, and that its set of discontinuities is at most countable (in particular, the

set of continuity points is dense). Show also that F (t) → 1 when t → ∞ whereas F (t) → 0 when

t→ −∞.

6. A ‘master theorem’ for convergence in distribution

[xx check ferguson’s definition. xx] Let Xn and X be real random variables, with probability

distributions Pn and P [so that Pn(A) = Pr{Xn ∈ A}, etc.], and consider the following five

statements:

(1) Xn →d X;

(2) for every open set A, lim inf Pn(A) ≥ P (A);

(3) for every closed set B, lim supPn(B) ≤ P (B);

(4) for every set C that is P -continuous, in the sense that P (∂C) = 0, where ∂C = C̄ − C0 is

the ‘boundary’ of C (the closure minus its interior), limPn(C) = P (C);

(5) for every bounded and continuous g, lim E g(Xn) = E g(X).

Show that these five statements are in fact all equivalent. Hints: For (1) implies (2), write

A = ∪∞j=1Aj for open sets Aj = (aj , bj), where aj and bj can be chosen to be among the continuity

points for the distribution function F for X. Then show that (2) implies (3) [using that B is closed

if and only if Bc is open], and that (3) implies (4). For (4) implying (5), take g to have its values

inside [0, 1], without loss of generality, and write

E g(Xn) =

∫ ∫ 1

0

I{y ≤ g(x)} dy dPn(x) =

∫ 1

0

Pr{g(Xn) ≥ y} dy,

along with a Lebesgue theorem for convergence of integrals. Finally, for (5) implies (1), construct

for given F -continuity point x a continuous function gε that is close to g0(y) = I{y ≤ x}.
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7. The continuity lemma for convergence in convergence

Suppose Xn →d X and that h is continuous (and not necessarily bounded). Show that h(Xn)→d

h(X). [Use e.g. statement (5) of the previous exercise.] Thus exp(tXn)→d exp(tX), etc.

8. Convergence in distribution for discrete variables

Let Xn and X take on values in the set of natural numbers, and let pn(j) = Pr{Xn = j} and

p(j) = Pr{X = j} for j = 0, 1, 2, . . .. Show that Xn →d X if and only if pn(j) → p(j) for each j.

To illustrate this, prove the classic ‘law of small numbers’ (first proven by Ladislaus Bortkiewicz

in 1898), that a binomial is close to a Poisson, if the count number is high and the probability is

small.

9. Convergence in probability in dimension two (and more)

We have defined Xn →pr X to mean that

Pr{|Xn −X| ≥ ε} → 0 for each ε > 0.

The natural generalisation for the two-dimensional (and higher) case is to say that

Xn = (Xn,1, Xn,2)→pr X = (X1, X2)

provided

Pr{‖Xn −X‖ ≥ ε} → 0 for each ε > 0,

where ‖Xn−X‖ is the usual Euclidean distance. Prove that Xn →pr X (in such a two-dimensional

situation) if and only if Xn,j →pr Xj for j = 1, 2 (i.e. ordinary one-dimensional convergence for

each component). Generalise.

10. Moment generating functions and convergence in distribution

For a random variable X, its moment generating function (mgf) is

M(t) = E exp(tX),

defined for each t at which the expectation exists. Among its basic properties are the following;

attempt to demonstrate these.

1. M(0) = 1, and when the mean is finite, then M ′(t) exists, with M ′(0) = EX.

2. More generally, if |X|r has finite mean, then M (r)(0) = EXr (the rth derivative of M , at

the point zero).

3. When X and Y are independent, then

MX+Y (t) = MX(t)MY (t)

in the obvious notation. This generalises of course to the case of more than two independent

variables.

4. If X and Y are two variables with identical mgfs, then their distributions are identical. [There

are also ‘inversion formulae’ in the literature, giving the distribution as a function of M .]
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5. If Xn and X have mgfs Mn and M , then Mn(t)→M(t) for all t in a neighbourhood around

zero is sufficient for Xn →d X.

6. In particular, if Mn(t)→ exp( 1
2 t

2) for all t close to zero, then Xn →d N(0, 1).

11. Finite moments

Show that if EX2 is finite, then necessarily EX is finite too. Show more generally that E |X|q is

finite, then also E |X|p is finite for all p < q. Prove indeed that (E |X|p)1/p is a non-decreasing

function of p.

12. Proving the CLT (under some restrictions)

Let X1, X2, . . . be i.i.d. with some distribution F having finite variance and mean, and assume for

simplicity that the mean is zero.

(a) Show that if the mgf exists, in a neighbourhood around zero, then

M(t) = 1 + 1
2σ

2t2 + o(t2),

where σ is the standard deviation of Xi.

(b) Show that
√
nX̄n has mgf of the form

M∗n(t) = M(t/
√
n)n = {1 + 1

2σ
2t2/n+ o(1/n)}n,

and conclude that the CLT holds.

13. Characteristic functions

The trouble with the approach to the CLT above is that is has somewhat limited scope, in that some

distributions do not have a finite mgf (since exp(tX) may be too big with too high probability

for its mean to be finite). The so-called characteristic functions (chf) provide a more elegant

mathematical tool in this regard. For a random variable X, its chf is defined as

φ(t) = E exp(itX) = E cos(tX) + iE sin(tX),

with i =
√
−1 the complex unit, and t ∈ R.

(a) Show that the chf always exists, and that is is uniformly continuous. Show that the chf for

the N(0, σ2) is exp(− 1
2σ

2t2).

(b) Assume Xn →d X. Show that

φn(t) = E exp(itXn)→ φ(t) = E exp(itX) for all t.

(c) The converse is also true (but harder to prove), and it is ‘inside the curriculum’ to know this:

If

φn(t) = E exp(itXn) converges to some function φ(t)

for all t in an interval around zero, and this limit function is continuous there, then (i) φ(t) is

necessarily the chf of some random variable X, and (ii) there is convergence in distribution

Xn →d X.
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14. When is the sum of Bernoulli variables close to a normal?

Let X1, X2, . . . be independent Bernoulli variables (i.e. taking values 0 and 1 only), with Xi ∼
Bin(1, pi). We shall investigate when

Zn =

∑n
i=1(Xi − pi)

Bn
→d N(0, 1),

where Bn = {
∑n
i=1 pi(1−pi)}1/2. Show, using mgfs or chfs, that this happens if and only

∑∞
i=1 pi =

∞ – and show, additionally, that this condition is equivalent to Bn →∞. Thus the cases pi = 1/i

and pi = 1/i2, for example, are fundamentally different. For this second case, investigate the limit

distribution of Zn (which by the arguments given is not normal).

15. Proving the CLT (again)

Using chfs instead of mgfs gives a more elegant and unified proof of the CLT.

(a) Show that if X has a finite mean ξ, then its chf satisfies

φ(t) = 1 + iξt+ o(t) for t→ 0.

Also, its derivative exists, and φ′(0) = ξ.

(b) Show similarly that if X has a finite variance σ2, then

φ(t) = 1 + iξt− 1
2 (ξ2 + σ2t2) + o(t2) for t→ 0.

(c) If X1, X2, . . . are i.i.d. with mean zero and finite variance σ2, then show that Zn =
√
nX̄n

has chf of the form

φn(t) = {1− 1
2σ

2t2/n+ o(1/n)}n.

Prove the CLT from this.

16. More on characteristic functions

Here are some more details and illustrations pertaining to characteristic functions.

(a) Find the characteristic function for a binomial distribution and for a Poisson distribution.

(b) Demonstrate the classical ‘Gesetz der kleinen Zahlen’ (cf. Exercise 8), that a binomial (n, pn)

tends to the Poisson λ, when npn → λ.

(c) Show that for the Cauchy distribution, with density f(x) = (1/π)(1 +x2)−1, the chf is equal

to exp(−|t|). Note that this function does not have a derivative at zero, corresponding to the

fact that the Cauchy does not have a finite mean (cf. Exercise 15(a)).

(d) Let X1, . . . , Xn be i.i.d. from the Cauchy. Show that the chf of X̄n = (1/n)
∑n
i=1Xi is identi-

cal to the chf of a single observation. Conclude, by the ‘inversion theorem’, the amazing fact

that X̄n =d Xi; the average has the same statistical distribution as each single component.
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(e) There are several versions of ‘inverse theorems’, providing a mechanism for finding the dis-

tribution of a random variable from its chf; the perhaps primary aspect, defined as an ‘inside

curriculum fact’, is that the chf indeed fully characterises the distribution (if X and Y have

identical chfs, then their distributions are identical too). One such inversion formula is as

follows: if X has a chf φ that is integrable (i.e.
∫
|φ(t)|dt is finite), then X has a density f ,

for which a formula is

f(x) =
1

2π

∫
exp(−itx)φ(t) dt.

Write down what this means, in the cases of a normal and a Cauchy, and verify the implied

formulae. Show that f in each such case of an integrable φ(t) necessarily becomes continuous.

(f) Show that the chf for the uniform [−1, 1] distribution becomes φ(t) = (sin t)/t. Deduce that∫ ∣∣∣ sin t
t

∣∣∣dt =∞ even though

∫
sin t

t
dt = π.

(g) Point (e) above gives a formula for the density f of a variable, in the case of it having an

integrable chf φ. One also needs a more general formula, for the case of variables that do not

have densities, etc. Let X be any random variable, with cumulative distribution function F

and chf φ (but with nothing assumed about it having a density), and add on to it a little bit

of Gaußian noise:

Zσ = X + Yσ, with Y ∼ N(0, σ2).

Then Z has a density (even if X does not have one). Our intention is to let σ → 0, to come

back to X. Show that Zσ has cdf of the form

Fσ(x) =

∫
F (x− y)

1√
2π

1

σ
exp(− 1

2y
2/σ2) dy

and chf equal to

φσ(t) = φ(t) exp(− 1
2σ

2t2).

Hence show that

fσ(x) =
1

2π

∫
exp(−itx)φ(t) exp(− 1

2σ
2t2) dt.

and that, consequently,

Pr{X + Yσ ∈ [a, b]} = Fσ(b)− Fσ(a)

=
1

2π

∫
exp(−itb)− exp(−ita)

−it
φ(t) exp(− 1

2σ
2t2) dt.

(h) Conclude with the following general inversion formula, valid for all continuity points a, b of

F :

F (b)− F (a) = lim
σ→0

1

2π

∫
exp(−itb)− exp(−ita)

−it
φ(t) exp(− 1

2σ
2t2) dt.

17. Scheffé’s Lemma
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There are situations where gn(y) → g(y) for all y, for appropriate functions gn and g, does not

imply
∫
gn(y) dy →

∫
g(y) dy. However, it may be shown that this is not a problem when gn and

g are probability densities (due to certain ‘dominated convergence’ Lebesgue theorems from the

theory of measure and integration): if gn and g are the densities of Yn and Y , and gn(y) → g(y)

for (almost) all y, then ∫
|gn − g|dy → 0,

and, in particular,

Pr{Yn ∈ [a, b]} =

∫ b

a

gn(y) dy →
∫ b

a

g(y) dy = Pr{Y ∈ [a, b]}

for all intervals, and we have Yn →d Y . This is Scheffé’s Lemma, defined as an inside curriculum

fact.

(a) Let Yn ∼ tn, a t distribution with n degrees of freedom. Show that Yn →d N(0, 1), using this

lemma. Can you prove this statement in a simpler fashion?

(b) If X1, . . . , Xn are i.i.d. from a uniform on [0, 1], with Mn = maxi≤nXi, show using the Scheffé

Lemma that n(1−Mn) tends to a unit exponential in distribution.

(c) Suppose Xn ∼ χ2
n, and consider Zn = (Xn − n)/

√
2n. Prove that Zn →d N(0, 1).

18. The median

‘The median isn’t the message’, said Stephen Jay Gould (when he was diagnosed with a serious

illness and looked at survival statistics). Let X1, . . . , Xn be i.i.d. from a positive density f with

true median θ = F−1( 1
2 ).

(a) Suppose for simplicity that n is odd, say n = 2m+ 1. Show that Mn has density of the form

gn(y) =
(2m+ 1)!

m!m!
F (y)m{1− F (y)}mf(y).

(b) Show then that the density of Zn =
√
n(Mn − θ) can be written in the form

hn(z) = gn(θ + z/
√
n)/
√
n.

Prove that

hn(z)→ (2π)−1/22f(θ) exp{− 1
24f(θ)2z2},

which by the Scheff’e Lemma means that

√
n(Mn − θ)→d N(0, τ2) with τ = 1

2/f(θ).

Why does this also prove that the sample median is consistent for the population median?

(c) Generalise to the following quantilian result: ifQn(p) = F−1n (p) is the pth quantile of the data,

then Qn(p) converges in probability to the corresponding population quantile ξp = F−1(p),

and

√
n{Qn(p)− ξp} →d N(0, τ2p ) with τ2p = p(1− p)/f(ξp)

2.
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(d) Constructing a nonparametric confidence interval for an unknown median is not that simple –

the ‘usual recipe’ works, up to a point, and tells us that if we first find a consistent estimator

κ̂ of the doubly unknown quantity f(θ) (f is unknown, and so is θ, its median), then we’re

in business. We would then have

Zn =

√
n(Mn − θ)

τ̂
→d N(0, 1), with τ̂ = 1

2/κ̂,

from which it then follows that

In = θ̂ ± 1.96 τ̂ /
√
n obeys Pr{θ ∈ In} → 0.95.

The trouble lies in finding a satisfactory κ̂. Try to construct such a consistent estimator.

19. Limiting local power games

This exercise is meant to study a ‘prototype situation’ in some detail; the type of calculation and

results will be seen to rather similar in a long range of different situations. – Let X1, . . . , Xn be

i.i.d. data from N(θ, σ2). One wishes to test H0 : θ = θ0 vs. the alternative that θ > θ0, where θ0

is a known value (e.g. 3.14). Two tests will be considered, based on respectively

X̄n = n−1
n∑
i=1

Xi and Mm = median(X1, . . . , Xn).

(a) For given value of θ, prove that

√
n(X̄n − θ) →d N(0, σ2),
√
n(Mn − θ) →d N(0, (π/2)σ2).

Note that the first result is immediate and actually holds with exactness for each n; the

second result requires more care, e.g. working with the required density, cf. Exercise xx.

(b) Working under the null hypothesis θ = θ0, show that

Zn =
√
n(X̄n − σ0)/σ̂ →d N(0, 1),

Z∗n =
√
n(Mn − θ0)/{(π/2)1/2σ̂} →d N(0, 1),

where σ̂ is any consistent estimator of σ.

– [xx Figure 1: Limiting local power functions for two tests for θ ≤ θ0 against θ > θ0, in the

situation with N(θ, σ2) data. based on the mean (full line) and on the median (dotted line).

xx]

(c) Conclude from this that the two tests that reject H0 provided respectively

X̄n > θ0 + z0.95σ̂/
√
n and Mn > θ0 + z0.95(π/2)1/2σ̂/

√
n,

where z0.95 = Φ−1(0.95) = 1.645, have the required asymptotic significance level 0.05;

αn = Pr{reject H0 | θ = θ0} → 0.05.

(There is one such αn for the first test, and one for the other; both converge however to 0.05.)
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(d) Then our object is to study the local power, the chance of rejecting the null hypothesis under

alternatives of the type θn = θ0 + δ/
√
n. In generalisation of (b), show that

Zn =
√
n(X̄n − σ0)/σ̂ →d N(δ/σ, 1),

Z∗n =
√
n(Mn − θ0)/{(π/2)1/2σ̂} →d N((π/2)1/2δ/σ, 1),

[xx check this xx] where the convergence in question takes place under the indicated θ0+δ/
√
n

parameter values. (You need to generalise the results of Exercise xx, to the δ 6= 0 case.)

(e) Use these results to show that

πn(δ) = Pr{reject | θ0 + δ/
√
n} → Φ(δ/σ − z0.95),

π∗n(δ) = Pr{reject | θ0 + δ/
√
n} → Φ((2/π)1/2δ/σ − z0.95),

for the two power functions. Draw these in a diagram, and compare; cf. Figure xx.

(f) Assume one wishes n to be large enough to secure that the power function is at least at level

β for a certain alternative point θ1. Using the local power approximation, show that the

required sample sizes are respectively

nA
.
=

σ2

(θ1 − θ0)2
(z1−α + zβ)2 and nB

.
=

σ2/c2

(θ1 − θ0)2
(z1−α + zβ)2

for tests A (based on the mean) and B (based on the median), with c =
√

2/π. Compute

these sample sizes for the case of β = 0.05 and θ1 = θ0 + 1
2σ, when also α = 0.05.

(g) Lehmann defines ‘the ARE [asymptotic relative efficiency] of test B with respect to test A’

as

ARE = lim
nA(θ1, β)

nB(θ1, β)
,

the limit in question in the sense of alternatives θ1 coming closer to the null hypothesi at

speed 1/
√
n. Show that indeed

ARE =
σ2

σ2/c2
= c2 = 2/π = 0.6366

in this particular situation – test A needs only ca. 64% as many data points to reach the

same detection power as B needs.

20. Testing the normal scale

We have essentially covered Exercise 19 in class [xx alter this xx], as a ‘prototype illustration’ of

the themes developed in Chapter 3 [xx change this xx]. Here is another illustration, for you to

check that you may develop similar results in a different situation. Data X1, . . . , Xn are now taken

to be i.i.d. N(0, σ2), and the object is to construct and compare tests for H0 : σ = σ0 vs. σ > σ0,

where σ0 is some known quantity.

(a) Show that EX2
i = σ2 and E |Xi| = bσ, with b =

√
2/π. Show that the estimators

σ̂A =
{
n−1

n∑
i=1

X2
i

}1/2

and σ̂B = n−1
n∑
i=1

|Xi|/b

are both consistent for σ.
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(b) Find the limit distributions for

Zn,A =
√
n(σ̂A − σ) and Zn,B =

√
n(σ̂B − σ),

and comment on your findings.

(c) Construct explicit tests A and B, based on respectively σ̂A and σ̂B , that have asymptotic

level α = 0.01.

(d) Show that both tests are consistent.

(e) Then we need to compare the two tests in terms of local power. For alternatives of the type

σ = σ0 + δ/
√
n, establish limit distributions of the type

√
n(σ̂A − σ0) →d N(δ, τ2Aσ

2),
√
n(σ̂B − σ0) →d N(δ, τ2Bσ

2),

with certain values (that you should find) for τA and τB .

(f) Establish the limiting local power functions πA(δ) and πB(δ), and plot them in a diagram

(cf. Figure xx of the previous exercise).

(g) Compute the required sample sizes nA and nB for tests A and B to achieve detection power

0.99 when the true state of affairs is σ = 1.333σ0.

(h) Compute the ARE for test A w.r.t. test B, and comment.

(i) Could there be other tests for H0 here that would outperform test A?

21. Algebras of sets

Let X be a non-empty set, and let A be a class of subsets of X . We say that A is an algebra if

(i) both X and the empty-set is in A; (ii) each time A is in A, then also its complement Ac is in

A; (iii) whem A1, . . . , An are sets in A, then also their union ∪ni=1Ai is in A. In other words: an

algebra is closed with respect to the formation of complements and finite unions.

(a) Are you yourself closed with respect to compliments?

(b) What’s the world’s smallest algebra?

(c) Show that an algebra is also closed with respect to finite intersections.

(d) And show that A−B = A ∩Bc is within the algebra if A and B are so.

(e) Construct an example of an algebra.

(f) What was Muhammad ibn Musa al-Khvarizmi [xx fix xx]?

22. Sigma-algebras of sets

A sigma-algebra is an algebra A which is also closed with respect to countably infinite formations

of unions, that is, if A1, A2, . . . are in A, then so is ∪∞i=1Ai.

10



(a) Let A consist of all those subsets of R, the real numbers, which are themselves either finite

or have finite complements. Is A an algebra? A sigma-algebra?

(b) Show that a sigma-algebra is closed with respect to countably infinite intersection operations.

23. Inverse and direct images of functions

Let f : X → Y be an arbitrary function, from set X to set Y. For subsets A of X , define the

direct image as fA = f(A) = {f(x) : x ∈ A}. And for subsets B of Y, define the inverse image as

f1B = f−1(B) = {x : f(x) ∈ B}.

(a) Let {Bi : i ∈ I} be a collection of subsets of Y. Show that f−1(∪iBi) = ∪if−1(Bi).

(b) And that f−1(∩iBi) = ∩if−1(Bi).

(c) Then show f−1(Y −B) = X − f−1(B).

(d) Show that A ⊂ f−1f(A) for all A.

(e) And that B ⊃ ff−1B for all B.

(f) For functions f : X → Y and g : Y → Z, show that (g ◦ f)−1(C) = f−1g−1C.

24. Independence of complements

We say that A1, . . . , An are independent if

P (Ai1 ∩ · · · ∩Ai,m) = P (Ai1) · · ·P (Aim)

for all subsets {i1, . . . , im} of {1, . . . , n}. Thus we demand quite a bit more than merely saying

that P (A1 ∩ · · · ∩An) = P (A1) · · ·P (An).

Show that if A1, . . . , An are independent, then so are Ac1, . . . , A
c
n.

25. The Borel–Cantelli emma

Let A1, A2, . . . denote events with probabilities P (A1), P (A2), . . .. We are interested in the event

that infinitely many of these Aj occur, i.e.

Ai.o. = ∩i≥1 ∪j≥i Aj .

(a) Show that if
∑∞
i=1 P (Ai) < ∞, then P (Ai.o.) = 0. In other words, it is certain that only a

finite number of the Ai will occur.

(b) Show under the additional assumption that the Aj are independent, that the previous result

holds in the ‘if and only if’ sense, i.e. that if
∑∞
i=1 P (Ai) = ∞, then P (Ai.o.) = 1. In

particular, under independence, the probability of Ai.o. is either 0 or 1, there is no ‘middle

ground’ possibility.

26. Does this happen infinitely often?

Let X1, X2, . . . be independent with the same Expo(1) distribution, i.e. with density e−x for x ≥ 0.

(a) Will Xn > 10 + 0.99 log n infinitely often ?

11



(b) Will Xn > 10 + 1.00 log n infinitely often?

(c) Will Xn > 10 + 1.01 log n infinitely often?

(d) Will Xn > 1012 + log n infinitely often?

27. Normal deviations

Let X be standard normal, and write as usual Φ(x) for its cumulative distribution function and

φ(x) for its density.

(a) Show that Pr{X > x} = 1− Φ(x)
.
= φ(x)/x for large x.

(b) Let X1, X2, . . . be independent standard normals. Pray, will Xn > 0.000001
√
n for infinitely

many n?

(c) Let X̄n be the average of the first n of these observations. Show that |X̄n| > ε for at most a

finite number of n.

(d) If X1, X2, . . . are independent and N(ξ, 1), what is the probability that X̄n converges to ξ?

28. If you are sure about infinitely many things

Show that the event ∩∞n=1Bn is certain (i.e. it takes place with probability 1) if and only if each of

the Bn is certain. Construct an example to show that this is not the case for uncountably many

certain events.

29. At msot countably many discontinuities

Let F be a one-dimensional cumulative distribution function, and let D be the set of its disconti-

nuities. Show that D is either empty, finite, or countably infinite.

30. Borel sets in dimensions one and two

Let B be the Borel sets in R; it is the smallest sigma-algreba containing all intervals. Define then

B × B = σ(C),

the smallest sigma-algebra containing all A×B, with A and B in B. (This is the usual definition

of a product-sigma-algebra.) Define also

B2 = σ(O),

where O is the set of all open sets in R2 (This is the usual definition of a Borel-sigma-algebra.)

Show that, luckily & conveniently, B × B = B2.

31. Measurability of coordinate functions

Let f, g : (Ω,A)→ (R,B) be two functions, and let h : Ω→ R2 be given by

h(ω) = (f(ω), g(ω)).

Show that h is measurable if & only if both f and g are measureable. Generalise.

12



32. Normal mixtures

Let first X and Y be independent, with X a standard normal and Y very discrete, Pr{Y = y} = 1
2

for y ∈ {−1, 1}. Note that a sum of a continuous and a discrete variable will have a continuous

distribution. Find the density for X + Y . Find also its mean and variance.

Generalise to finite normal mixtures, which may be done in several ways, with one path as

follows. Start with the density

f(x) =

k∑
j=1

pjφσj (x− µj),

defined via the triples (pj , µj , σj) for j = 1, . . . , k. Here the pj make up a probability vector,

i.e. nonnegative with sum 1, and φσ(x−u) = σ−1φ(σ−1(x−µ)) is the density of the normal (µ, σ).

One may now view X, drawn from f , as the result of the two-stage operation where the index

J = j is drawn from {1, . . . , k} first, with Pr{J = j} = pj , and X | j ∼ N(µj , σ
2
j ). Use this to find

E (X | j) and Var (X | j), and then the unconditional mean and variance for X.

The class of finite normal mixtures is a large one, and even with say k ≤ 5 components a broad

range of shapes may be attained – play a bit with this on your computer, drawing f(x) curves on

your screen, by mixing in different input vectors of pj , µj , σj .

Find also a formula for the skewness of f , i.e. γ = E {(X − µ)/σ}3, in terms of the overall

mean and standard deviation µ and σ.

33. The Markov inequality, and bounding tails

Sometimes one wishes to bound tail probabilities, say Pr{X ≥ a} ≤ B(a), and there are several

ways in which to do this.

(a) Let X be a nonnegative random variable, and let h(x) be a nonnegative and nondecreasing

function for x ≥ 0. Demonstrate Neravenstvo Markova (Markov’s inequality), that

Pr{X ≥ a} ≤ Eh(X)/h(a).

(b) If X is a random variable with mean ξ, show that

Pr{|X − ξ| ≥ ε} ≤ E |X − ξ|p

εp
for each p > 0.

For p = 2 we have the famous special case of Neravenstvo Qebyxëva (Chebyshov’s in-

equality, from about 1853).

(c) Let X1, X2, . . . be independent normals N(ξ, 1), so that X̄n ∼ N(ξ, 1/n). Writing N for a

standard normal, show that

Pr{|X̄n − ξ| ≥ ε} ≤
n−p/2E |N |p

εp
for each p > 0.

For n = 100 and ε = 0.05, compute the exact probability in question and track the right

hand bound as a function of p. Which p gives the sharpest bound, in this case?

(d) Let X have moment generating function M(t) = E exp(tX), assumed to be finite for at least

0 ≤ t ≤ t0. Show that

Pr{X ≥ a} ≤ min
0≤t≤t0

exp(−ta)M(t).

13



(e) For the case of X̄n ∼ N(ξ, 1/n) studied above, show that

Pr{X̄n − ξ ≥ ε} ≤ exp(− 1
2nε

2).

Compare this bound with the one reached via Chebyshov above.

(f) Let X1, X2, . . . be i.i.d. from the χ2
b distribution, with E X̄n = b and Var X̄n = 2b/n. Show

that with ε > 0 given, there will with probability 1 be only finitely many n with X̄n ≥ b+ ε.

(g) [xx invent another application here. xx]

34. Amor’s arrows sometimse miss

[From Nils Exam ST 200 December 1989, Exercise 1(e).] Amor shoots her arrows infinitely many

times. Her shots are independent of each other, and shot no. n is (Xn, Yn), measured from origo,

where Xn and Yn are independent and standard normal. The distance from origo is hence Rn =

(X2
n + Y 2

n )1/2, the square-root of a χ2
2. Show that its density becomes f(r) = r exp(− 1

2r
2). So

how often does she miss, and by how much? Find the probabilities for these three events: that

Rn ≥ 0.99
√

2 log n infinitely often; that Rn ≥ 1.00
√

2 log n infinitely often; that Rn ≥ 1.01
√

2 log n

infinitely often.

35. Twins and paradigm shifts

Let X1, X2, X3, . . . be an infinite sequence of independent standard normals. Say that Xi−1 and

Xi are twins if |Xi −Xi−1| ≤ ci, and that there is a regime shift if |Xi −Xi−1| ≥ di. Such ci and

di will be specified below. Let A be the event that the sequence experiences infinitely many twins,

and B the event that the history sees infinitely many regime shifts.

(a) Write up an exact formula for the expected number of twins in the course of the first n = 1012

observations. Put up similarly a formula for the expected number of regime shifts over the

same period.

(b) Find P (A) for the cases ci = 1/i and ci = 1/i2.

(c) Find P (B) for the cases di = 2
√

log i and di = 2.001
√

log i.

(d) Construct a criterion, expressed in terms of the ci and di, for the history to experience with

probability 1 both infinitely many twins and infinitely many regime shifts. Here it many be

convenient to first deal with the situations where infi ci > 0 and supi di <∞, and then focus

on the cases where ci → 0 and di →∞.

36. Quickness of convergence of average to its mean

Assume that X1, X2, . . . is a sequence of i.i.d. variables with mean zero. Hence X̄n will converge

to 0 in probability, and even with probability 1, by the Law of Large Numbers. But how fast will

pn(a) = Pr{X̄n ≥ a} → 0, for fixed a > 0?

(a) Assume VarXi = σ2 is finite. Show that pn(a) ≤ σ2/(na2), hence speed of order 1/n.

(b) Assume that also the fourth order moment is finite, EX4
i < ∞. Show that pn(a) ≤

Kσ2/(n2a4), for a certain K, which gives speed of order 1/n2.
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(c) Let us generalise: Assume that E |Xi|p <∞, for a suitable p ≥ 2. The central limit theorem

says
√
nX̄n/σ →d N(0, 1). One may show that

E |
√
nX̄n/σ|p → E |N(0, 1)|p,

see e.g. von Bahr (1965). Show from this that

E |X̄n|p ≤ cpn−p/2 E |N(0, 1)|p σp for all n,

for a suitable constant cp – and one may use cp = 1.001 if ‘for all n’ is replaced by ‘for all

large enough n’.

(d) Show that pn(a) ≤ Kp/(n
p/2ap) for a suitable constant Kp.

(e) Assume Xi has moments of all orders, such that (d) holds for each p. If you should succeed

in proving that pn(a) ≤ 0.999999n, is this a sharper result?

(f) Assume that the moment generating function M(t) = E exp(tX) exists for (at least) 0 ≤ t ≤
t0. Show that

pn(a) ≤ ρn, where ρ = ρ(a) = min
0≤c≤t0

M(c)

exp(ac)
,

and show that ρ < 1. (If ρ = 1 the result would still hold, but it would be a boring and

rather unpublishable one.)

(g) Find ρ = ρ(a) explicitly, when Xi ∼ N(0, 1), and when Xi ∼ N(0, σ2).

(h) It is practical to have explicit results also for pn(a) = Pr{X̄n ≥ ξ+ a}, of the type above, for

the case of EXi = ξ. Establish such results.

(i) Find ρ = ρ(a) explicitly for the cases (1) Xi ∼ χ2
m; (2) Xi ∼ Bin(1, p); and (3) Xi ∼ Pois(λ).

37. The discrete and continuous parts of a cumulative distribution function

Let F be an arbitrary cumulative distribution function onR. Show that one always may decompose

F into F = Fc + Fd, where Fc is continuous and Fd is discrete.

38. Integrate and display your integrity

well

39. A probabilistic excursion into number theory

In this exercise we shall construct certain types of probability distributions on the natural numbers,

via placing probabilities on the the exponents in their prime number factorisations. This becomes

an excursion into the world of number theory, to show some their results and formulae, but with

the probabilist’s hat and spectacles. Let p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11, etc., be the prime

numbers.

(a) Find, like Gauß did when he was a little kid, all the prime numbers up tp 100. Gauß didn’t

stop there; as a 15 year old boy in 1792 he had essentially understood the fundamental prime

number theorem π(x)
.
= x/ log x, where π(x) is the number of primes below x, see point (xx)

below. This was not formally proven until about 1896.
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(b) Prove, as Euclid did about 2300 year ago, that there are infinitely many primes! (Later

proofs of interest include those of Kummer, Pólya, Euler, Axel Thue, Perott, Auric, Métrod,

Washington, and Fürstenberg. Even further proofs flow as corollaries of statements proved

below, in points (g) and (k).)

(c) We do have 63 = 32·71, 104 = 23·131, 30 141 766 = 32·51·171·312·41, 702 958 333 = 71·114·193,

right? Make it clear to you that each natural number n may be expressed in a unique prime

factorisation fashion, in the form n = px1
1 p

x2
2 · · · pxmm . Here m is the number of the highest

prime in n, and x1, x2, · · · , xm are the exponents. We may also write n as the infinite product∏∞
j=1 p

xj
j , where all xj from a certain j0 + 1 onwards are equal to zero.

(d) This opens a probabilistic door for us, creating a random natural number N by expressing

it as

N = pX1
1 pX2

2 · · · =
∞∏
j=1

p
Xj
j ,

where X1, X2, . . . are random variables in {0, 1, 2, . . .}, with the property that only a finite

number of them are above 1. Let us try: assume the Xj are independent. Show that N is

then a welldefined random variable if and only if

∞∑
j=1

Pr{Xj ≥ 1} =

∞∑
j=1

[1− Pr{Xj = 0}] <∞.

The division here is sharp: if the sum diverges, then not only is N = ∞ with positive

probability, but with probability 1.

(e) As a preliminary example, let the Xj be independent with Xj ∼ Pois(dj). Show that N is

welldefined if and only if
∑∞
j=1 dj <∞. Find under this condition the expected values of N

and logN . Simulate say 104 such N , with dj = 1/i3/2.

(f) There’s more beauty to be revealed for the case where the Xj are taken independent and

geometrically distributed. Let Xj ∼ Geo(cj), which means

Pr{Xj = x} = (1− cj)xcj for x = 0, 1, 2, . . . .

Find the mean, the variance, and the generating function for Xj :

EXj =
1− cj
cj

, VarXj =
1− cj
c2j

, E sXj =
cj

1− (1− cj)s
.

Show also that Pr{Xj ≥ x} = (1 − cj)x. Demonstrate that N is welldefined if and only if∑∞
j=1(1− cj) <∞.

(g) You recall
∑∞
n=1 1/n2 = π2/6, Euler’s sensational finding from about 1734? Consider the

choice cj = 1−1/p2j . Find the probability that N is equal to 1, 11, 63, 103 141 766. Show that

Pr{N = n} =
6

π2

1

n2
for n = 1, 2, 3, . . . . (0.1)

Then you have also essentially deduced the following intriguing formula:

π2

6
=

∞∏
j=1

p2j
p2j − 1

=
4

3

9

8

25

24

49

48

121

120
· · · .

As a low-hanging fruit in this garden: If there had been merely a finite number of primes,

then π2 would have been rational. Hence (fill in!).
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(h) Show also, conversely, that if N is given the (0.1) distribution, then by necessity this leads

to independent Xj which are geometrically distributed with parameters cj = 1− 1/p2j .

(i) With this distribution for N , find the following probabilities:

(i) that N is odd [answer: 3
4 ];

(ii) that N is a prime numbers;

(iii) that N is a a ‘prime potens’, of the form py, for some y ≥ 1;

(iv) that N is a factor in 100;

(v) that 100 is a factor in N [answer: 1/1002];

(vi) that N turns out to be a square [answer: π2/15 !];

(vii) invent something yourself.

(j) Find the mean for N and for logN . And their variances, unless your willpower is strong

enough to resist.

(k) Riemann’s zeta function is defined as ζ(α) =
∑∞
n=1 1/nα, for α > 1. Thus ζ(2) = π2/6,

ζ(4) = π4/90, ζ(6) = π6/945, etc. Agree to say that N is zeta distributed with parameter α

provided

Pr{N = n} =
1

ζ(α)

1

nα
for n = 1, 2, 3, . . . .

Assume from this point (k) onwards, up to point (y) below, thatN has this distribution. Show

that this is equivalent to having the Xj independent and geometric, with Xj ∼ Geo(1−1/pαj ).

Derive in particular the following intriguing representation for the zeta function:

ζ(α) =
∏

prime

pα

pα − 1
=

∞∏
j=1

pαj
pαj − 1

.

This formula was first derived by Euler. So now we know that

π4

90
=

16

15

81

80

625

624

2401

2400
· · · .

Show also that ζ(α) → ∞ as α → 1, which would not have been true if God had given us

only a finite number of prime numbers.

(l) Generalise the questions and solutions from point (i) to the more general situation with

parameter α rather than 2. Replace also ‘100’ with an arbitrary n = px1
1 · · · pxmm for sub-points

4 and 5. [A few answers: (l1) 1−1/2α; (l2) ζ(α)−1
∑∞

1 1/pαj ; (l3) ζ(α)−1
∑∞

1 1/(pαj −1); (l4)

Pr{N is a factor in n} = ζ(α)−1n−α
∏m
j=1(1+pαj + · · ·+p

αxj
j ); (l5) Pr{n is a factor in N} =

1/nα; (l6) ζ(2α)/ζ(α); (l7) go confidently in the direction of your dreams.]

(m) Say that the number n is modest if all prime exponents xj for n are 0 or 1. Show us three

modest and three immodest numbers. Show that the probability that N is modest is ζ(2α)−1.

Demonstrate also that

B(α) =
∑

n modest

1

nα
=

ζ(α)

ζ(2α)
=

∏
p primtall

pα + 1

pα
.
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(n) Say that n is second-order modest if all prime exponents are less than or equal to 2. Show

that the probability that N is such a second-order modest number is ζ(3α)−1.

(o) Show that the events {63 is a factor in N} and {100 is a factor in N} are independent, whereas

{18 is a factor in N} and {52 is a factor in N} are dependent. Generalise – ask the right

questions, and find the right answers.

(p) Show, by studying EN for α = 2, that
∏
p prime(1 + 1/p) = ∞, and deduce from this that∑

p prime 1/p =∞. This was first proven by Euler.

(q) Let M = max{j : Xj ≥ 1} be the last prime factor present in the random N . FInd the

probability distribution of M , and show that it has expected value

∞∑
m=1

[
1−

∞∏
j=m

(
1− 1

pαj

)]
.

(r) Let f and g be functions definde on the natural numbers. Define the Dirichlet convolution

or Dirichlet product f ∗ g by

(f ∗ g)(n) =
∑
d|n

f(d)g(n/d), n ≥ 1,

with the sum taken over those d in {1, . . . , n} which are factors in n. Show that

∞∑
n=1

f(n)

nα

∞∑
n=1

g(n)

nα
=

∞∑
n=1

(f ∗ g)(n)

nα
, or E (f ∗ g)(N) = ζ(α) E f(N) E g(N),

if the two series converge.

(s) Let σ(n) be the number of d in {1, . . . , n} which are factors in n. Show that
∑∞
n=1

σ(n)
nα =

ζ(α)2; (i) by working with Eσ(N), (ii) by Dirichlet convolution.

(t) Let φ(n) be the so-called Euler totient function, defined as the number of numbers in

{1, . . . , n} which are reciprocally prime with n. It is an important tool in mathematical num-

ber theory. Show that φ(p) = p−1 if p is a prime; that more generally φ(px) = px−px−1 if p

is a prime; that the function is so-called multiplicative, which means that φ(mn) = φ(m)φ(n)

for reciprocally primeish numbers; that n =
∑
d|n φ(d); that (1 ∗ φ)(n) = n; and that

φ(n) = n
∏
p|n(1− 1/p). Prove the formulae

∞∑
n=1

φ(n)

n2
=∞,

∞∑
n=1

φ(n)

nα
=
ζ(α− 1)

ζ(α)
;

(1) by working with Eφ(N), (2) by working with Eφ(N)/N ; (3) by using Dirichlet convolu-

tions.

(u) Another number theoretic function of importance is the Möbius function, defined by µ(1) = 1;

µ(pj1 · · · pjr ) = (−1)r if the number is over distinct prime numbers; and µ(n) = 0 for all

other n. Show that µ(n) 6= 0 only for the modest numbers studied in point (m). Prove the

glamorous formula

∞∑
n=1

µ(n)

nα
=

1

ζ(α)
, or

∞∑
n=1

1

nα

∞∑
n=1

µ(n)

nα
≡ 1,
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by working with the mean of the random µ(N) in a couple of different ways. This point may

also be solved by conditioning a zeta distribution on the event that the outcome is modest;

check point (
√
π).

(v) It follows without too much efforts that limα→1

∑∞
n=1

µ(n)
nα = 0; mathematical finesse is

however called for to really prove that
∑∞
n=1

µ(n)
n = 0. Attempt to come up with such

finesse. Then attempt to attach The Fundamental Prime Number Theorem, which says that

if π(x) is the number of primes in {1, 2, . . . , x}, then π(x)
.
= x/ log x. [One may prove that

this implies and is implied by
∑∞
n=1

µ(n)
n = 0; see Amitsur’s ‘On arithmetic functions’ in

Journal of Analytic Mathematics, 1956.]

(w) Time has come to introduce the von Mangholdt function, definde by Λ(n) = log p for prime

potens numbers n = px for x ≥ 1, and Λ(n) = 0 for all numbers not being prime potenses.

Work with E Λ(N) and show that

∞∑
n=1

Λ(n)

nα
=

∑
p primtall

log p

pα − 1
;

(x) and show that ∑
p primtall

log p

pα − 1
=

∞∑
n=1

log n

nα

/ ∞∑
n=1

1

nα
=
−ζ ′(α)

ζ(α)
,

by working with logN . Prove also that (1 ∗ Λ)(n) = log n.

(y) Find a numerical value for B, the Viggo Brun constant. [Answer: 1.90216054 ...]

(z) Let N1 and N2 be independent and zeta distributed with the same parameter α. Find the

distribution for the product N1N2.

(æ) If n1, . . . , nk are given numnbers, let γ{n1, . . . , nk} be their greatest common divisor; for

instance, γ{20, 30} = 10 and γ{18, 24, 36} = 6. If N1 and N2 are independent and zeta

distributed with parameters α1 and α2, show that γ{N1, N2} becomes zeta distributed with

parameter α1 + α2. Generalise.

(ø) Find also the probability distribution for λ{N1, N2}, the smallest common multiplum for N1

and N2, when α1 = α2. [The answer is more complicated than for γ{N1, N2}.]

(̊a) Back to semi-reality, or perhaps pseudo-reality, for a little while: The zeta distribution has

been applied in certain loinguistic studies; it has e.g. been tenatively shown that the frequency

of words, in long text corpora, to a certain degree of accuracy follows a zeta distribution.

Assume you read V words by Shakespeare, that V1 words are seen only once, that V2 words

are seen precisely twice, etc. Then the relative frequencies Vn/V should be fitted to the zeta

model’s ζ(α)−1/nα. Estimate α for a few of your favourite authors. Who has the lowest α,

Anne-Catharine Vestly or Knud Pedersen Hamsun? – The zeta distribution is also partly

like a discretised Pareto distribution, and will perhaps fit sufficiently well to distributions of

income in different socio-economic groups. Try it out, for a group you know.

(ß) Assume N1, . . . , Nk are independent numbers drawn from the zeta distribution with parame-

ter α. Show that the geometric mean (N1 · · ·Nk)1/k is sufficient and complete. Explain how

you can find the maximum likelihood estimator.
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(�oo) I have simulated 25 realisations from a zeta distribution, using a simple R programme, and

found

2, 3, 3, 1, 8, 1, 1, 1, 3, 1, 12, 29,

1, 37, 10, 2, 5, 1, 1, 6, 10, 1, 4, 1, 6.

Only I know the value of α being used. Estimate this value, and give a confidence interval.

(a̋) Show that the maximum likelihood estimator is strongly consistent, and find its limit distri-

bution.

(ç̈) Show that every even number (except 2) can be expressed as a sum of two primes, e.g. by

studying the behaviour of an analytic continuation of the zeta function near zero.

(
√
π) Let us attempt another type of distributions for the Xj than the geomtric ones. Let Xj be

0 or 1, with probabilities 1 − aj and aj . Then N is accordingly a random modest number

(see point (m)). Show that N is welldefined if and only of
∑∞
j=1 aj < ∞. Show that if aj

is taken to be 1/(pαj + 1), then Pr{N = n} = B(α)−1/nα, for modest n. Show again that

B(α) =
∏
p prime(p

α + 1)/pα = ζ(α)/ζ(2α). Show that this model may be characterised as

the conditional zeta distribution given that N is modest, and, alternatively, as the conditional

zeta distribution given that all the geometric Xj are in {0, 1}. Do a little formula excursion

by finding expressions for natural quantities in two ways; in one way, working with the

N distribution directly, in another way, using the Xj distributions. You may e.g. impress

yourself by showing ∑
n modest

log n

nα
=

ζ(α)

ζ(2α)

∑
p primtall

log p

pα + 1
,

and your surroundings by proving

Pr
{ ∞∑
j=1

Bin{1, 1/(1 + p2j )} becomes even
}

= 0.70.

[Consider Eµ(N).]

(�oı) Then try out Poisson distributed prime number exponents. Say that N is Poisson prime

number exponentially distributed with parameters {d1, d2, d3, . . .} provided Xj ∼ Pois(dj),

where these are still independent. Let in particular dj = d/pαj , and show that

Pr{N = n} = e−dA(α) ds(n)

nαg(n)
, n = 1, 2, 3, . . . ,

where s(n) =
∑m
j=1 xj and g(n) =

∏m
j=1 xj !, for given n with factorisation as in (c), and

where A(α) =
∑
p primtall 1/pα. Show, for example, that

∞∑
n=1

1

nα
1

g(n)
= exp{A(α)},

∞∑
n=1

log n

nαg(n)
= exp{A(α)}

∑
p primtall

log p

pα
.

Show that the probability of having a prime number for N is A(α) exp{−A(α)} when dj =

1/pαj . Find some further formulae in the flow created. Show that products of independent

Poisson prime number exponentially distributed variables stay being Poisson prime number

exponentially distributed. Find a sufficient and complete statistic based on N1, . . . , Nk when

d and α are unknown parameters. Study the large-sample properties of the maxium likelihood

estimators.
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(γ) We know that
∏
p p

2/(p2 − 1) = π2/6, but what is
∏
p p

2/(p2 − 0.99)? – Allow me to show

you my gemneralised zeta function:

ζd(α) =

∞∑
n=1

ds(n)

nα
, 0 < d ≤ 2, α > 1,

where s(n) = x1 + x2 + · · · is the extravaganza for the number n. Show taht this de facto

exists for 0 < d ≤ 2 and α > 1. Give probabilistic proofs for the following formulae, which

all reduce to previous results when d is set equal to 1:

ζd(α) =
∏

p primtall

pα

pα − d
,

∞∑
n=1

ds(n)µ(n)

nα

∞∑
n=1

ds(n)

nα
≡ 1,

∞∑
n=1

ds(n)σ(n)

nα
= ζd(α)2,

∑
n beskjeden

ds(n)

nα
=

∏
p primtall

pα + d

pα
=

ζd(α)

ζd2(2α)
,

∞∑
n=1

ds(n)φ(n)

nα
=
ζd(α− 1)

ζd(α)
,

∞∑
n=1

ds(n)f(n)

nα

∞∑
n=1

ds(n)h(n)

nα
=

∞∑
n=1

ds(n)(f ∗ h)(n)

nα
,

∞∑
n=1

ds(n) log n

nα
= ζd(α)

∞∑
n=1

ds(n)Λ(n)

nα
,

Pr
{ ∞∑
j=1

Bin{1, d/(pαj + d)} becomes even
}

=
1

2
+

1

2

ζd2(2α)

ζd(α)2
.

Employ as probabilitistic tools (1) Xj ∼ Poisson(d/pαj ); (2) Xj ∼ Bin{1, d/(pαj + d)}; (3)

Xj ∼ Geo(1− d/pαj ). Discuss relations between these models.

(œ) Investigate consequences for the distribution of primes among the natural numbers, from∑∞
n=1 d

s(n)µ(n)/n = 0; as mentioned this statement, for the special case of d = 1, implies

the glorious prime number distribution theorem.

(α) Put a probability distribution on the modest numers by taking the Xj to form a time inho-

mogeneous Markov chain on {0, 1}. Grei ut.

(ω) Find out a wholde deal on how the prime numbers and their cousins are distributed among

the natural numbers, by studying distributions of the type D{N |N ≤ n0}, where n0 is big,

and by moving this threshold for the α parameter to the left of 1. Meld fra hvor du g̊ar.

40. Quartile and quantile differences

One way of assessing the spread of a distribution F , based on data X1, . . . , Xn, is via the quartile

difference Q3 −Q1, the difference between the upper and lower quartiles. Often this difference is
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multiplied with a well chosen constant, such that the resulting spread estimate becomes approxi-

mately unbiased for the the standard deviation parameter in the case of F being normal.

What is this constant? How clever is this estimator, compared with the usual one under

normal conditions? Which cons and pres does the estimator have, compared to others? How do

yet other naturally generalised competitors behave, where one uses upper and lower ε quantile,

instead of upper and lower 25 percent quantiles? Which of these is best, on Gauß’s home turf?

(a) Attempt to make your own exam type exercise, containing progressively more detailed ques-

tions, based on the above sentences.

(b) Define Q3 = X[0.75n] and Q3 = X[0.25n], where X(1) < · · · < X(n) are the order statistics.

Speculate a little regarding suitable interpolation tricks to make them better.

(c) For a few of the points below we shall take F to be the normal N(ξ, σ2). Assume for this

point only that F is strictly increasing with a continuous density f . Show that Q3 − Q1

converges almost surely to q3 − q1 = F−1(0.75) − F−1(0.25). With which constant do we

need to multiply Q3 −Q1 in order to get a consistent estimator of σ, in the case where F is

a normal?

(d) Show that (√
n(Q1 − q1)
√
n(Q3 − q3)

)
→d

(
(F−1)′(0.25)U

(F−1)′(0.75)V

)
,

where (
U

V

)
∼ N2(

(
0

0

)
,

(
3/16 1/16

1/16 3/16

)
.

(e) Let z(ε) = Φ−1(1− ε) be the upper ε quantile for the standard normal, and let

σ̃ =
Q3 −Q1

2z(0.25)
=
Q3 −Q1

1.349
.

Show that
√
n(σ̃ − σ) tends to N(0, κ2), with κ = 1.1664σ.

(f) Here it is natural to compare with the traditional estimator σ̂, the empirical standard devi-

ation. Show (which is more standard, right?) that
√
n(σ̂ − σ)→d N(0, (0.7071σ)2).

(g) Then generalise! That is, consider

σ̃(ε) =
X[(1−ε)n] −X[εn]

2z(ε)
=
F−1n (1− ε)− Fn(ε)

2z(ε)
,

where Fn is the empirical cumulative distribution function, and find the limit distribution

for
√
n(σ̃ − σ) under normal conditions. The answer should becomes N(0, κ(ε)2), where

κ(ε) =

√
2π

2ε

√
2ε(1− ε) exp{ 12z(ε)

2}σ.

(h ) Investigate how the precision of σ̃(ε) changes when ε varies between 0 and 1
2 . Show in

particular that the asymptotically speaking very best estimator of this type, under normality,

is

σ∗ =
F−1n (0.931)− F−1n (0.069)

2.9666
,
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with limit distribution N(0, (0.8755σ)2), a loss of 1.2382 compared with the optimal value

σ/
√

2.

(i) Investigate the behavious of such estimators outside normality.

41. something

well

42. something

well

43. something

well
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