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Abstract

These are Exercises and Lecture Notes for the new course on Statistical Large-Sample Theory,

STK 4090 (Master level) or STK 9090 (PhD level), for spring semester 2020. Some of them

are taken from earlier collections, from other courses of mine, but most of the exercises are

created during this semester. The internal organisation and sequence of exercises might not

be pedagogically optimal (yet), since more exercises are added on dynamically as the course

progresses.

1. Illustrating the Central Limit Theorem (CLT)

Consider the variable

Zn = (X1 + · · ·+Xn − nµ)/(
√
nσ) =

√
n(X̄n − µ)/σ,

where the Xi are i.i.d. and uniform on the unit interval; here µ = 1/12 and σ = 1/
√

12 are the

mean and standard deviation, respectively. Your task is to simulate sim = 104 realisations of the

variable Zn, for say n = 1, 2, 3, 5, 10, 25, and display the corresponding histograms. Observe how

the distribution of Zn comes closer and closer to the standard normal, as n increases. To illustrate

just how close, consider the case of n = 6, for example, and attempt to test the hypothesis that the

104 data points you have simulated come from the standard normal. Comment on your findings.

2. Illustrating the Law of Large Numbers (LLN)

Simulate say 104 variables X1, X2, . . . drawn from the unit exponential distribution. Compute and

display the sequence

Wn = n−1
n∑
i=1

(Xi − X̄n)3 for n = 1, 2, 3, . . . ,

where X̄n = n−1
∑n
i=1Xi. Comment on your picture, and show indeed that Wn converges in

probability. Generalise your finding.

3. The continuity lemma for convergence in probability

There are actually two ‘continuity lemmas’ for convergence in probability.
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(a) Suppose Xn →pr a, with a being a constant. Show that if g is a function continuous at point

x = a, then indeed g(Xn)→pr g(a).

(b) Suppose more generally that Xn →pr X, with the limit being a random variable. Show that

if g is a function that is continuous in the set in which X falls, then g(Xn)→pr g(X).

Comments: (i) To prove (b), use uniform continuity over closed and bounded intervals. (ii) In

situations of relevance for this course, part (a) will be the more important. The typical application

may be that consistency of θ̂n for θ implies consistency of g(θ̂n) for g(θ).

4. The maximum of uniforms

Let X1, . . . , Xn be i.i.d. from the uniform [0, θ] distribution, and let Mn = maxi≤nXi.

(a) Show that Mn →pr θ (i.e. the maximum observation is a consistent estimator of the unknown

endpoint).

(b) Find the limit distribution of Vn = n(θ −Mn), and use this result to find an approximate

95% confidence interval for θ.

5. Distribution functions

For a real random variable X, consider its distribution function F (t) = Pr{X ≤ t}. Show that

F is right continuous, and that its set of discontinuities is at most countable (in particular, the

set of continuity points is dense). Show also that F (t) → 1 when t → ∞ whereas F (t) → 0 when

t→ −∞.

6. A ‘master theorem’ for convergence in distribution

[xx check Ferguson’s definition. xx] Let Xn and X be real random variables, with probability

distributions Pn and P [so that Pn(A) = Pr{Xn ∈ A}, etc.], and consider the following five

statements:

(1) Xn →d X;

(2) for every open set A, lim inf Pn(A) ≥ P (A);

(3) for every closed set B, lim supPn(B) ≤ P (B);

(4) for every set C that is P -continuous, in the sense that P (∂C) = 0, where ∂C = C̄ − C0 is

the ‘boundary’ of C (the closure minus its interior), limPn(C) = P (C);

(5) for every bounded and continuous g, lim E g(Xn) = E g(X).

Show that these five statements are in fact all equivalent. Hints: For (1) implies (2), write

A = ∪∞j=1Aj for open sets Aj = (aj , bj), where aj and bj can be chosen to be among the continuity

points for the distribution function F for X. Then show that (2) implies (3) [using that B is closed

if and only if Bc is open], and that (3) implies (4). For (4) implying (5), take g to have its values

inside [0, 1], without loss of generality, and write

E g(Xn) =

∫ ∫ 1

0

I{y ≤ g(x)} dy dPn(x) =

∫ 1

0

Pr{g(Xn) ≥ y} dy,
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along with a Lebesgue theorem for convergence of integrals. Finally, for (5) implies (1), construct

for given F -continuity point x a continuous function gε that is close to g0(y) = I{y ≤ x}.

7. The continuity lemma for convergence in convergence

Suppose Xn →d X and that h is continuous (and not necessarily bounded). Show that h(Xn)→d

h(X). [Use e.g. statement (5) of the previous exercise.] Thus exp(tXn)→d exp(tX), etc.

8. Convergence in distribution for discrete variables

Let Xn and X take on values in the set of natural numbers, and let pn(j) = Pr{Xn = j} and

p(j) = Pr{X = j} for j = 0, 1, 2, . . .. Show that Xn →d X if and only if pn(j) → p(j) for each j.

To illustrate this, prove the classic ‘law of small numbers’ (first proven by Ladislaus Bortkiewicz

in 1898), that a binomial is close to a Poisson, if the count number is high and the probability is

small.

9. Convergence in probability in dimension two (and more)

We have defined Xn →pr X to mean that

Pr{|Xn −X| ≥ ε} → 0 for each ε > 0.

The natural generalisation for the two-dimensional (and higher) case is to say that

Xn = (Xn,1, Xn,2)→pr X = (X1, X2)

provided

Pr{‖Xn −X‖ ≥ ε} → 0 for each ε > 0,

where ‖Xn−X‖ is the usual Euclidean distance. Prove that Xn →pr X (in such a two-dimensional

situation) if and only if Xn,j →pr Xj for j = 1, 2 (i.e. ordinary one-dimensional convergence for

each component). Generalise.

10. Moment generating functions and convergence in distribution

For a random variable X, its moment generating function (mgf) is

M(t) = E exp(tX),

defined for each t at which the expectation exists. Among its basic properties are the following;

attempt to demonstrate these.

1. M(0) = 1, and when the mean is finite, then M ′(t) exists, with M ′(0) = EX.

2. More generally, if |X|r has finite mean, then M (r)(0) = EXr (the rth derivative of M , at

the point zero).

3. When X and Y are independent, then

MX+Y (t) = MX(t)MY (t)

in the obvious notation. This generalises of course to the case of more than two independent

variables.
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4. If X and Y are two variables with identical mgfs, then their distributions are identical. [There

are also ‘inversion formulae’ in the literature, giving the distribution as a function of M .]

5. If Xn and X have mgfs Mn and M , then Mn(t)→M(t) for all t in a neighbourhood around

zero is sufficient for Xn →d X.

6. In particular, if Mn(t)→ exp( 1
2 t

2) for all t close to zero, then Xn →d N(0, 1).

11. Finite moments

Show that if EX2 is finite, then necessarily EX is finite too. Show more generally that E |X|q is

finite, then also E |X|p is finite for all p < q. Prove indeed that (E |X|p)1/p is a non-decreasing

function of p.

12. Proving the CLT (under some restrictions)

Let X1, X2, . . . be i.i.d. with some distribution F having finite variance and mean, and assume for

simplicity that the mean is zero.

(a) Show that if the mgf exists, in a neighbourhood around zero, then

M(t) = 1 + 1
2σ

2t2 + o(t2),

where σ is the standard deviation of Xi.

(b) Show that
√
nX̄n has mgf of the form

M∗n(t) = M(t/
√
n)n = {1 + 1

2σ
2t2/n+ o(1/n)}n,

and conclude that the CLT holds.

13. Characteristic functions

The trouble with the approach to the CLT above is that is has somewhat limited scope, in that some

distributions do not have a finite mgf (since exp(tX) may be too big with too high probability

for its mean to be finite). The so-called characteristic functions (chf) provide a more elegant

mathematical tool in this regard. For a random variable X, its chf is defined as

φ(t) = E exp(itX) = E cos(tX) + iE sin(tX),

with i =
√
−1 the complex unit, and t ∈ R.

(a) Show that the chf always exists, and that is is uniformly continuous. Show that the chf for

the N(0, σ2) is exp(− 1
2σ

2t2).

(b) Assume Xn →d X. Show that

φn(t) = E exp(itXn)→ φ(t) = E exp(itX) for all t.
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(c) The converse is also true (but harder to prove), and it is ‘inside the curriculum’ to know this:

If

φn(t) = E exp(itXn) converges to some function φ(t)

for all t in an interval around zero, and this limit function is continuous there, then (i) φ(t) is

necessarily the chf of some random variable X, and (ii) there is convergence in distribution

Xn →d X.

14. When is the sum of Bernoulli variables close to a normal?

Let X1, X2, . . . be independent Bernoulli variables (i.e. taking values 0 and 1 only), with Xi ∼
Bin(1, pi). We shall investigate when

Zn =

∑n
i=1(Xi − pi)

Bn
→d N(0, 1),

where Bn = {
∑n
i=1 pi(1−pi)}1/2. Show, using mgfs or chfs, that this happens if and only

∑∞
i=1 pi =

∞ – and show, additionally, that this condition is equivalent to Bn →∞. Thus the cases pi = 1/i

and pi = 1/i2, for example, are fundamentally different. For this second case, investigate the limit

distribution of Zn (which by the arguments given is not normal).

15. Proving the CLT (again)

Using chfs instead of mgfs gives a more elegant and unified proof of the CLT.

(a) Show that if X has a finite mean ξ, then its chf satisfies

φ(t) = 1 + iξt+ o(t) for t→ 0.

Also, its derivative exists, and φ′(0) = ξ.

(b) Show similarly that if X has a finite variance σ2, then

φ(t) = 1 + iξt− 1
2 (ξ2 + σ2t2) + o(t2) for t→ 0.

(c) If X1, X2, . . . are i.i.d. with mean zero and finite variance σ2, then show that Zn =
√
nX̄n

has chf of the form

φn(t) = {1− 1
2σ

2t2/n+ o(1/n)}n.

Prove the CLT from this.

16. More on characteristic functions

Here are some more details and illustrations pertaining to characteristic functions.

(a) Find the characteristic function for a binomial distribution and for a Poisson distribution.

(b) Demonstrate the classical ‘Gesetz der kleinen Zahlen’ (cf. Exercise 8), that a binomial (n, pn)

tends to the Poisson λ, when npn → λ.
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(c) Show that for the Cauchy distribution, with density f(x) = (1/π)(1 +x2)−1, the chf is equal

to exp(−|t|). Note that this function does not have a derivative at zero, corresponding to the

fact that the Cauchy does not have a finite mean (cf. Exercise 15(a)).

(d) Let X1, . . . , Xn be i.i.d. from the Cauchy. Show that the chf of X̄n = (1/n)
∑n
i=1Xi is identi-

cal to the chf of a single observation. Conclude, by the ‘inversion theorem’, the amazing fact

that X̄n =d Xi; the average has the same statistical distribution as each single component.

(e) There are several versions of ‘inverse theorems’, providing a mechanism for finding the dis-

tribution of a random variable from its chf; the perhaps primary aspect, defined as an ‘inside

curriculum fact’, is that the chf indeed fully characterises the distribution (if X and Y have

identical chfs, then their distributions are identical too). One such inversion formula is as

follows: if X has a chf φ that is integrable (i.e.
∫
|φ(t)|dt is finite), then X has a density f ,

for which a formula is

f(x) =
1

2π

∫
exp(−itx)φ(t) dt.

Write down what this means, in the cases of a normal and a Cauchy, and verify the implied

formulae. Show that f in each such case of an integrable φ(t) necessarily becomes continuous.

(f) Show that the chf for the uniform [−1, 1] distribution becomes φ(t) = (sin t)/t. Deduce that∫ ∣∣∣ sin t
t

∣∣∣dt =∞ even though

∫
sin t

t
dt = π.

(g) Point (e) above gives a formula for the density f of a variable, in the case of it having an

integrable chf φ. One also needs a more general formula, for the case of variables that do not

have densities, etc. Let X be any random variable, with cumulative distribution function F

and chf φ (but with nothing assumed about it having a density), and add on to it a little bit

of Gaußian noise:

Zσ = X + Yσ, with Y ∼ N(0, σ2).

Then Z has a density (even if X does not have one). Our intention is to let σ → 0, to come

back to X. Show that Zσ has cdf of the form

Fσ(x) =

∫
F (x− y)

1√
2π

1

σ
exp(− 1

2y
2/σ2) dy

and chf equal to

φσ(t) = φ(t) exp(− 1
2σ

2t2).

Hence show that

fσ(x) =
1

2π

∫
exp(−itx)φ(t) exp(− 1

2σ
2t2) dt.

and that, consequently,

Pr{X + Yσ ∈ [a, b]} = Fσ(b)− Fσ(a)

=
1

2π

∫
exp(−itb)− exp(−ita)

−it
φ(t) exp(− 1

2σ
2t2) dt.
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(h) Conclude with the following general inversion formula, valid for all continuity points a, b of

F :

F (b)− F (a) = lim
σ→0

1

2π

∫
exp(−itb)− exp(−ita)

−it
φ(t) exp(− 1

2σ
2t2) dt.

17. Scheffé’s Lemma

There are situations where gn(y) → g(y) for all y, for appropriate functions gn and g, does not

imply
∫
gn(y) dy →

∫
g(y) dy. However, it may be shown that this is not a problem when gn and

g are probability densities (due to certain ‘dominated convergence’ Lebesgue theorems from the

theory of measure and integration): if gn and g are the densities of Yn and Y , and gn(y) → g(y)

for (almost) all y, then ∫
|gn − g|dy → 0,

and, in particular,

Pr{Yn ∈ [a, b]} =

∫ b

a

gn(y) dy →
∫ b

a

g(y) dy = Pr{Y ∈ [a, b]}

for all intervals, and we have Yn →d Y . This is Scheffé’s Lemma, defined as an inside curriculum

fact.

(a) Let Yn ∼ tn, a t distribution with n degrees of freedom. Show that Yn →d N(0, 1), using this

lemma. Can you prove this statement in a simpler fashion?

(b) If X1, . . . , Xn are i.i.d. from a uniform on [0, 1], with Mn = maxi≤nXi, show using the Scheffé

Lemma that n(1−Mn) tends to a unit exponential in distribution.

(c) Suppose Xn ∼ χ2
n, and consider Zn = (Xn − n)/

√
2n. Prove that Zn →d N(0, 1).

18. The median

‘The median isn’t the message’, said Stephen Jay Gould (when he was diagnosed with a serious

illness and looked at survival statistics). Let X1, . . . , Xn be i.i.d. from a positive density f with

true median θ = F−1( 1
2 ).

(a) Suppose for simplicity that n is odd, say n = 2m+ 1. Show that Mn has density of the form

gn(y) =
(2m+ 1)!

m!m!
F (y)m{1− F (y)}mf(y).

(b) Show then that the density of Zn =
√
n(Mn − θ) can be written in the form

hn(z) = gn(θ + z/
√
n)/
√
n.

Prove that

hn(z)→ (2π)−1/22f(θ) exp{− 1
24f(θ)2z2},

which by the Scheff’e Lemma means that

√
n(Mn − θ)→d N(0, τ2) with τ = 1

2/f(θ).

Why does this also prove that the sample median is consistent for the population median?
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(c) Generalise to the following quantilian result: ifQn(p) = F−1n (p) is the pth quantile of the data,

then Qn(p) converges in probability to the corresponding population quantile ξp = F−1(p),

and

√
n{Qn(p)− ξp} →d N(0, τ2p ) with τ2p = p(1− p)/f(ξp)

2.

(d) Constructing a nonparametric confidence interval for an unknown median is not that simple –

the ‘usual recipe’ works, up to a point, and tells us that if we first find a consistent estimator

κ̂ of the doubly unknown quantity f(θ) (f is unknown, and so is θ, its median), then we’re

in business. We would then have

Zn =

√
n(Mn − θ)

τ̂
→d N(0, 1), with τ̂ = 1

2/κ̂,

from which it then follows that

In = θ̂ ± 1.96 τ̂ /
√
n obeys Pr{θ ∈ In} → 0.95.

The trouble lies in finding a satisfactory κ̂. Try to construct such a consistent estimator.

19. Limiting local power games

This exercise is meant to study a ‘prototype situation’ in some detail; the type of calculation and

results will be seen to rather similar in a long range of different situations. – Let X1, . . . , Xn be

i.i.d. data from N(θ, σ2). One wishes to test H0 : θ = θ0 vs. the alternative that θ > θ0, where θ0

is a known value (e.g. 3.14). Two tests will be considered, based on respectively

X̄n = n−1
n∑
i=1

Xi and Mm = median(X1, . . . , Xn).

(a) For given value of θ, prove that

√
n(X̄n − θ) →d N(0, σ2),
√
n(Mn − θ) →d N(0, (π/2)σ2).

Note that the first result is immediate and actually holds with exactness for each n; the

second result requires more care, e.g. working with the required density, cf. Exercise xx.

(b) Working under the null hypothesis θ = θ0, show that

Zn =
√
n(X̄n − σ0)/σ̂ →d N(0, 1),

Z∗n =
√
n(Mn − θ0)/{(π/2)1/2σ̂} →d N(0, 1),

where σ̂ is any consistent estimator of σ.

– [xx Figure 1: Limiting local power functions for two tests for θ ≤ θ0 against θ > θ0, in the

situation with N(θ, σ2) data. based on the mean (full line) and on the median (dotted line).

xx]

(c) Conclude from this that the two tests that reject H0 provided respectively

X̄n > θ0 + z0.95σ̂/
√
n and Mn > θ0 + z0.95(π/2)1/2σ̂/

√
n,

8



where z0.95 = Φ−1(0.95) = 1.645, have the required asymptotic significance level 0.05;

αn = Pr{reject H0 | θ = θ0} → 0.05.

(There is one such αn for the first test, and one for the other; both converge however to 0.05.)

(d) Then our object is to study the local power, the chance of rejecting the null hypothesis under

alternatives of the type θn = θ0 + δ/
√
n. In generalisation of (b), show that

Zn =
√
n(X̄n − σ0)/σ̂ →d N(δ/σ, 1),

Z∗n =
√
n(Mn − θ0)/{(π/2)1/2σ̂} →d N((π/2)1/2δ/σ, 1),

[xx check this xx] where the convergence in question takes place under the indicated θ0+δ/
√
n

parameter values. (You need to generalise the results of Exercise xx, to the δ 6= 0 case.)

(e) Use these results to show that

πn(δ) = Pr{reject | θ0 + δ/
√
n} → Φ(δ/σ − z0.95),

π∗n(δ) = Pr{reject | θ0 + δ/
√
n} → Φ((2/π)1/2δ/σ − z0.95),

for the two power functions. Draw these in a diagram, and compare; cf. Figure xx.

(f) Assume one wishes n to be large enough to secure that the power function is at least at level

β for a certain alternative point θ1. Using the local power approximation, show that the

required sample sizes are respectively

nA
.
=

σ2

(θ1 − θ0)2
(z1−α + zβ)2 and nB

.
=

σ2/c2

(θ1 − θ0)2
(z1−α + zβ)2

for tests A (based on the mean) and B (based on the median), with c =
√

2/π. Compute

these sample sizes for the case of β = 0.05 and θ1 = θ0 + 1
2σ, when also α = 0.05.

(g) Lehmann defines ‘the ARE [asymptotic relative efficiency] of test B with respect to test A’

as

ARE = lim
nA(θ1, β)

nB(θ1, β)
,

the limit in question in the sense of alternatives θ1 coming closer to the null hypothesis at

speed 1/
√
n. Show that indeed

ARE =
σ2

σ2/c2
= c2 = 2/π = 0.6366

in this particular situation – test A needs only ca. 64% as many data points to reach the

same detection power as B needs.

20. Testing the normal scale

We have essentially covered Exercise 19 in class [xx alter this xx], as a ‘prototype illustration’ of

the themes developed in Chapter 3 [xx change this xx]. Here is another illustration, for you to

check that you may develop similar results in a different situation. Data X1, . . . , Xn are now taken

to be i.i.d. N(0, σ2), and the object is to construct and compare tests for H0 : σ = σ0 vs. σ > σ0,

where σ0 is some known quantity.
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(a) Show that EX2
i = σ2 and E |Xi| = bσ, with b =

√
2/π. Show that the estimators

σ̂A =
{
n−1

n∑
i=1

X2
i

}1/2

and σ̂B = n−1
n∑
i=1

|Xi|/b

are both consistent for σ.

(b) Find the limit distributions for

Zn,A =
√
n(σ̂A − σ) and Zn,B =

√
n(σ̂B − σ),

and comment on your findings.

(c) Construct explicit tests A and B, based on respectively σ̂A and σ̂B , that have asymptotic

level α = 0.01.

(d) Show that both tests are consistent.

(e) Then we need to compare the two tests in terms of local power. For alternatives of the type

σ = σ0 + δ/
√
n, establish limit distributions of the type

√
n(σ̂A − σ0) →d N(δ, τ2Aσ

2),
√
n(σ̂B − σ0) →d N(δ, τ2Bσ

2),

with certain values (that you should find) for τA and τB .

(f) Establish the limiting local power functions πA(δ) and πB(δ), and plot them in a diagram

(cf. Figure xx of the previous exercise).

(g) Compute the required sample sizes nA and nB for tests A and B to achieve detection power

0.99 when the true state of affairs is σ = 1.333σ0.

(h) Compute the ARE for test A w.r.t. test B, and comment.

(i) Could there be other tests for H0 here that would outperform test A?

21. Algebras of sets

Let X be a non-empty set, and let A be a class of subsets of X . We say that A is an algebra if

(i) both X and the empty-set is in A; (ii) each time A is in A, then also its complement Ac is in

A; (iii) whem A1, . . . , An are sets in A, then also their union ∪ni=1Ai is in A. In other words: an

algebra is closed with respect to the formation of complements and finite unions.

(a) Are you yourself closed with respect to compliments?

(b) What’s the world’s smallest algebra?

(c) Show that an algebra is also closed with respect to finite intersections.

(d) And show that A−B = A ∩Bc is within the algebra if A and B are so.

(e) Construct an example of an algebra.

(f) What was Muhammad ibn Musa al-Khvarizmi [xx fix xx]?
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22. Sigma-algebras of sets

A sigma-algebra is an algebra A which is also closed with respect to countably infinite formations

of unions, that is, if A1, A2, . . . are in A, then so is ∪∞i=1Ai.

(a) Let A consist of all those subsets of R, the real numbers, which are themselves either finite

or have finite complements. Is A an algebra? A sigma-algebra?

(b) Show that a sigma-algebra is closed with respect to countably infinite intersection operations.

23. Inverse and direct images of functions

Let f : X → Y be an arbitrary function, from set X to set Y. For subsets A of X , define the

direct image as fA = f(A) = {f(x) : x ∈ A}. And for subsets B of Y, define the inverse image as

f1B = f−1(B) = {x : f(x) ∈ B}.

(a) Let {Bi : i ∈ I} be a collection of subsets of Y. Show that f−1(∪iBi) = ∪if−1(Bi).

(b) And that f−1(∩iBi) = ∩if−1(Bi).

(c) Then show f−1(Y −B) = X − f−1(B).

(d) Show that A ⊂ f−1f(A) for all A.

(e) And that B ⊃ ff−1B for all B.

(f) For functions f : X → Y and g : Y → Z, show that (g ◦ f)−1(C) = f−1g−1C.

24. Independence of complements

We say that A1, . . . , An are independent if

P (Ai1 ∩ · · · ∩Ai,m) = P (Ai1) · · ·P (Aim)

for all subsets {i1, . . . , im} of {1, . . . , n}. Thus we demand quite a bit more than merely saying

that P (A1 ∩ · · · ∩An) = P (A1) · · ·P (An).

Show that if A1, . . . , An are independent, then so are Ac1, . . . , A
c
n.

25. The Borel–Cantelli emma

Let A1, A2, . . . denote events with probabilities P (A1), P (A2), . . .. We are interested in the event

that infinitely many of these Aj occur, i.e.

Ai.o. = ∩i≥1 ∪j≥i Aj .

(a) Show that if
∑∞
i=1 P (Ai) < ∞, then P (Ai.o.) = 0. In other words, it is certain that only a

finite number of the Ai will occur.

(b) Show under the additional assumption that the Aj are independent, that the previous result

holds in the ‘if and only if’ sense, i.e. that if
∑∞
i=1 P (Ai) = ∞, then P (Ai.o.) = 1. In

particular, under independence, the probability of Ai.o. is either 0 or 1, there is no ‘middle

ground’ possibility.
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26. Does this happen infinitely often?

Let X1, X2, . . . be independent with the same Expo(1) distribution, i.e. with density e−x for x ≥ 0.

(a) Will Xn > 10 + 0.99 log n infinitely often ?

(b) Will Xn > 10 + 1.00 log n infinitely often?

(c) Will Xn > 10 + 1.01 log n infinitely often?

(d) Will Xn > 1012 + log n infinitely often?

27. Normal deviations

Let X be standard normal, and write as usual Φ(x) for its cumulative distribution function and

φ(x) for its density.

(a) Show that Pr{X > x} = 1− Φ(x)
.
= φ(x)/x for large x.

(b) Let X1, X2, . . . be independent standard normals. Pray, will Xn > 0.000001
√
n for infinitely

many n?

(c) Let X̄n be the average of the first n of these observations. Show that |X̄n| > ε for at most a

finite number of n.

(d) If X1, X2, . . . are independent and N(ξ, 1), what is the probability that X̄n converges to ξ?

28. If you are sure about infinitely many things

Show that the event ∩∞n=1Bn is certain (i.e. it takes place with probability 1) if and only if each of

the Bn is certain. Construct an example to show that this is not the case for uncountably many

certain events.

29. At msot countably many discontinuities

Let F be a one-dimensional cumulative distribution function, and let D be the set of its disconti-

nuities. Show that D is either empty, finite, or countably infinite.

30. Borel sets in dimensions one and two

Let B be the Borel sets in R; it is the smallest sigma-algebra containing all intervals. Define then

B × B = σ(C),

the smallest sigma-algebra containing all A×B, with A and B in B. (This is the usual definition

of a product-sigma-algebra.) Define also

B2 = σ(O),

where O is the set of all open sets in R2 (This is the usual definition of a Borel-sigma-algebra.)

Show that, luckily & conveniently, B × B = B2.

31. Measurability of coordinate functions

12



Let f, g : (Ω,A)→ (R,B) be two functions, and let h : Ω→ R2 be given by

h(ω) = (f(ω), g(ω)).

Show that h is measurable if & only if both f and g are measurable. Generalise.

32. Normal mixtures

Let first X and Y be independent, with X a standard normal and Y very discrete, Pr{Y = y} = 1
2

for y ∈ {−1, 1}. Note that a sum of a continuous and a discrete variable will have a continuous

distribution. Find the density for X + Y . Find also its mean and variance.

Generalise to finite normal mixtures, which may be done in several ways, with one path as

follows. Start with the density

f(x) =

k∑
j=1

pjφσj (x− µj),

defined via the triples (pj , µj , σj) for j = 1, . . . , k. Here the pj make up a probability vector,

i.e. nonnegative with sum 1, and φσ(x−u) = σ−1φ(σ−1(x−µ)) is the density of the normal (µ, σ).

One may now view X, drawn from f , as the result of the two-stage operation where the index

J = j is drawn from {1, . . . , k} first, with Pr{J = j} = pj , and X | j ∼ N(µj , σ
2
j ). Use this to find

E (X | j) and Var (X | j), and then the unconditional mean and variance for X.

The class of finite normal mixtures is a large one, and even with say k ≤ 5 components a broad

range of shapes may be attained – play a bit with this on your computer, drawing f(x) curves on

your screen, by mixing in different input vectors of pj , µj , σj .

Find also a formula for the skewness of f , i.e. γ = E {(X − µ)/σ}3, in terms of the overall

mean and standard deviation µ and σ.

33. The Markov inequality, and bounding tails

Sometimes one wishes to bound tail probabilities, say Pr{X ≥ a} ≤ B(a), and there are several

ways in which to do this.

(a) Let X be a nonnegative random variable, and let h(x) be a nonnegative and nondecreasing

function for x ≥ 0. Demonstrate Neravenstvo Markova (Markov’s inequality), that

Pr{X ≥ a} ≤ Eh(X)/h(a).

(b) If X is a random variable with mean ξ, show that

Pr{|X − ξ| ≥ ε} ≤ E |X − ξ|p

εp
for each p > 0.

For p = 2 we have the famous special case of Neravenstvo Qebyxëva (Chebyshov’s in-

equality, from about 1853).

(c) Let X1, X2, . . . be independent normals N(ξ, 1), so that X̄n ∼ N(ξ, 1/n). Writing N for a

standard normal, show that

Pr{|X̄n − ξ| ≥ ε} ≤
n−p/2E |N |p

εp
for each p > 0.

For n = 100 and ε = 0.05, compute the exact probability in question and track the right

hand bound as a function of p. Which p gives the sharpest bound, in this case?

13



(d) Let X have moment generating function M(t) = E exp(tX), assumed to be finite for at least

0 ≤ t ≤ t0. Show that

Pr{X ≥ a} ≤ min
0≤t≤t0

exp(−ta)M(t).

(e) For the case of X̄n ∼ N(ξ, 1/n) studied above, show that

Pr{X̄n − ξ ≥ ε} ≤ exp(− 1
2nε

2).

Compare this bound with the one reached via Chebyshov above.

(f) Let X1, X2, . . . be i.i.d. from the χ2
b distribution, with E X̄n = b and Var X̄n = 2b/n. Show

that with ε > 0 given, there will with probability 1 be only finitely many n with X̄n ≥ b+ ε.

(g) [xx invent another application here. xx]

34. Amor’s arrows sometimes miss

[From Nils Exam ST 200 December 1989, Exercise 1(e).] Amor shoots her arrows infinitely many

times. Her shots are independent of each other, and shot no. n is (Xn, Yn), measured from origo,

where Xn and Yn are independent and standard normal. The distance from origo is hence Rn =

(X2
n + Y 2

n )1/2, the square-root of a χ2
2. Show that its density becomes f(r) = r exp(− 1

2r
2). So

how often does she miss, and by how much? Find the probabilities for these three events: that

Rn ≥ 0.99
√

2 log n infinitely often; that Rn ≥ 1.00
√

2 log n infinitely often; that Rn ≥ 1.01
√

2 log n

infinitely often.

35. Twins and paradigm shifts

Let X1, X2, X3, . . . be an infinite sequence of independent standard normals. Say that Xi−1 and

Xi are twins if |Xi −Xi−1| ≤ ci, and that there is a regime shift if |Xi −Xi−1| ≥ di. Such ci and

di will be specified below. Let A be the event that the sequence experiences infinitely many twins,

and B the event that the history sees infinitely many regime shifts.

(a) Write up an exact formula for the expected number of twins in the course of the first n = 1012

observations. Put up similarly a formula for the expected number of regime shifts over the

same period.

(b) Find P (A) for the cases ci = 1/i and ci = 1/i2.

(c) Find P (B) for the cases di = 2
√

log i and di = 2.001
√

log i.

(d) Construct a criterion, expressed in terms of the ci and di, for the history to experience with

probability 1 both infinitely many twins and infinitely many regime shifts. Here it many be

convenient to first deal with the situations where infi ci > 0 and supi di <∞, and then focus

on the cases where ci → 0 and di →∞.

36. Quickness of convergence of average to its mean

Assume that X1, X2, . . . is a sequence of i.i.d. variables with mean zero. Hence X̄n will converge

to 0 in probability, and even with probability 1, by the Law of Large Numbers. But how fast will

pn(a) = Pr{X̄n ≥ a} → 0, for fixed a > 0?

14



(a) Assume VarXi = σ2 is finite. Show that pn(a) ≤ σ2/(na2), hence speed of order 1/n.

(b) Assume that also the fourth order moment is finite, EX4
i < ∞. Show that pn(a) ≤

Kσ2/(n2a4), for a certain K, which gives speed of order 1/n2.

(c) Let us generalise: Assume that E |Xi|p <∞, for a suitable p ≥ 2. The central limit theorem

says
√
nX̄n/σ →d N(0, 1). One may show that

E |
√
nX̄n/σ|p → E |N(0, 1)|p,

see e.g. von Bahr (1965). Show from this that

E |X̄n|p ≤ cpn−p/2 E |N(0, 1)|p σp for all n,

for a suitable constant cp – and one may use cp = 1.001 if ‘for all n’ is replaced by ‘for all

large enough n’.

(d) Show that pn(a) ≤ Kp/(n
p/2ap) for a suitable constant Kp.

(e) Assume Xi has moments of all orders, such that (d) holds for each p. If you should succeed

in proving that pn(a) ≤ 0.999999n, is this a sharper result?

(f) Assume that the moment generating function M(t) = E exp(tX) exists for (at least) 0 ≤ t ≤
t0. Show that

pn(a) ≤ ρn, where ρ = ρ(a) = min
0≤c≤t0

M(c)

exp(ac)
,

and show that ρ < 1. (If ρ = 1 the result would still hold, but it would be a boring and

rather unpublishable one.)

(g) Find ρ = ρ(a) explicitly, when Xi ∼ N(0, 1), and when Xi ∼ N(0, σ2).

(h) It is practical to have explicit results also for pn(a) = Pr{X̄n ≥ ξ+ a}, of the type above, for

the case of EXi = ξ. Establish such results.

(i) Find ρ = ρ(a) explicitly for the cases (1) Xi ∼ χ2
m; (2) Xi ∼ Bin(1, p); and (3) Xi ∼ Pois(λ).

37. The discrete and continuous parts of a cumulative distribution function

Let F be an arbitrary cumulative distribution function onR. Show that one always may decompose

F into F = Fc + Fd, where Fc is continuous and Fd is discrete.

38. A probabilistic excursion into number theory

In this exercise we shall construct certain types of probability distributions on the natural numbers,

via placing probabilities on the the exponents in their prime number factorisations. This becomes

an excursion into the world of number theory, to show some their results and formulae, but with

the probabilist’s hat and spectacles. Let p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11, etc., be the prime

numbers.

(a) Find, like Gauß did when he was a little kid, all the prime numbers up tp 100. Gauß didn’t

stop there; as a 15 year old boy in 1792 he had essentially understood the fundamental prime

number theorem π(x)
.
= x/ log x, where π(x) is the number of primes below x, see point (xx)

below. This was not formally proven until about 1896.
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(b) Prove, as Euclid did about 2300 year ago, that there are infinitely many primes! (Later

proofs of interest include those of Kummer, Pólya, Euler, Axel Thue, Perott, Auric, Métrod,

Washington, and Fürstenberg. Even further proofs flow as corollaries of statements proved

below, in points (g) and (k).)

(c) We do have 63 = 32·71, 104 = 23·131, 30 141 766 = 32·51·171·312·41, 702 958 333 = 71·114·193,

right? Make it clear to you that each natural number n may be expressed in a unique prime

factorisation fashion, in the form n = px1
1 p

x2
2 · · · pxmm . Here m is the number of the highest

prime in n, and x1, x2, · · · , xm are the exponents. We may also write n as the infinite product∏∞
j=1 p

xj
j , where all xj from a certain j0 + 1 onwards are equal to zero.

(d) This opens a probabilistic door for us, creating a random natural number N by expressing

it as

N = pX1
1 pX2

2 · · · =
∞∏
j=1

p
Xj
j ,

where X1, X2, . . . are random variables in {0, 1, 2, . . .}, with the property that only a finite

number of them are above 1. Let us try: assume the Xj are independent. Show that N is

then a well-defined random variable if and only if

∞∑
j=1

Pr{Xj ≥ 1} =

∞∑
j=1

[1− Pr{Xj = 0}] <∞.

The division here is sharp: if the sum diverges, then not only is N = ∞ with positive

probability, but with probability 1.

(e) As a preliminary example, let the Xj be independent with Xj ∼ Pois(dj). Show that N is

well-defined if and only if
∑∞
j=1 dj <∞. Find under this condition the expected values of N

and logN . Simulate say 104 such N , with dj = 1/i3/2.

(f) There’s more beauty to be revealed for the case where the Xj are taken independent and

geometrically distributed. Let Xj ∼ Geo(cj), which means

Pr{Xj = x} = (1− cj)xcj for x = 0, 1, 2, . . . .

Find the mean, the variance, and the generating function for Xj :

EXj =
1− cj
cj

, VarXj =
1− cj
c2j

, E sXj =
cj

1− (1− cj)s
.

Show also that Pr{Xj ≥ x} = (1 − cj)x. Demonstrate that N is well-defined if and only if∑∞
j=1(1− cj) <∞.

(g) You recall
∑∞
n=1 1/n2 = π2/6, Euler’s sensational finding from about 1734? Consider the

choice cj = 1−1/p2j . Find the probability that N is equal to 1, 11, 63, 103 141 766. Show that

Pr{N = n} =
6

π2

1

n2
for n = 1, 2, 3, . . . . (0.1)

Then you have also essentially deduced the following intriguing formula:

π2

6
=

∞∏
j=1

p2j
p2j − 1

=
4

3

9

8

25

24

49

48

121

120
· · · .

As a low-hanging fruit in this garden: If there had been merely a finite number of primes,

then π2 would have been rational. Hence (fill in!).
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(h) Show also, conversely, that if N is given the (0.1) distribution, then by necessity this leads

to independent Xj which are geometrically distributed with parameters cj = 1− 1/p2j .

(i) With this distribution for N , find the following probabilities:

(i) that N is odd [answer: 3
4 ];

(ii) that N is a prime numbers;

(iii) that N is a a ‘prime potens’, of the form py, for some y ≥ 1;

(iv) that N is a factor in 100;

(v) that 100 is a factor in N [answer: 1/1002];

(vi) that N turns out to be a square [answer: π2/15 !];

(vii) invent something yourself.

(j) Find the mean for N and for logN . And their variances, unless your willpower is strong

enough to resist.

(k) Riemann’s zeta function is defined as ζ(α) =
∑∞
n=1 1/nα, for α > 1. Thus ζ(2) = π2/6,

ζ(4) = π4/90, ζ(6) = π6/945, etc. Agree to say that N is zeta distributed with parameter α

provided

Pr{N = n} =
1

ζ(α)

1

nα
for n = 1, 2, 3, . . . .

Assume from this point (k) onwards, up to point (y) below, thatN has this distribution. Show

that this is equivalent to having the Xj independent and geometric, with Xj ∼ Geo(1−1/pαj ).

Derive in particular the following intriguing representation for the zeta function:

ζ(α) =
∏

prime

pα

pα − 1
=

∞∏
j=1

pαj
pαj − 1

.

This formula was first derived by Euler. So now we know that

π4

90
=

16

15

81

80

625

624

2401

2400
· · · .

Show also that ζ(α) → ∞ as α → 1, which would not have been true if God had given us

only a finite number of prime numbers.

(l) Generalise the questions and solutions from point (i) to the more general situation with

parameter α rather than 2. Replace also ‘100’ with an arbitrary n = px1
1 · · · pxmm for sub-points

4 and 5. [A few answers: (l1) 1−1/2α; (l2) ζ(α)−1
∑∞

1 1/pαj ; (l3) ζ(α)−1
∑∞

1 1/(pαj −1); (l4)

Pr{N is a factor in n} = ζ(α)−1n−α
∏m
j=1(1+pαj + · · ·+p

αxj
j ); (l5) Pr{n is a factor in N} =

1/nα; (l6) ζ(2α)/ζ(α); (l7) go confidently in the direction of your dreams.]

(m) Say that the number n is modest if all prime exponents xj for n are 0 or 1. Show us three

modest and three immodest numbers. Show that the probability that N is modest is ζ(2α)−1.

Demonstrate also that

B(α) =
∑

n modest

1

nα
=

ζ(α)

ζ(2α)
=

∏
p primtall

pα + 1

pα
.
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(n) Say that n is second-order modest if all prime exponents are less than or equal to 2. Show

that the probability that N is such a second-order modest number is ζ(3α)−1.

(o) Show that the events {63 is a factor in N} and {100 is a factor in N} are independent, whereas

{18 is a factor in N} and {52 is a factor in N} are dependent. Generalise – ask the right

questions, and find the right answers.

(p) Show, by studying EN for α = 2, that
∏
p prime(1 + 1/p) = ∞, and deduce from this that∑

p prime 1/p =∞. This was first proven by Euler.

(q) Let M = max{j : Xj ≥ 1} be the last prime factor present in the random N . FInd the

probability distribution of M , and show that it has expected value

∞∑
m=1

[
1−

∞∏
j=m

(
1− 1

pαj

)]
.

(r) Let f and g be functions defined on the natural numbers. Define the Dirichlet convolution

or Dirichlet product f ∗ g by

(f ∗ g)(n) =
∑
d|n

f(d)g(n/d), n ≥ 1,

with the sum taken over those d in {1, . . . , n} which are factors in n. Show that

∞∑
n=1

f(n)

nα

∞∑
n=1

g(n)

nα
=

∞∑
n=1

(f ∗ g)(n)

nα
, or E (f ∗ g)(N) = ζ(α) E f(N) E g(N),

if the two series converge.

(s) Let σ(n) be the number of d in {1, . . . , n} which are factors in n. Show that
∑∞
n=1

σ(n)
nα =

ζ(α)2; (i) by working with Eσ(N), (ii) by Dirichlet convolution.

(t) Let φ(n) be the so-called Euler totient function, defined as the number of numbers in

{1, . . . , n} which are reciprocally prime with n. It is an important tool in mathematical num-

ber theory. Show that φ(p) = p−1 if p is a prime; that more generally φ(px) = px−px−1 if p

is a prime; that the function is so-called multiplicative, which means that φ(mn) = φ(m)φ(n)

for reciprocally primeish numbers; that n =
∑
d|n φ(d); that (1 ∗ φ)(n) = n; and that

φ(n) = n
∏
p|n(1− 1/p). Prove the formulae

∞∑
n=1

φ(n)

n2
=∞,

∞∑
n=1

φ(n)

nα
=
ζ(α− 1)

ζ(α)
;

(1) by working with Eφ(N), (2) by working with Eφ(N)/N ; (3) by using Dirichlet convolu-

tions.

(u) Another number theoretic function of importance is the Möbius function, defined by µ(1) = 1;

µ(pj1 · · · pjr ) = (−1)r if the number is over distinct prime numbers; and µ(n) = 0 for all

other n. Show that µ(n) 6= 0 only for the modest numbers studied in point (m). Prove the

glamorous formula

∞∑
n=1

µ(n)

nα
=

1

ζ(α)
, or

∞∑
n=1

1

nα

∞∑
n=1

µ(n)

nα
≡ 1,
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by working with the mean of the random µ(N) in a couple of different ways. This point may

also be solved by conditioning a zeta distribution on the event that the outcome is modest;

check point (
√
π).

(v) It follows without too much efforts that limα→1

∑∞
n=1

µ(n)
nα = 0; mathematical finesse is

however called for to really prove that
∑∞
n=1

µ(n)
n = 0. Attempt to come up with such

finesse. Then attempt to attach The Fundamental Prime Number Theorem, which says that

if π(x) is the number of primes in {1, 2, . . . , x}, then π(x)
.
= x/ log x. [One may prove that

this implies and is implied by
∑∞
n=1

µ(n)
n = 0; see Amitsur’s ‘On arithmetic functions’ in

Journal of Analytic Mathematics, 1956.]

(w) Time has come to introduce the von Mangholdt function, definde by Λ(n) = log p for prime

potens numbers n = px for x ≥ 1, and Λ(n) = 0 for all numbers not being prime potenses.

Work with E Λ(N) and show that

∞∑
n=1

Λ(n)

nα
=

∑
p primtall

log p

pα − 1
;

(x) and show that ∑
p primtall

log p

pα − 1
=

∞∑
n=1

log n

nα

/ ∞∑
n=1

1

nα
=
−ζ ′(α)

ζ(α)
,

by working with logN . Prove also that (1 ∗ Λ)(n) = log n.

(y) Find a numerical value for B, the Viggo Brun constant. [Answer: 1.90216054 ...]

(z) Let N1 and N2 be independent and zeta distributed with the same parameter α. Find the

distribution for the product N1N2.

(æ) If n1, . . . , nk are given numbers, let γ{n1, . . . , nk} be their greatest common divisor; for

instance, γ{20, 30} = 10 and γ{18, 24, 36} = 6. If N1 and N2 are independent and zeta

distributed with parameters α1 and α2, show that γ{N1, N2} becomes zeta distributed with

parameter α1 + α2. Generalise.

(ø) Find also the probability distribution for λ{N1, N2}, the smallest common multiplum for N1

and N2, when α1 = α2. [The answer is more complicated than for γ{N1, N2}.]

(̊a) Back to semi-reality, or perhaps pseudo-reality, for a little while: The zeta distribution has

been applied in certain linguistic studies; it has e.g. been tentatively shown that the frequency

of words, in long text corpora, to a certain degree of accuracy follows a zeta distribution.

Assume you read V words by Shakespeare, that V1 words are seen only once, that V2 words

are seen precisely twice, etc. Then the relative frequencies Vn/V should be fitted to the zeta

model’s ζ(α)−1/nα. Estimate α for a few of your favourite authors. Who has the lowest α,

Anne-Catharine Vestly or Knud Pedersen Hamsun? – The zeta distribution is also partly

like a discretised Pareto distribution, and will perhaps fit sufficiently well to distributions of

income in different socio-economic groups. Try it out, for a group you know.

(ß) Assume N1, . . . , Nk are independent numbers drawn from the zeta distribution with parame-

ter α. Show that the geometric mean (N1 · · ·Nk)1/k is sufficient and complete. Explain how

you can find the maximum likelihood estimator.
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(�oo) I have simulated 25 realisations from a zeta distribution, using a simple R programme, and

found

2, 3, 3, 1, 8, 1, 1, 1, 3, 1, 12, 29,

1, 37, 10, 2, 5, 1, 1, 6, 10, 1, 4, 1, 6.

Only I know the value of α being used. Estimate this value, and give a confidence interval.

(a̋) Show that the maximum likelihood estimator is strongly consistent, and find its limit distri-

bution.

(ç̈) Show that every even number (except 2) can be expressed as a sum of two primes, e.g. by

studying the behaviour of an analytic continuation of the zeta function near zero.

(
√
π) Let us attempt another type of distributions for the Xj than the geomtric ones. Let Xj be

0 or 1, with probabilities 1 − aj and aj . Then N is accordingly a random modest number

(see point (m)). Show that N is well-defined if and only of
∑∞
j=1 aj < ∞. Show that if aj

is taken to be 1/(pαj + 1), then Pr{N = n} = B(α)−1/nα, for modest n. Show again that

B(α) =
∏
p prime(p

α + 1)/pα = ζ(α)/ζ(2α). Show that this model may be characterised as

the conditional zeta distribution given that N is modest, and, alternatively, as the conditional

zeta distribution given that all the geometric Xj are in {0, 1}. Do a little formula excursion

by finding expressions for natural quantities in two ways; in one way, working with the

N distribution directly, in another way, using the Xj distributions. You may e.g. impress

yourself by showing ∑
n modest

log n

nα
=

ζ(α)

ζ(2α)

∑
p primtall

log p

pα + 1
,

and your surroundings by proving

Pr
{ ∞∑
j=1

Bin{1, 1/(1 + p2j )} becomes even
}

= 0.70.

[Consider Eµ(N).]

(�oı) Then try out Poisson distributed prime number exponents. Say that N is Poisson prime

number exponentially distributed with parameters {d1, d2, d3, . . .} provided Xj ∼ Pois(dj),

where these are still independent. Let in particular dj = d/pαj , and show that

Pr{N = n} = e−dA(α) ds(n)

nαg(n)
, n = 1, 2, 3, . . . ,

where s(n) =
∑m
j=1 xj and g(n) =

∏m
j=1 xj !, for given n with factorisation as in (c), and

where A(α) =
∑
p primtall 1/pα. Show, for example, that

∞∑
n=1

1

nα
1

g(n)
= exp{A(α)},

∞∑
n=1

log n

nαg(n)
= exp{A(α)}

∑
p primtall

log p

pα
.

Show that the probability of having a prime number for N is A(α) exp{−A(α)} when dj =

1/pαj . Find some further formulae in the flow created. Show that products of independent

Poisson prime number exponentially distributed variables stay being Poisson prime number

exponentially distributed. Find a sufficient and complete statistic based on N1, . . . , Nk when

d and α are unknown parameters. Study the large-sample properties of the maxium likelihood

estimators.
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(γ) We know that
∏
p p

2/(p2 − 1) = π2/6, but what is
∏
p p

2/(p2 − 0.99)? – Allow me to show

you my generalised zeta function:

ζd(α) =

∞∑
n=1

ds(n)

nα
, 0 < d ≤ 2, α > 1,

where s(n) = x1 + x2 + · · · is the extravaganza for the number n. Show taht this de facto

exists for 0 < d ≤ 2 and α > 1. Give probabilistic proofs for the following formulae, which

all reduce to previous results when d is set equal to 1:

ζd(α) =
∏

p primtall

pα

pα − d
,

∞∑
n=1

ds(n)µ(n)

nα

∞∑
n=1

ds(n)

nα
≡ 1,

∞∑
n=1

ds(n)σ(n)

nα
= ζd(α)2,

∑
n beskjeden

ds(n)

nα
=

∏
p primtall

pα + d

pα
=

ζd(α)

ζd2(2α)
,

∞∑
n=1

ds(n)φ(n)

nα
=
ζd(α− 1)

ζd(α)
,

∞∑
n=1

ds(n)f(n)

nα

∞∑
n=1

ds(n)h(n)

nα
=

∞∑
n=1

ds(n)(f ∗ h)(n)

nα
,

∞∑
n=1

ds(n) log n

nα
= ζd(α)

∞∑
n=1

ds(n)Λ(n)

nα
,

Pr
{ ∞∑
j=1

Bin{1, d/(pαj + d)} becomes even
}

=
1

2
+

1

2

ζd2(2α)

ζd(α)2
.

Employ as probabilistical tools (1) Xj ∼ Poisson(d/pαj ); (2) Xj ∼ Bin{1, d/(pαj + d)}; (3)

Xj ∼ Geo(1− d/pαj ). Discuss relations between these models.

(œ) Investigate consequences for the distribution of primes among the natural numbers, from∑∞
n=1 d

s(n)µ(n)/n = 0; as mentioned this statement, for the special case of d = 1, implies

the glorious prime number distribution theorem.

(α) Put a probability distribution on the modest numers by taking the Xj to form a time inho-

mogeneous Markov chain on {0, 1}. Grei ut.

(ω) Find out a wholde deal on how the prime numbers and their cousins are distributed among

the natural numbers, by studying distributions of the type D{N |N ≤ n0}, where n0 is big,

and by moving this threshold for the α parameter to the left of 1. Meld fra hvor du g̊ar.

39. Quartile and quantile differences

One way of assessing the spread of a distribution F , based on data X1, . . . , Xn, is via the quartile

difference Q3 −Q1, the difference between the upper and lower quartiles. Often this difference is
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multiplied with a well chosen constant, such that the resulting spread estimate becomes approxi-

mately unbiased for the the standard deviation parameter in the case of F being normal.

What is this constant? How clever is this estimator, compared with the usual one under

normal conditions? Which cons and pres does the estimator have, compared to others? How do

yet other naturally generalised competitors behave, where one uses upper and lower ε quantile,

instead of upper and lower 25 percent quantiles? Which of these is best, on Gauß’s home turf?

(a) Attempt to make your own exam type exercise, containing progressively more detailed ques-

tions, based on the above sentences.

(b) Define Q3 = X[0.75n] and Q3 = X[0.25n], where X(1) < · · · < X(n) are the order statistics.

Speculate a little regarding suitable interpolation tricks to make them better.

(c) For a few of the points below we shall take F to be the normal N(ξ, σ2). Assume for this

point only that F is strictly increasing with a continuous density f . Show that Q3 − Q1

converges almost surely to q3 − q1 = F−1(0.75) − F−1(0.25). With which constant do we

need to multiply Q3 −Q1 in order to get a consistent estimator of σ, in the case where F is

a normal?

(d) Show that (√
n(Q1 − q1)
√
n(Q3 − q3)

)
→d

(
(F−1)′(0.25)U

(F−1)′(0.75)V

)
,

where (
U

V

)
∼ N2(

(
0

0

)
,

(
3/16 1/16

1/16 3/16

)
.

(e) Let z(ε) = Φ−1(1− ε) be the upper ε quantile for the standard normal, and let

σ̃ =
Q3 −Q1

2z(0.25)
=
Q3 −Q1

1.349
.

Show that
√
n(σ̃ − σ) tends to N(0, κ2), with κ = 1.1664σ.

(f) Here it is natural to compare with the traditional estimator σ̂, the empirical standard devi-

ation. Show (which is more standard, right?) that
√
n(σ̂ − σ)→d N(0, (0.7071σ)2).

(g) Then generalise! That is, consider

σ̃(ε) =
X[(1−ε)n] −X[εn]

2z(ε)
=
F−1n (1− ε)− Fn(ε)

2z(ε)
,

where Fn is the empirical cumulative distribution function, and find the limit distribution

for
√
n(σ̃ − σ) under normal conditions. The answer should becomes N(0, κ(ε)2), where

κ(ε) =

√
2π

2ε

√
2ε(1− ε) exp{ 12z(ε)

2}σ.

(h ) Investigate how the precision of σ̃(ε) changes when ε varies between 0 and 1
2 . Show in

particular that the asymptotically speaking very best estimator of this type, under normality,

is

σ∗ =
F−1n (0.931)− F−1n (0.069)

2.9666
,
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with limit distribution N(0, (0.8755σ)2), a loss of 1.2382 compared with the optimal value

σ/
√

2.

(i) Investigate the behaviour of such estimators outside normality.
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Figure 0.1: For each n, from 5 to 50, I have simulated sim = 104 realisations of Zn of Exercise 41, and then computed

the Kolmogorov–Smirnov test statistic Dsim = sim1/2 maxt |Fsim(t) − Φ(t)| to check whether the Zn

distribution is close to the limiting standard normal. The red horizontal line is at 1.358, the 0.95 point

of the null distribution.

40. Checking out the CLT

This is a cousin exercise to Exercise 1, using simulation to check whether the variable

Zn = (X1 + · · ·+Xn − nµ)/(
√
nσ) =

√
n(X̄n − µ)/σ

has a distribution decently close to the limiting standard normal, nor not. This is a function of

both the underlying distribution and the size of n, of course. One learned in Exercise 1 that if

the start distribution of a single Xi is the uniform, then the histograms of say 104 realisations

of Zn succeed in getting pretty close to the normal, for pretty low n. This might be classified

as ‘disappointing’ or ‘encouraging’, avhengig av dagsformen – at any rate, a key reason why this

happens is that the start distribution is symmetric.

To investigate different scenarios, with skewness on board, and where convergence towards

limiting normality is decidedly slower, let’s make the Beta distribution the start distribution, with
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parameters (a, b) = (1, 5). Display the density of this distribution; use the formulae

EX = ξ =
a

a+ b
and VarX =

ξ(1− ξ)
a+ b+ 1

ti find the mean and standard deviation, and compute the skewness γ3 = E (X − ξ)3/σ3. Show

also that

skew(Zn) = γ3/
√
n.

Your task is now to simulate sim = 104 realisations of the variable Zn, for say n = 5, 6, . . . , 50.

For each such n, you might check the corresponding histogram, and observe how these become

steadily ‘more normal’; you may also use plot(density(zz)) to look at the empirical densities

based on the sim realisations. Also, for each such simulated dataset of Zn, carry out two tests

for standard normality, in order to see how ‘far off’ from the limit one might still be. These tests

are first the Kolmogorov–Smirnov one, from 1933, and then the Karl Pearson one, from 1900, see

Figures 0.1 and 0.2. The first is

Dsim =
√

sim max
t
|Fsim(t)− Φ(t)|,

with Fsim(t) the empirical distribution function of the simulated data. The Pearson chi-squared

statistic is

Ksim =

m∑
j=1

(Nj − sim p0,j)
2

sim p0.j
,

withNj the number of datapoints landing in cell j, and p0,j the standard normal probability for that

cell. The cells can be constructed as one pleases, but here I have taken (Φ−1((j−1)/m),Φ−1(j/m)),

so that each of these have probability p0,j = 1/m under standard normality.

Observe how the distribution of Zn comes closer and closer to the standard normal, as n

increases, but rather slowly, and much more slowly than for Exercise 1, due to the skewness γ3/
√
n

tending slowly to zero. With 104 datapoints we observe that the distributions underlying the data

are in fact not really normal, yet, for n ≤ 40, say, but for larger n we would need even more data

to be able to statistically see that they are not really from the standard normal.

Feel free to build in your own extra test for normality, and make a figure corresponding to

Figures 0.1–0.2. You may also play around with the (a, b) parameters of the Beta distribution you

sample from, to check more extreme behaviour, in the sense of the Zn needing larger sample sizes

n in order to have a distribution closer to the standard normal.

41. The Strong Law of Large Numbers: Basics

Suppose X1, X2, . . . are i.i.d. from a distribution with finite E |Xi|. Then the mean ξ = EXi exists,

and the event

A = {X̄n → ξ} = ∩ε>0 ∪n0≥1 ∩n≥n0
{|X̄n| ≤ ε}

has probability equal to one hundred percent. As usual X̄n is the sample average of the n first

datapoints. I will tend to various steps to eventually demonstrate this statement, which is the

Strong Law of Large Numbers (first proven by Kolmogorov in 1933). We may for simplicity and

without loss of generality take ξ = 0 below.
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Figure 0.2: For each n, from 5 to 50, I have simulated 104 realisations of Zn of Exercise 41, and then computed

the Pearson chi-squared test statistic Kn =
∑20

j=1(Nj − 104p0,j)2/(104 p0,j), for closeness of Nj , the

number of points in cell j, namely (Φ−1((j− 1)/20),Φ−1(j/20)), to 104 p0,j , with p0,j = 1/20. The red

horizontal line is at 30.144, the 0.95 point of the null distribution.

(a) Show that A is the same as

∩N≥1 ∪n0≥1 ∩n≥n0{|X̄n| ≤ 1/N},

and deduce in particular from this that A is actually measurable – so it does make well-defined

sense to work with its probability.

(a) Show that if Pr(AN ) = 1 for all N , then Pr(∩N≥1An) = 1 – if your fully certain about a

countable number of events, then you’re also fully certain about all of them, jointly. This

is actually not true with a bigger index set: if X ∼ N(0, 1), then you’re 100% sure that

Bx = {X is not x} takes place, for each single x, but from this does it not follow that you

should be sure about ∩all xBx. Explain why.

(c) Show that Pr(A) = 1 if and only if Pr(Bn0
)→ 0, for each ε > 0, where

Bn0 = ∪n≥n0{|X̄n| ≥ ε}.

In words: for a given ε, the probability should be very low that there is any n ≥ n0 with

|X̄n| ≥ ε.
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(d) A simple bound is of course

Pr(Bn0
) ≤

∑
n≥n0

Pr{|X̄n| ≥ ε},

so it suffices to show, if possible, under appropriate conditions, that
∑

Pr{|X̄n| ≥ ε} is a

convergent series. With finite variance σ2, show that the classic simple Chebyshov bound

does not solve any problem here.

(e) Show, however, that if the fourth moment is finite, then

Pr{|X̄n| ≥ ε} ≤
1

ε4
E |X̄n|4 ≤

c

ε4
1

n2
,

for a suitable c. So under this condition, which is moderately hard, we’ve proven the strong

LLN.

(f) One may squeeze more out of the chain of arguments below, which I indicate here, without

full details. Assume E |Xi|r is finite, for some r > 2, like r = 2.02. Then one may show, via

arguments in von Bahr (1965), that the sequence E |
√
nX̄n|r is bounded. This leads to the

bound

Pr{|X̄n| ≥ ε} ≤
1

(
√
nε)r

E |
√
nX̄n|r,

and these form a convergent series. We have hence proven (modulo the von Bahr thing) that

the strong LLN holds for finite E |Xi|2+ε, an improvement over the finite E |Xi|4 condition. –

To get further, trimming away on the conditions until we are at the Kolmogorovian position

of only requiring finite mean, we need more technicalities; see the following exercise.

42. The Strong Law of Large Numbers: nitty-gritty details

This exercise goes through the required extra technical details, along with a few intermediate

lemmas, to secure a full proof of the full LLN theorem: as long as E |Xi| is finite, the infinite

sequence of sample means X̄n will with probability equal to a hundred percent converge to ξ = EXi.

(a) We start with Kolmogorov’s inequality: Consider independent zero-mean variablesX1, . . . , Xn

with variances σ2
1 , . . . , σ

2
n, and with partial sums Si = X1 + · · ·+Xi. Then

Pr{max
i≤n
|Si| ≥ ε} ≤

VarSn
ε2

=
1

ε2

n∑
i=1

σ2
i .

Note that this is a much stronger result than the special case of caring only about |Sn|, with

Pr{|Sn| ≥ ε} ≤ VarSn/ε
2, which is the Chebyshov inequality. To prove it, work with the

disjoint decomposition

Ai = {|S1| < ε, . . . , |Si−1| < ε, |Si| ≥ ε} and A = ∪ni=1Ai = {max
i≤n
|Si| ≥ ε}.

Show that

ES2
n ≥ ES2

nI(A) =

n∑
i=1

ES2
nI(Ai),

that

ES2
nI(Ai) = E (Si + Sn − Si)2I(Ai) ≥ ε2 Pr(Ai),

and that this leads to the inequality asked for.
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(b) Consider a sequence of independent X1, X2, . . . with means zero and variances σ2
1 , σ

2
2 , . . ..

Show that if
∑∞
i=1 σ

2
i is convergent, then

∑∞
i=1Xi is convergent with probability 1. – It

suffices to show that the sequence of partial sums Sn = X1 + · · · + Xn is Cauchy with

probability 1. Show that this is the same as

lim
n→∞

Pr
[
∪i,j≥n{|Si − Sj | ≥ ε}

]
= 0 for each ε > 0.

Use the Kolmogorov inequality to show this.

(c) A quick example to illustrate this result is as follows. Consider

X =
X1

10
+
X2

100
+

X3

1000
+ · · · ,

a random number in the unit interval, with the Xi independent, and with no further assump-

tions. Show that X exists with probability 1.

(d) Prove that if
∑∞
i=1 ai/i converges, then ān = (1/n)

∑n
i=1 ai → 0. To show this, consider

bn =
∑n
i=1 ai/i, so that bn → b for some b. Show an = n(bn − nn−1), valid also for n = 1 if

we set b0 = 0, and which leads to

n∑
i=1

ai = nbn − b0 − b1 − · · · − bn−1.

(e) From the above, deduce that ifX1, X2, . . . are independent with means ξ1, ξ2, . . . and variances

σ2
1 , σ

2
2 , . . ., and

∑∞
i=1 σ

2
i /i

2 converges, then X̄n − ξ̄n →a.s. 0. Here ξ̄n = (1/n)
∑n
i=1 ξi.

(f) Use the above to show that if X1, X2, . . . are independent with zero means, and all variances

are bounded, then indeed X̄n →a.s. 0. Note that this is a solid generalisation of what we

managed to show in Exercise 42 – first, the distributions are allowed to be different (not

identical); second, we have landed at a.s. convergence with the mild assumption of finite and

bounded variances, whereas we there needed the harsher conditions of finite fourth moments.

(g) We need characterisations of the tails of a distribution with finite mean. Show that if X ≥ 0,

with distribution function F , then EX =
∫∞
0
{1 − F (x)} dx. Show more generally that for

any X,

EX =

∫ 0

−∞
F (x) dx+

∫ ∞
0

{1− F (x)} dx.

(h) Then show that if X has finite mean, then

∞∑
i=1

1

i2

∫
(−i,i)

x2 dF (x) <∞.

(i) I note that upon examining the arguments needed to prove (h), one learns that this is an

if-and-only-if result. More generally, attempt to prove that

E |X|m <∞ if and only if

∞∑
i=1

1

i2

∫
(−i,i)

|x|m+1 dF (x) <∞.
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(j) We’re close to the Pole, ladies and gentlemen. For i.i.d. zero mean variables X1, X2, . . ., split

them up with the little trick

Xi = Yi + Zi, with Yi = XiI(|Xi| < i), Zi = XiI(|Xi| ≥ i).

We have X̄n = Ȳn+ Z̄n, so it suffices to demonstrate that Ȳn →a.s. 0 and Z̄n →a.s. 0 (since an

intersection of two sure events is sure). Use Borel–Cantelli to show that only finitely many Zi

are non-zero, and use previous results to demonstrate Ȳn − ξ̄n →a.s.→ 0 and ξ̄n → 0, where

ξ̄n is the average of ξi = EYi.

(j) So we’ve managed to prove the Strong LLN, congratulations. Attempt also to prove the

interesting converse that if E |Xi| =∞, then the sequence of sample means is pretty erratic

indeed:

Pr{lim sup
n→∞

X̄n =∞} = 1.

Simulate a million realisations from the density f(x) = 1/x2, for x ≥ 1, in your nearest

computer, display the sequence of X̄n on your screen, and comment.

43. Yes, we converge with probability one

We’ve proven that the sequence of empirical means converges almost surely to the population

mean, under the sole condition that this mean is finite. This half-automatically secures almost

sure convergence of various other natural quantities, almost without further efforts.

(a) Suppose X1, X2, . . . are i.i.d. with finite variance σ2. Show that the classical empirical stan-

dard deviation

σ̂n =
{ 1

n− 1

n∑
i=1

(Xi − X̄n)2
}1/2

converges a.s. to σ. Note again that nothing more is required than a finite second moment.

(b) Suppose the third moment is finite, such that the skewness γ3 = E {(X − ξ)/σ}3 is finite.

Show that

γ̂3,n =
1

n

n∑
i=1

(Xi − X̄n)3

σ̂3

is strongly consistent for γ3.

(c) Then suppose the fourth moment is finite, such that the kurtosis γ4 = E {(X − ξ)/σ}4 − 3 is

finite. Construct a strongly consistent estimator for this kurtosis.

(d) Assume that (X1, Y1), (X2, Y2), . . . is an i.i.d. sequence of random pairs, with finite variances,

and define the population correlation coefficient in the usual fashion, as ρ = cov(X,Y )/(σ1σ2).

Show that the usual empirical correlation coefficient

Rn =

∑n
i=1(Xi − X̄n)(Yi − Ȳn)

{
∑n
i=1(Xi − X̄n)2}1/2{

∑n
i=1(Yi − Ȳn)2}1/2

converges with probability one hundred percent to ρ.
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(e) Formulate and prove a suitable statement regarding almost sure convergence of smooth func-

tions of means.

44. Exam STK 201 1989, #1

Determine for each of the following statements whether it is true or not. If it is correct, give a

short proof; if it is incorrect, construct a counterexample.

(a) If X and Y are two real random variables defined on the same probability space, and

φX(t) = E exp(itX) = E exp(itY ) = φY (t) for all t,

then X = Y with probability 1.

(b) If (X,Y ) is a random pair, withe property that

E exp{i(sX + tY )} = E exp(isX) E exp(itY ) for all s and t,

then X and Y are stochastically independent.

(c) If Xn and X are real random variables, and Xn converges in distribution to X, then

lim
n→∞

Pr{Xn = x} = 0

for each continuity point x for the cumulative distribution function for X.

(d) If Xn and X are real random variables, and Xn converges in distribution to X, and a certain

set A has the property that Pr{Xn ∈ A} = 1 for every n, then Pr{X ∈ A} = 1 too.

45. Exam STK 201 1989, #2

One wants to estimate the position of a parameter point (a, b) in the plane. For this task one obtains

n independent pairs of measurements (X1, Y1), . . . , (Xn, Yn). These come from the same unknown

distribution, but it is known that the Xi have expected value a and standard deviation 1, and that

the Yi have expected value b and standard deviation 1. Finally, Xi and Yi are uncorrelated.

(a) Introduce ân = (1/n)
∑n
i=1Xi and b̂n = (1/n)

∑n
i=1 Yi. Find the simultaneous (joint) limit

distrbution for (√
n(ân − a)
√
n(̂bn − b)

)
.

(b) Construct an asymptotic 90% simultaneous (joint) confidence region for (a, b). What is the

shape of this region?

(c) Itis often useful to give the position of (a, b) in polar coordinates, that is, by the length

ρ = (a2 + b2)1/2 and the angle θ = arctan(b/a). [This is equivalent to a = ρ cos θ and

b = ρ sin θ.] Let

ρ̂n = (â2n + b̂2n)1/2 and θ̂n = arctan(̂bn/ân).

Find the simultaneous (joint) limit distribution for(√
n(ρ̂n − ρ)
√
n(θ̂n − θ)

)
,

and comment on thie result. [The derivative of the arctanx function is 1/(1 + x2).]
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46. Exam STK 201 1989, #3

LetX1, X2, X3, . . . be a sequence of independently and identically distributed real random variables.

The common distribution of Xi is continuous. Agree to say that if

Xn > max{X1, . . . , Xn−1},

then ‘Xn has set a new record’. Let

Rn =

1, if Xn has set a new record;

0, if Xn has not set a new record.

We count X1 as a ‘new record’, so that R1 = 1.

(a) Show, by direct arguments, that

Pr{Rn = 1} = 1/n for n ≥ 1.

Note: One can also prove that the Rn become stochastically independent. You do not have to

show this (during exam hours), but you can use the result in the rest of the present exercise.

(b) Let Yn be the number of new records during the first n observations. Introduce

an =

n∑
i=1

1

i
and σ2

n =

n∑
i=1

1

i

(
1− 1

i

)
.

Show that

Yn − an
σn

→d N(0, 1).

(c) Then use this result to reach the following:

Yn − log n√
log n

→d N(0, 1).

Here log n is the natural logarithm (the one with the Ibsen-Tolstoy base number e), and the

following mathematical results are at your disposal:

n∑
i=1

1

i
− log n→ γ = 0.5772...,

∞∑
i=1

1

i2
=
π2

6
= 1.6449...

(d) I wonder: about how many new records will be set during the first million observations?

Construct an interval that with probability approximately 95% contains Y1 000 000.

(e) Let Zn be the number of new records among the observations Xn+1, . . . , X2n. Prove that Zn

converges in distribution to a Poisson with parameter λ = log 2.

47. Exam STK 201 1989, #4

The following situation was studied in Exercise 4 of the ST 001 exam in May 1989 (yesterday, ac-

tually). Certain measurements X1, . . . , Xn are independent and have the same probability density

f , with expected value ξ and standard deviation σ. The parameters are unknown. Introduce

ξ̂n = X̄ =
1

n

n∑
i=1

Xi and σ̂2
n = s2 =

1

n− 1

n∑
i=1

(Xi − X̄)2.

The ST 001 students were among other things asked to answer this question:

30



(a) Explain briefly how you by counting the number of observations in the intervals

(X̄ − s, X̄ + s), (X̄ − 2s, X̄ + 2s), (X̄ − 3s, X̄ + 3s) may get a rough idea of whether

the observations X1, . . . , Xn are normally distributed or not.

The present ST 201 exercise takes a closer look at the intuitive arguments that were expected of

the ST 001 students. Assume in what follows that X1, X2, . . . really are independent and normal

(ξ, σ2), so that the common underlying cumulative distribution function is

F (t) = Pr{Xi ≤ t} = Pr
{

N(0, 1) ≤ t− ξ
σ

}
= Φ

( t− ξ
σ

)
.

(a) Let Fn(t) = (1/n)
∑n
i=1 I{Xi ≤ t} be the empirical cumulative distribution function. What

can you say about the behaviour of Fn for large n?

(b) Asuume that you have succeeded in proving the following statement: For each given c will

Fn(ξ̂n + cσ̂n)→a.s. F (ξ + cσ).

Show that this leads to

An =
1

n

n∑
i=1

I
{
a <

Xi − ξ̂n
σ̂n

≤ b
}
→a.s. Pr{a < N(0, 1) ≤ b} = Φ(b)− Φ(a).

(c) Explain why this gives an answer to the ST 001 exam question quoted above!

(d) Finally, prove the result given in (b). Note: There are several ways of proving this result.

If you should choose a method of proof that leads to convergence in probability, and not

convergence almost surely, then you will still be awarded full score by the examinanation

censors & markers.

48. Exam STK 201 1989, cont., #1

Determine for each of the following four statements whether it is correct or wrong. If it is correct,

give a brief argument for this; if not, give a counterexample.

(a) Dersom Xn converges in distribution to the normal N(0, 1), then the mean of Xn converges

to zero.

(b) Hvis Xn converges to a in probability, then Xn will also converge to a almost surely.

(c) S̊afremt Xn →d X and Yn →d Y , then Xn + Yn →d X + Y .

(d) Ifall Xn = (Xn,1, . . . , Xn,p)
t converges in distribution to X = (X1, . . . , Xp)

t in distribution,

where the components of the latter are independent and standard normal, then
∑p
i=1X

2
n,i

will converge in distribution to the χ2
p.

49. Exam STK 201 1989, cont., #2

LetX1, X2, X3, . . . be a sequence of independently and identically distributed real random variables.

The common distribution of Xi is continuous. Agree to say that if

Xn > max{X1, . . . , Xn−1},
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then ‘Xn has set a new record’. Let

Rn =

1, if Xn sets a new record,

0, if Xn does not set a new record.

We count X1 as a ‘new record’, so that R1 = 1.

(a) Show via direct arguments that

Pr{Rn = 1} = 1/n for n ≥ 1.

(b) Explain what it means that a sequence of random variables are stochastically independent.

Show explicitly that R1, R2, R3 are independent. – Note: One may show that the full sequence

of R1, R2, R3, . . . are indeed independent, but you need not show this during exam hours.

You may however use this fact for the points below.

(c) Let’s push the records aside for two minutes, but formulate and prove the so-called Borel–

Cantelli lemma.

(d) What is the probability that the sequenceX1, X2, X3, . . . will produce infinitely many records?

50. Exam STK 201 1989, cont., #3

Make the following statement precise, and then prove it: A binomial (n, p) variable is approximately

a Poisson, when n is large and p is small.

51. Exam STK 201 1989, cont., #4

The following result is to taken as known: If Y1, Y2, . . . are independent and come from the same

distribution, of the parametric form f(y, θ), and θ̂n is the rimelighetsfunksjonsmaksimeringsesti-

matoren, then, under appropriate and mild regularity conditions, we have

√
n(θ̂n − θ)→d Np(0, J(θ)−1).

Here p is the dimension of θ, and

J(θ) = Eθ u(Y, θ)u(Y, θ)t = −Eθ
∂2 log f(Y, θ)

∂θ∂θt

is Fisher’s information matrix, involving also the score function u(y, θ) = ∂ log f(y, θ)/∂θ. Finally

Eθ signals expectation under the distribution f(y, θ).

(a) Assume the parameter θ is one-dimensional. Show that

√
n(θ̂n − θ)→d τ(θ)N(0, 1),

where

τ(θ) =
1√

−Eθ∂2 log f(Y, θ)/∂θ2
.

(b) Apply this to the exponential model, where f(y, θ) = θ exp(−θy) for positive y and θ is a

positive parameter.
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(c) It is often important to estimate the underlying density behind the observations, say f(y).

In the parametric case, where f(y) = f(y, θ), it is natural to use the simple plug-in estimator

f̂(y) = f(y, θ̂n). Show, in the general but still one-dimensional case, that

√
n{f(y, θ̂n)− f(y, θ)} →d f(y, θ)u(y, θ)τ(θ)N(0, 1).

(d) An often used measure of quality for a density estimator f̂ for f is the integrated squared

error

isen =

∫
{f(y, θ̂n)− f(y, θ)}2 dy.

Show, still for the general but one-dimensional case, that

n isen →d c(θ)χ
2
1,

where the proportionality factor involved is

c(θ) = τ(θ)2
∫
f(y, θ)2u(y, θ2) dy.

(e) Show that mean integrated squared error,

misen = Eθ

∫
{f(y, θ̂n)− f(y, θ)}2 dy,

with a first-order approximation, is equal to θ/(4n) for the exponential distribution case.

(f) Then establish the following intriguingly simple, general, and informative result concerning

iwsen and miwsen, the 1/f weighted versions of isen and misen:

n iwsen = n

∫
{f(y, θ̂n)− f(y, θ)}2

f(y, θ)
dy →d χ

2
p, miwsen

.
= p/n.

Again, p is the number of parameters in the model. Note that this result does not depend

on which parametric model is used, or on the sample space for the observations (or, for that

matter, on the dominating measure used to define the densities f(y, θ) = dPθ(y)/∂µ).

52. Exam STK 201 1995, #1

Here are some questions from the core curriculum of the course.

(a) Explain what a probability spacae (Ω,A, P ) is. List the demands for P being a probability

measure.

(b) From the definitions in (a), show that if B1, B2, . . . are arbitrary sets in A, then we have

P (∪ni=1Bi) ≤
∑n
i=1 P (Bi), and also P (∪∞i=1Bi) ≤

∑∞
i=1 P (Bi).

(c) Formulate and prove the so-called Borel–Cantelli lemma.

53. Exam STK 201 1995, #2

This exercise concerns the use of characteristic functions to, well, characterise distributions.
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(a) Define the characteristic function φ for a real random variable X. Show that this function is

bounded and uniformly continuous.

(b) Assume X has mean zero and finite variance σ2. Show that

φ(t) = 1− 1
2σ

2t2 + o(t2).

[Here I wish for ‘direct arguments using the definitions’; simply saying this is inside the

curriculum is not sufficient, on this particular occasion.]

(c) Let in this point X and X ′ be independent and normal (0, σ2) variables. Show, using charac-

teristic functions, that (X+X ′)/
√

2 has the same distribution as each of the two observations.

Give a generalisation.

(d) Let X be as in point (b), and assume that its distribution has the invariance property from

point (c), i.e. that if X and X ′ are independent with this same distribution, then (X+X ′)/
√

2

has the same distribution as each of X and X ′. Show that this leads to

φ
( t

2k/2

)2k
= φ(t) for all natural numbers k and all real t.

(e) Show that the assumption of point (d) implies that X by necessity must be normally dis-

tributed, or equal to zero. – The zero-mean normal is hence the only distribution in this

universe with the (X +X ′)/
√

2 ∼ X property.

54. Exam STK 201 1995, #3

This exercise works itself towards the construction of a certain natural test for the hypothesis that

different groups of normally distributed data have the same standard deviation. Such a test is

important also since many standard techniques use such an equality of spread parameters as a

basic working assumption.

(a) Let Y1, . . . , Yn be independent with the same distribution, and assume this distribution has

a finite fourth moment. Let mean and standard deviation be µ and σ, and let γ4 = E (Y −
µ)4/σ4 − 3 be the so-called kurtosis. Construct a consistent estimator for γ4.

(b) The usual empirical variance is σ̂2
n = (1/n)

∑n
i=1(Yi − Ȳn)2, where Ȳn is the sample mean

(1/n)
∑n
i=1 Yi. Show that

√
n(σ̂2

n − σ2)→d N(0, σ4(2 + γ4)).

(c) Find the limit distribution for
√

2n(log σ̂n − log σ). Show in particular that the limit is the

standard normal N(0, 1) in the case where the Xi are normal.

(d) Construct a confidence interval with coverage approximately 90% for σ, which ought to be

valid also outside normal conditions.

(e) Assume now that there are n observations for each of five normally distributed populations,

with standard devivations σ1, . . . , σ5. Let further σ̂2
n,j be the empirical variance for group j,

for j = 1, . . . , 5. Find the limit distribution for
√

2n(log σ̂n,1 − log σ1)
...√

2n(log σ̂n,5 − log σ5)

 .
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(f) Construct a test for the hypothesis H0 : σ1 = · · · = σ5, using the result from the previous

point, and which should have limiting significance level 5 percent. [For simplicity it is assumed

that there are equally many observations in each group here. It is however not difficult to

generalise this to the case of sample sizes n1, . . . , n5 being different. You may do this after

exam hours.]

55. Exam STK 201 1995, #4

This exercise concerns estimation in the so-called truncated Poisson model.

(a) Assume that a certain Y0 has a Poisson distribution with parameter θ, but that X0 can only

be observed if its value is at least 1. Let Y be such an observation. Show that its probability

distribution is

Pr{Y = y} = f(y, θ) =
exp(−θ)θy/y!

1− exp(−θ)
for y = 1, 2, 3, . . . .

(b) Assume Y1, Y2, . . . are independent observations from such a truncated Poisson distribution.

Put up an equation to determine the rimelighetsfunksjonsmaksimeringsestimatoren θ̂n for θ.

(c) Describe the large-sample behaviour of θ̂n, e.g. by using results about the rimelighetsfunksjon-

smaksimeringsestimatorsekvensen from the course curriculum.

(d) Suppose now that one cannot necessarily trust the parametric modelling assumption of (a),

but that there is a certain underlying true data generating mechanism, on {1, 2, 3, . . .}. As-

sume that this true distribution has a finite mean ξ and standard deviation τ . Explain what

the rimelihetsfunksjonsmaksimeringsestimatoren θ̂n converges towards, under these wider

assumptions. Express your answers in terms of ξ and τ .

56. Exam STK 201 1995, #5

The usual ingredients in so-called linear-normal statistical theory are as follows: (i) observations

are independent; (ii) they have the same variance; (iii) the mean structure is linear in certain

explanatory variables, or covariates; and (iv) the underlying distribution is normal. Under these

assumptions there is as we know built a broad, very frequently applied, and exact theory.

This particular exercise is meant to illustrate that one also might come a long way also in the

absence of the exact normality condition (iv). Assume that

Yi = βxi + εi for i = 1, . . . , n,

where the xi are given, and where the error terms ε1, . . . , εn are independent from the same

distribution, with mean zero and standard deviation σ (i.e. without the traditional extra words

‘and their distribution is normal’). The parameters β and σ are unknown and need to be estimated.

(a) Show that the least squares estimator for β is β̂n =
∑n
i=1 xiYi/Mn, where Mn =

∑n
i=1 x

2
i .

Give an estimator also for σ.

(b) Under the exact normality assumption it holds that Zn = M
1/2
n (β̂n − β) is normal (0, σ2),

and the classical inference methods are based on this fact. Your task is now to demonstrate

that the limit distribution of Zn is indeed this N(0, σ2), under certain conditions, but without

assuming that the εi follow a normal distribution.
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(c) Construct a confidence interval for β with coverage converging to 0.90, and make your as-

sumptions and arguments clear.

57. How large is the last time?

Let Y1, Y2, . . . be an infinite sequence of independent normal (ξ, σ2) variables, and let ξ̂n, σ̂n be the

maximum likelihood estimators.

(a) Find these, by all means & for all del.

(b) Show that (√
n(ξ̂n − ξ)√
n(σ̂n − σ)

)
→d N2(

(
0

0

)
,

(
σ2 0

0 1
2σ

2

)
).

(c) Results from Hjort and Fenstad (1992) may be applied here, to show that the following. Let

N1,ε is the very last time |ξ̂n − ξ| ≥ ε, and N2,ε the very last time |σ̂n − σ| ≥ ε. Why are

N1,ε and N2,ε well-defined random variables? Then(
ε2N1,ε

ε2N2,ε

)
→d

(
σ2W 2

1,max
1
2σ

2W 2
2,max

)

when ε marches to zero, where W1,max and W2,max are the maximal absolute values ot two

independent Brownian motions over the [0, 1] interval. (You are not yet supposed to show

this.) Let Nε tbe the very last n where either |ξ̂n − ξ| ≥ ε or |σ̂n − σ| ≥ ε. Show that

ε2Nε →d σ
2 max{W 2

1,max,W
2
2,max}.

Attempt to finds its distribution.

(d) Generalise.

58. Bernshtĕın and Weierstraß

In c. 1885, Karl Weierstraß proved one of the fundamental and insightful results of approximation

theory, that any given continuous function can be approximated uniformly well, on any finite

interval, by polynomials (see also Hveberg, 2019). A generation or so later, such results have been

generalised to so-called Stone–Weierstraß theorems, stating, in various forms, that certain classes

of functions are rich enough to deliver uniform approximations to bigger classes of functions. This

is useful also in branches of probability theory.

In the present exercise we give a constructive and relatively straightforward proof of the Weier-

straß theorem, involing so-called Bernshtĕın polynomials. Let g : [0, 1] → R be continuous, and

construct

Bn(p) = Ep g(Xn/n) =

n∑
j=0

g(j/n)

(
n

j

)
pj(1− p)n−j for p ∈ [0, 1],

where Xn ∼ Bin(n, p). Note that Bn(p) is a polynomial of degree n.

(a) Show that Bn(p)→pr g(p), for each p.
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(b) Then show that the convergence is actually uniform. For ε > 0, find δ > 0 such that

|x − y| < δ implies |g(x) − g(y)| < ε (which is possible, in that a continuous function on a

compact interval is always uniformly continuous). Then fill in the required arguments for the

following:

|Bn(p)− g(p)| ≤ Ep |g(Xn/n)− g(p)|

≤ Ep |g(Xn/n)− g(p)| I{|Xn/n− p| < δ}

+Ep |g(Xn/n)− g(p)| I{|Xn/n− p| ≥ δ}

≤ ε+ 2M Pr{|Xn/n− p| ≥ δ},

with M a bound on |g(x)|.

(c) Show from this that

max
p
|Bn(p)− g(p)| → 0 as n→∞.

(d) Consider the marvellous function

g(x) = exp(1.234 sin3√x) + exp(−4.321 cos5 x2)

on the unit interval. Compute the Bernshtĕın polynomials of orders say 10, 20, 30, 40, 50,

and display these in a diagram, alongside the curve of g. How high n is needed for the

maximum absolute difference to creep below 0.01?

(e) Let now g(x, y) be an arbitrary function on the unit simplex, {(x, y) : x ≥ 0, y ≥ 0, x+y ≤ 1}.
Construct a mixed polynimal Bn(x, y) of degree n such that it converges uniformly to g on

the simplex.

(f) Speculation, Your Honor: a distribution F is completely specified by its characteristic func-

tion

φ(t) = E exp(itX) =

∫
cos(tx) dF (x) + i

∫
sin(tx) dF (x).

This can be proven in various ways, see earlier Exercises 15–16. But it may be attacked

afresh, in the spirit of Weierstraß type approximations etc. It is sufficient to show that with

two distributions F and G with the same φ(t), we must have
∫
hdF =

∫
hdG for each

continuous bounded h (cf. the master theorem of Exercise 6). From the assumption we know

that ∫
h∗(x) dF (x) =

∫
h∗(x) dG(x) for all h∗(x) =

m∑
j=1

aj{cos(tjx) + i sin(tjx)}.

So try to show that for the given continuous and bounded h, and for each bounded interval

[−c, c] and ε > 0, there must exist such a function h∗ with maxx∈[−c,c] |h(x) − h∗(x)| ≤ ε.

Prove that this would be sufficient to prove that F = G (once again). Could there be a

Bernshtĕın type result lurking here?

59. Even more on characteristic functions

Here we go into a couple of helpful intermediate results for characteristic functions. Let φ(t) =

E exp(itX), for X with a distribution F .
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(a) Show that | exp(it)− 1| ≤ |t| for all t, and that this implies

|φ(t)− 1| ≤
∫
|tx|dF (x) = |t|E |X|.

(b) Show that | exp(it)− 1− it| ≤ 1
2 |t|

2 for all t, and with ξ = EX show that this implies

|φ(t)− 1− itξ| ≤ 1
2 |t

2|E |X|2.

(c) Generalise further to

| exp(it)− 1− it− 1
2 (it)2| ≤ 1

6 |t|
3 for all t.

Assume ξ = EX = 0 and that VarX = σ2 is finite. Show that if also the third moment is

finite, then

|φ(t)− 1− 1
2 (it)2σ2| = |φ(t)− (1− 1

2 t
2σ2)| ≤ 1

6 |t|
3 E |X|3.

In particular,

φ(t) = 1− 1
2σ

2t2 +O(|t|3).

(d) Show that we may rid ourselves with the finite third moment assumption here, by proving

that

φ(t) = 1− 1
2σ

2t2 + o(|t|2),

under only zero mean and finite σ conditions. Specifically, the task is to show that

1

t2

∫
{exp(itx)− 1− itx− 1

2 (it)2x2} dF (x)→ 0 as t→ 0.

This is also related to the fact that when E |X|2 is finite, then

φ′′(t) = E (iX)2 exp(itX) =

∫
(ix)2 exp(itx) dF (x)

exists and is a continuous function in t.

(e) Use induction to show that

| exp(it)− 1− it− 1
2 (it)2 − · · · − (1/m!)(it)m| ≤ |t|m+1/(m+ 1)! for all t,

and that this implies

|φ(t)− 1− itEX − 1
2 (it)2 EX2 − · · · − (1/m!)(it)m EXm| ≤ |t|

m+1 E |X|m+1

(m+ 1)!
.

Show also, without a finite E |X|m+1, that if E |X|m is finite, then

φ(m)(t) = E (iX)m exp(itX) =

∫
(ix)m exp(itx) dF (x),

and that this function is continous in t.
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60. A tail inequality & tightness & limits

Let X have distribution F and characteristic function φ. The aim of this exercise is to establish

the useful tail inequality

Pr
{
|X| ≥ 2

ε

}
≤ 1

ε

∫ ε

−ε
{1− φ(t)} dt.

So, tail probabilities for X are tied to the behaviour of φ close to zero.

(a) Use the Fubini theorem (you know, interchanging the order of integration) to demonstrate

that ∫ ε

−ε
{1− φ(t)} dt = 2ε

∫ (
1− sinxε

xε

)
dF (x).

In particular, the integral of φ(t) over an interval symmetric around zero is really a real

number (i.e. the complex component disappears).

(b) Deduce that

1

ε

∫ ε

−ε
{1− φ(t)} dt ≥ 2

∫
|xε|≥c

(
1− sinxε

xε

)
dF (x) ≥ 2(1− 1/c) Pr{|X| ≥ c/ε},

with the value c = 2 yielding the inequality given above.

(c) For the case of X being standard normal, check the precision of the tail inequality. (The

ansswer appears to be: no, it’s rather unsharp, and is utterly conservative in its tail probabil-

ity assessment.) From the simple approximation φ(t)
.
= 1− 1

2σ
2t2, for t small, for a variable

with zero mean and standard deviation σ, work out that Pr{|X| ≥ 2/ε} ≤ (1/3)σ2ε. Explain

why this is blunter, as in less sharp, than with e.g. the Chebyshov inequality.

(c) If we now have a collection of random variables, where their characteristic functions have

approximately the same level of smoothness around zero, then we should get tightness, a

guarantee there is no runaways with mass escaping from the crowd. Assume that Xn has

characteristic function φn, with φn(t) converging pointwise to some φ(t), continuous at zero,

on some [−ε, ε]. For a given ε′, find ε such that |1− φ(t)| ≤ ε′ for |t| ≤ ε. Show that

lim sup
n→∞

Pr{|Xn| ≥ 2/ε} ≤ 1

ε

∫ ε

−ε
{1− φ(t)}dt ≤ 2ε′.

We’ve hence found a broad interval, namely [−2/ε, 2/ε], inside which each single Xn lies,

with high enough probability. This is called tightness of the Xn sequence.

(d) It’s somewhat technical, but the following argument can be understood even without the finest

nitty-gritty details. With the situation as in point (c), there is always some subsequence,

say Xn′ for some subsequence n′ running to infinity, such that their cumulative distribution

functions Fn′ tends to some appropriate nondecreasing right-continuous F on the latter’s

continuity points – but technically speaking we do not know yet that F is a proper cumulative

distribution function; it could be degenerate. With the tightness, however, we’re guaranteed

that F is bona fide, with F (−∞) = 0 and F (∞) = 1. Hence Xn′ →d X, for the X having

this F as its cumulative. But that again implies φn′(t) → φX(t), pointwise, and the limit

function φ(t) is identical to φX(t) and hence a bona fide characteristic function.
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(e) Verify that all of this implies the following highly useful device: Suppose Xn is such that

its characteristic function φn(t) converges to some φ(t), in a neighbourhood around zero,

and that the limit function φ(t) is continuous at zero. Then (1) the limit is a characteristic

function, for some appropriate X, and, lo & behold, Xn →d X. – The point is also that in

some cases, one discovers and then proves the existence of a new probability distribution in

this fashion.

(f) Suppose you just arrived at this planet this morn’ and first invented the super-simple two-

point distribution with values ±1 with equal probabilities 1
2 and 1

2 – show that its charac-

teristic function is φ(t) = cos t. Then you wonder what happens if you sum outcomes of

that distribution, and form Zn =
∑n
i=1Xi/

√
n. Then you deduce that this variable’s char-

acteristic function is cos(t/
√
n)n, and then that it converges ... to exp(− 1

2 t
2). You would

then have discovered, and proven the existence of, the standard normal distribution, from

the proverbial scratch.

61. The Liapunov and Lindeberg theorems: main story

When Jarl Waldemar Lindeberg was reproached for not being sufficiently active in his scientific

work, he said, ‘Well, I am really a farmer’. And if somebody happened to say that his farm was

not properly cultivated, his answer was, ‘Of course my real job is to be a mathematics professor’.

Hundred years ago!, i.e. in 1920, he published his first paper on the CLT, and in 1922 he generalised

his findings to the classical Lindeberg Theorem, with the famous Lindeberg Condition, securing

limiting normality of a sum of independent but not identically distributed random variables. He

did not know about L�punov’s earlier work, and therefore not about uslovie L�punova, the

Lyapunov condition, which we treat below as a simpler-to-reach condition than the more general

one of Lindeberg. Other lumaries whose work touch on these themes around the 1920ies and

beyond include Paul Lévy, Harald Cramér, William Feller, and, intriguingly, Alan Turing who

(allegedly) won the war and invented computers etc.

So let X1, X2, . . . be independent zero-mean variables with at the outset different distributions

F1, F2, . . . and hence different standard deviations σ1, σ2, . . .. Below we also need their characteristic

functions φ1, φ2, · · · . The question is when we can rest assured that the normalised sum,

Zn =
X1 + · · ·+Xn

Bn
=

∑n
i=1Xi

(
∑n
i=1 σ

2
i )1/2

,

really tends to the standard normal, as n increases.

(a) As an introductory useful lemma, demonstrate the following. With a1, a2, . . . a sequence of

numbers coming closer to zero, we have
∏n
i=1(1 + ai) → exp(a) provided (1)

∑n
i=1 ai → a;

(2) maxi≤n |ai| → 0; and (3)
∑n
i=1 |ai| stays bounded. It may be helpful to show first that

log(1 + x) = x− 1
2x

2 + 1
3x

3 − · · · = x+K(x)x2,

with K(x) is a continuous function such that |K(x)| ≤ 1 for |x| ≤ 1
2 , and K(x)→ −1

2 when

x→ 0. These statements are valid also when the ai are the x are complex numbers inside the

unit ball, in which case the logarithm is the natural complex extension of the real logarithm.

The lemma is stated, proven, and used in Hjort (1990, Appendix).
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(b) Show that Zn has characteristic function

κn(t) = E exp(itZn) = φ1(t/Bn) · · ·φn(t/Bn).

(c) We know that φi(s)
.
= 1− 1

2σ
2
i s

2 for small s, so the essential idea is to write

κn(t) =

n∏
i=1

{1− 1
2σ

2
i t

2/B2
n + εn,i(t)}

and not give up until one has found conditions that secure convergence to the desired

exp(− 1
2 t

2). In view of the lemma of (a), this essentially takes

(1)
∑n
i=1 εn,i(t)→ 0;

(2) maxi≤n σ
2
i /B

2
n → 0 and maxi≤n |εn,i(t)| → 0; and

(3)
∑n
i=1 |1− φi(t/Bn)| staying bounded.

Show that

|φi(s)− (1− 1
2σ

2
i s

2)| =
∣∣∣ ∫ {exp(isx)− 1− isx− 1

2 (isx)2} dFi(x)
∣∣∣

≤
∫
| exp(isx)− 1− isx− 1

2 (isx)2|dFi(x)

≤ 1
6 |s|

3 E |Xi|3.

(d) This leads to the uslovie L�punova version of the Lindeberg theorem: show that if the

variables all have finite third order moments, with Bn →∞ and

n∑
i=1

E
∣∣∣Xi

Bn

∣∣∣3 → 0,

then κn(t) → exp(− 1
2 t

2), which we know is equivalent to the glorious Zn →d N(0, 1). This

is (already) a highly signficant extension of the CLT. If the Xi are uniformly bounded, for

example, with Bn of order
√
n, which would rather often be the case, then the uslovie

L�punova holds. It is also possible to refine arguments and methods to show that

n∑
i=1

E
∣∣∣Xi

Bn

∣∣∣2+δ → 0, for some δ > 0,

is sufficient for limiting normality.

(e) The issue waits however for an even milder and actually minimal conditions, and that is,

precisely, the Lindeberg condition:

n∑
i=1

E
∣∣∣Xi

Bn

∣∣∣2I{∣∣∣Xi

Bn

∣∣∣ ≥ ε}→ 0 for all ε > 0.

Show that if uslovie L�punova is in force, then the Lindeberg condition holds (so farmer

Lindeberg assumes less than Lyapunov).

(f) Inlow (2010) has shown how one can prove the usual CLT without the technical use of

characteristic and hence complex functions. Essentially, he writes the Xi in question as

Yi + Zi with Yi = Xi I{|Xi| ≤ ε
√
n} and Zi = Xi {|Xi| > ε

√
n}, after which ‘ordinary’
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moment-generating functions may be used for the part involving the Yi, yielding the normal

limit, supplemented with analysis to show that the part involving the Zi tends to zero in

probability. – It is a non-trivial matter to extend Inlow’s arguments, from the CLT to the

Lindeberg theorem, but this is precisely what Emil Stoltenberg (2019) has done, in a technical

note to the STK 4011 course (he’s incidentally too modest when he writes that his note is an

epsilon-extension of Inlow’s 2010 paper; the extension is harder than several ε). Check his

note, on the course website, and make sure you understand his main tricks and steps.

62. The Lindeberg theorem: nitty-gritty details

The essential story, regarding Lyapunov and Lindeberg, has been told in the previous exercise.

Here we tend to the smaller-level but nevertheless crucial remaining details, in order for the ball

to be shoven across the finishing line after all the preliminary work. You may also check partly

corresponding details in Stoltenberg’s note (2019). Again, let X1, X2, . . . be independent, with

distributions F1, F2, . . ., standard deviations σ1, σ2, . . ., and characteristic functions φ1, φ2, . . .. The

creature studied is

Zn =
X1 + · · ·+Xn

(σ2
1 + · · ·+ σ2

n)1/2
=

n∑
i=1

Xi

Bn
,

with B2
n =

∑n
i=1 σ

2
i . We assume the uslovie Lindeberga, that

Ln(ε) =

n∑
i=1

E
∣∣∣Xi

Bn

∣∣∣2I{∣∣∣Xi

Bn

∣∣∣ ≥ ε}→ 0 for all ε > 0.

(a) Show that Bn →∞, and that

αn = max
i≤n

σ2
i

B2
n

→ 0.

From this in particular follows

|φi(t/Bn)− 1| ≤
∫
| exp(itx/Bn)− 1− itx/Bn|dFi(x) ≤ 1

2 t
2

∫
(x/Bn)2 dFi(x) ≤ 1

2 t
2αn,

so all φi(t/Bn) are eventually inside radius say 1
2 of 1, which means we’re in a position to

take the logarithm and work with

κn(t) = log E exp(itZn) =

n∑
i=1

log φi(t/Bn)

etc.; see the start lemma of the preceding exercise.

(b) In continuation and refinement of arguments above, show that

|φi(t/Bn)− (1− 1
2σ

2
i t

2/B2
n)| =

∣∣∣ ∫ {exp(itx/Bn)− 1− itx/Bn − 1
2 (itx/Bn)2}dFi(x)

∣∣∣
≤
∫
| exp(itx/Bn)− 1− itx/Bn − 1

2 (itx/Bn)2|dFi(x)

≤
∫
|x|/Bn≤ε

1
6

|t|3|x|3

B3
n

dFi(x)

+

∫
|x|/Bn>ε

(
1
2

|t|2|x|2

B2
n

+ 1
2

|t|2|x|2

B2
n

)
dFi(x)

≤ 1
6 |t|

3ε
σ2
i

B2
n

+ t2 E
∣∣∣Xi

Bn

∣∣∣2I{∣∣∣Xi

Bn

∣∣∣ ≥ ε}.
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(c) Show that this leads to

n∑
i=1

∣∣φi(t/Bn)− (1− 1
2σ

2
i t

2/B2
n)
∣∣ ≤ 1

6 |t|
3ε+ t2 Ln(ε),

and via the start lemma of the previous exercise that this secures what we were after, that∏n
i=1 φi(t/Bn) → exp(− 1

2 t
2) and hence triumphantly Zn →d N(0, 1), under the Lindeberg

condition only.

63. Convergence in Euclidean space

[xx spelling out the basics for Xn →d X in Rk. The Portmanteau Lemma holds, with the required

modifications. Also, Xn →d X is equivalent to

φn(t) = E exp(ittXn)→ φ(t) = E exp(ittX) for all t ∈ Rk.

show that if X ∼ Nk(0,Σ), then

φ(t) = exp(− 1
2 t

tΣt).

a simple example or two. xx]

64. The Cramé–Wold device

Consider random vectors Xn and X in Rk. Using the characterisations of convergence of distri-

butions via characteristic functions, show that Xn →d X if and only if all linear combinations

converge appropriately, i.e. atXn →d a
tX for all a. This is called the Cramér–Wold device, from

Harald Cramér and Herman Wold (1936).

(a) Prove the k-dimensional Central Limit Theorem: if X1, X2, . . . are i.i.d. in Rk with finite

variance matrix Σ = E (X − ξ)(X − ξ)t, then

Zn =
√
n(X̄n − ξ)→d N(0,Σ).

(b) Let X1, X2, . . . be i.i.d. from the unit exponential distribution. Find first the limit distribu-

tions of
√
n(n−1

∑n
i=1Xi−1) and

√
n(n−1

∑n
i=1X

2
i −2). Then find the joint limit distribution

of (√
n(X̄n − 1)
√
n(Wn − 2)

)
,

with X̄n = n−1
∑n
i=1Xi andWn = n−1

∑n
i=1X

2
i , and also the limit distribution of

√
n(Wn/X̄n−

2).

(c) Suppose X1, X2, . . . are independent with mean zero and variance matrices Σ1,Σ2, . . .; their

distributions are here not assumed to be equal. Find suitable conditions, of the Lyapunov or

Lindeberg type, which secure limiting normality of
∑n
i=1Xi, suitably normalised.

65. Convergence of means

well
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66. The last time for estimator functionals

[xx point to Steffen Grønneberg’s master thesis and later paper, and also Hjort and Fenstad (1992).

xx]

67. Confidence ellipsoids

well

68. The arctan estimator

well

69. Behaviour of the maximum likelihood estimator, under model conditions

well

70. Behaviour of the maximum likelihood estimator, under agnostic conditions

well

71. The Wilks theorem

well

72. Confidence curves

[xx spell out the basic

ccn(ψ0) = Γ1(Dn(ψ0))→d unif,

with

Dn(ψ) = 2{`n,prof(ψ̂)− `n,prof(ψ)}

being the so-called deviance function. this leads to an approximate confidence curve. xx]

73. Integrate and display your integrity

well

99. Yet other things to come

[xx We’ll see what I manage or decide to put in, in this growing collection of both exercises and

lecture notes. There must be empirical processes, some empirical likelihood, confidence curves,

something with nonstandard limits, and the Aalen–Nelson and Kaplan–Meier estimators. With

applications. And Cramér–Wold. And Hjort and Fenstad (1992) for the last n, and Hjort and

Pollard (1994) for asymptotics for minimisers. xx]
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