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Abstract

These are Exercises and Lecture Notes for the new course on Statistical Large-Sample Theory,

STK 4090 (Master level) or STK 9090 (PhD level), for the spring semester 2020. Some of them

are taken from earlier collections, from other courses of mine, but most of the exercises are

created during this semester. The internal organisation and sequence of exercises might not

be pedagogically optimal (yet), since more exercises are added on dynamically as the course

progresses.

A later version of these notes, jfr. the Kioskvelter Project of N.L. Hjort and E.Aa. Stoltenberg,

might be finessed and reorganised and polished to land in somewhat separated parts I + II +

III + IV + V, where the first four parts roughly correspond to or are correlated with the first

four parts of Ferguson (1996), whereas part V will concern the basics of empirical processes.

1. Illustrating the Central Limit Theorem (CLT)

Consider the variable

Zn = (X1 + · · ·+Xn − nµ)/(
√
nσ) =

√
n(X̄n − µ)/σ,

where the Xi are i.i.d. and uniform on the unit interval; here µ = 1/12 and σ = 1/
√

12 are the

mean and standard deviation, respectively. Your task is to simulate sim = 104 realisations of the

variable Zn, for say n = 1, 2, 3, 5, 10, 25, and display the corresponding histograms. Observe how

the distribution of Zn comes closer and closer to the standard normal, as n increases. To illustrate

just how close, consider the case of n = 6, for example, and attempt to test the hypothesis that the

104 data points you have simulated come from the standard normal. Comment on your findings.

2. Illustrating the Law of Large Numbers (LLN)

Simulate say 104 variables X1, X2, . . . drawn from the unit exponential distribution. Compute and

display the sequence

Wn = n−1
n∑
i=1

(Xi − X̄n)3 for n = 1, 2, 3, . . . ,

where X̄n = n−1
∑n
i=1Xi. Comment on your picture, and show indeed that Wn converges in

probability. Generalise your finding.
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3. The continuity lemma for convergence in probability

There are actually two ‘continuity lemmas’ for convergence in probability.

(a) Suppose Xn →pr a, with a being a constant. Show that if g is a function continuous at point

x = a, then indeed g(Xn)→pr g(a).

(b) Suppose more generally that Xn →pr X, with the limit being a random variable. Show that

if g is a function that is continuous in the set in which X falls, then g(Xn)→pr g(X).

Comments: (i) To prove (b), use uniform continuity over closed and bounded intervals. (ii) In

situations of relevance for this course, part (a) will be the more important. The typical application

may be that consistency of θ̂n for θ implies consistency of g(θ̂n) for g(θ).

4. The maximum of uniforms

Let X1, . . . , Xn be i.i.d. from the uniform [0, θ] distribution, and let Mn = maxi≤nXi.

(a) Show that Mn →pr θ (i.e. the maximum observation is a consistent estimator of the unknown

endpoint).

(b) Find the limit distribution of Vn = n(θ−Mn), and use this result to find an approximate 95

percent confidence interval for θ.

5. Distribution functions

For a real random variable X, consider its distribution function F (t) = Pr{X ≤ t}. Show that

F is right continuous, and that its set of discontinuities is at most countable (in particular, the

set of continuity points is dense). Show also that F (t) → 1 when t → ∞ whereas F (t) → 0 when

t→ −∞.

6. A ‘master theorem’ for convergence in distribution

[xx check Ferguson’s definition. xx] Let Xn and X be real random variables, with probability

distributions Pn and P [so that Pn(A) = Pr{Xn ∈ A}, etc.], and consider the following five

statements:

(1) Xn →d X;

(2) for every open set A, lim inf Pn(A) ≥ P (A);

(3) for every closed set B, lim supPn(B) ≤ P (B);

(4) for every set C that is P -continuous, in the sense that P (∂C) = 0, where ∂C = C̄ − C0 is

the ‘boundary’ of C (the closure minus its interior), limPn(C) = P (C);

(5) for every bounded and continuous g, lim E g(Xn) = E g(X).

Show that these five statements are in fact all equivalent. Hints: For (1) implies (2), write

A = ∪∞j=1Aj for open sets Aj = (aj , bj), where aj and bj can be chosen to be among the continuity

points for the distribution function F for X. Then show that (2) implies (3) [using that B is closed
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if and only if Bc is open], and that (3) implies (4). For (4) implying (5), take g to have its values

inside [0, 1], without loss of generality, and write

E g(Xn) =

∫ ∫ 1

0

I{y ≤ g(x)} dy dPn(x) =

∫ 1

0

Pr{g(Xn) ≥ y} dy,

along with a Lebesgue theorem for convergence of integrals. Finally, for (5) implies (1), construct

for given F -continuity point x a continuous function gε that is close to g0(y) = I{y ≤ x}.

7. The continuity lemma for convergence in convergence

Suppose Xn →d X and that h is continuous (and not necessarily bounded). Show that h(Xn)→d

h(X). [Use e.g. statement (5) of the previous exercise.] Thus exp(tXn)→d exp(tX), etc.

8. Convergence in distribution for discrete variables

Let Xn and X take on values in the set of natural numbers, and let pn(j) = Pr{Xn = j} and

p(j) = Pr{X = j} for j = 0, 1, 2, . . .. Show that Xn →d X if and only if pn(j) → p(j) for each j.

To illustrate this, prove the classic ‘law of small numbers’ (first proven by Ladislaus Bortkiewicz

in 1898), that a binomial is close to a Poisson, if the count number is high and the probability is

small.

9. Convergence in probability in dimension two (and more)

We have defined Xn →pr X to mean that

Pr{|Xn −X| ≥ ε} → 0 for each ε > 0.

The natural generalisation for the two-dimensional (and higher) case is to say that

Xn = (Xn,1, Xn,2)→pr X = (X1, X2)

provided

Pr{‖Xn −X‖ ≥ ε} → 0 for each ε > 0,

where ‖Xn−X‖ is the usual Euclidean distance. Prove that Xn →pr X (in such a two-dimensional

situation) if and only if Xn,j →pr Xj for j = 1, 2 (i.e. ordinary one-dimensional convergence for

each component). Generalise.

10. Moment generating functions and convergence in distribution

For a random variable X, its moment generating function (mgf) is

M(t) = E exp(tX),

defined for each t at which the expectation exists. Among its basic properties are the following;

attempt to demonstrate these.

1. M(0) = 1, and when the mean is finite, then M ′(t) exists, with M ′(0) = EX.

2. More generally, if |X|r has finite mean, then M (r)(0) = EXr (the rth derivative of M , at

the point zero).
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3. When X and Y are independent, then

MX+Y (t) = MX(t)MY (t)

in the obvious notation. This generalises of course to the case of more than two independent

variables.

4. If X and Y are two variables with identical mgfs, then their distributions are identical. [There

are also ‘inversion formulae’ in the literature, giving the distribution as a function of M .]

5. If Xn and X have mgfs Mn and M , then Mn(t)→M(t) for all t in a neighbourhood around

zero is sufficient for Xn →d X.

6. In particular, if Mn(t)→ exp( 1
2 t

2) for all t close to zero, then Xn →d N(0, 1).

11. Finite moments

Show that if EX2 is finite, then necessarily EX is finite too. Show more generally that E |X|q is

finite, then also E |X|p is finite for all p < q. Prove indeed that (E |X|p)1/p is a non-decreasing

function of p.

12. Proving the CLT (under some restrictions)

Let X1, X2, . . . be i.i.d. with some distribution F having finite variance and mean, and assume for

simplicity that the mean is zero.

(a) Show that if the mgf exists, in a neighbourhood around zero, then

M(t) = 1 + 1
2σ

2t2 + o(t2),

where σ is the standard deviation of Xi.

(b) Show that
√
nX̄n has mgf of the form

M∗n(t) = M(t/
√
n)n = {1 + 1

2σ
2t2/n+ o(1/n)}n,

and conclude that the CLT holds.

13. Characteristic functions

The trouble with the approach to the CLT above is that is has somewhat limited scope, in that some

distributions do not have a finite mgf (since exp(tX) may be too big with too high probability

for its mean to be finite). The so-called characteristic functions (chf) provide a more elegant

mathematical tool in this regard. For a random variable X, its chf is defined as

φ(t) = E exp(itX) = E cos(tX) + iE sin(tX),

with i =
√
−1 the complex unit, and t ∈ R.

(a) Show that the chf always exists, and that is is uniformly continuous. Show that the chf for

the N(0, σ2) is exp(− 1
2σ

2t2).
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(b) Assume Xn →d X. Show that

φn(t) = E exp(itXn)→ φ(t) = E exp(itX) for all t.

(c) The converse is also true (but harder to prove), and it is ‘inside the curriculum’ to know this:

If

φn(t) = E exp(itXn) converges to some function φ(t)

for all t in an interval around zero, and this limit function is continuous there, then (i) φ(t) is

necessarily the chf of some random variable X, and (ii) there is convergence in distribution

Xn →d X.

14. When is the sum of Bernoulli variables close to a normal?

Let X1, X2, . . . be independent Bernoulli variables (i.e. taking values 0 and 1 only), with Xi ∼
Bin(1, pi). We shall investigate when

Zn =

∑n
i=1(Xi − pi)

Bn
→d N(0, 1),

where Bn = {
∑n
i=1 pi(1−pi)}1/2. Show, using mgfs or chfs, that this happens if and only

∑∞
i=1 pi =

∞ – and show, additionally, that this condition is equivalent to Bn →∞. Thus the cases pi = 1/i

and pi = 1/i2, for example, are fundamentally different. For this second case, investigate the limit

distribution of Zn (which by the arguments given is not normal).

15. Proving the CLT (again)

Using chfs instead of mgfs gives a more elegant and unified proof of the CLT.

(a) Show that if X has a finite mean ξ, then its chf satisfies

φ(t) = 1 + iξt+ o(t) for t→ 0.

Also, its derivative exists, and φ′(0) = ξ.

(b) Show similarly that if X has a finite variance σ2, then

φ(t) = 1 + iξt− 1
2 (ξ2 + σ2t2) + o(t2) for t→ 0.

(c) If X1, X2, . . . are i.i.d. with mean zero and finite variance σ2, then show that Zn =
√
nX̄n

has chf of the form

φn(t) = {1− 1
2σ

2t2/n+ o(1/n)}n.

Prove the CLT from this.

16. More on characteristic functions

Here are some more details and illustrations pertaining to characteristic functions.

(a) Find the characteristic function for a binomial distribution and for a Poisson distribution.
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(b) Demonstrate the classical ‘Gesetz der kleinen Zahlen’ (cf. Exercise 8), that a binomial (n, pn)

tends to the Poisson λ, when npn → λ.

(c) Show that for the Cauchy distribution, with density f(x) = (1/π)(1 +x2)−1, the chf is equal

to exp(−|t|). Note that this function does not have a derivative at zero, corresponding to the

fact that the Cauchy does not have a finite mean (cf. Exercise 15(a)).

(d) Let X1, . . . , Xn be i.i.d. from the Cauchy. Show that the chf of X̄n = (1/n)
∑n
i=1Xi is identi-

cal to the chf of a single observation. Conclude, by the ‘inversion theorem’, the amazing fact

that X̄n =d Xi; the average has the same statistical distribution as each single component.

(e) There are several versions of ‘inverse theorems’, providing a mechanism for finding the dis-

tribution of a random variable from its chf; the perhaps primary aspect, defined as an ‘inside

curriculum fact’, is that the chf indeed fully characterises the distribution (if X and Y have

identical chfs, then their distributions are identical too). One such inversion formula is as

follows: if X has a chf φ that is integrable (i.e.
∫
|φ(t)|dt is finite), then X has a density f ,

for which a formula is

f(x) =
1

2π

∫
exp(−itx)φ(t) dt.

Write down what this means, in the cases of a normal and a Cauchy, and verify the implied

formulae. Show that f in each such case of an integrable φ(t) necessarily becomes continuous.

(f) Show that the chf for the uniform [−1, 1] distribution becomes φ(t) = (sin t)/t. Deduce that∫ ∣∣∣ sin t
t

∣∣∣dt =∞ even though

∫
sin t

t
dt = π.

(g) Point (e) above gives a formula for the density f of a variable, in the case of it having an

integrable chf φ. One also needs a more general formula, for the case of variables that do not

have densities, etc. Let X be any random variable, with cumulative distribution function F

and chf φ (but with nothing assumed about it having a density), and add on to it a little bit

of Gaußian noise:

Zσ = X + Yσ, with Y ∼ N(0, σ2).

Then Z has a density (even if X does not have one). Our intention is to let σ → 0, to come

back to X. Show that Zσ has cdf of the form

Fσ(x) =

∫
F (x− y)

1√
2π

1

σ
exp(− 1

2y
2/σ2) dy

and chf equal to

φσ(t) = φ(t) exp(− 1
2σ

2t2).

Hence show that

fσ(x) =
1

2π

∫
exp(−itx)φ(t) exp(− 1

2σ
2t2) dt.

and that, consequently,

Pr{X + Yσ ∈ [a, b]} = Fσ(b)− Fσ(a)

=
1

2π

∫
exp(−itb)− exp(−ita)

−it
φ(t) exp(− 1

2σ
2t2) dt.
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(h) Conclude with the following general inversion formula, valid for all continuity points a, b of

F :

F (b)− F (a) = lim
σ→0

1

2π

∫
exp(−itb)− exp(−ita)

−it
φ(t) exp(− 1

2σ
2t2) dt.

17. Scheffé’s Lemma

There are situations where gn(y) → g(y) for all y, for appropriate functions gn and g, does not

imply
∫
gn(y) dy →

∫
g(y) dy. However, it may be shown that this is not a problem when gn and

g are probability densities (due to certain ‘dominated convergence’ Lebesgue theorems from the

theory of measure and integration): if gn and g are the densities of Yn and Y , and gn(y) → g(y)

for (almost) all y, then ∫
|gn − g|dy → 0,

and, in particular,

Pr{Yn ∈ [a, b]} =

∫ b

a

gn(y) dy →
∫ b

a

g(y) dy = Pr{Y ∈ [a, b]}

for all intervals, and we have Yn →d Y . This is Scheffé’s Lemma, defined as an inside curriculum

fact.

(a) Let Yn ∼ tn, a t distribution with n degrees of freedom. Show that Yn →d N(0, 1), using this

lemma. Can you prove this statement in a simpler fashion?

(b) If X1, . . . , Xn are i.i.d. from a uniform on [0, 1], with Mn = maxi≤nXi, show using the Scheffé

Lemma that n(1−Mn) tends to a unit exponential in distribution.

(c) Suppose Xn ∼ χ2
n, and consider Zn = (Xn − n)/

√
2n. Prove that Zn →d N(0, 1).

18. The median

‘The median isn’t the message’, said Stephen Jay Gould (when he was diagnosed with a serious

illness and looked at survival statistics). Let X1, . . . , Xn be i.i.d. from a positive density f with

true median θ = F−1( 1
2 ).

(a) Suppose for simplicity that n is odd, say n = 2m+ 1. Show that Mn has density of the form

gn(y) =
(2m+ 1)!

m!m!
F (y)m{1− F (y)}mf(y).

(b) Show then that the density of Zn =
√
n(Mn − θ) can be written in the form

hn(z) = gn(θ + z/
√
n)/
√
n.

Prove that

hn(z)→ (2π)−1/22f(θ) exp{− 1
24f(θ)2z2},

which by the Scheff’e Lemma means that

√
n(Mn − θ)→d N(0, τ2) with τ = 1

2/f(θ).

Why does this also prove that the sample median is consistent for the population median?
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(c) Generalise to the following quantilian result: ifQn(p) = F−1n (p) is the pth quantile of the data,

then Qn(p) converges in probability to the corresponding population quantile ξp = F−1(p),

and

√
n{Qn(p)− ξp} →d N(0, τ2p ) with τ2p = p(1− p)/f(ξp)

2.

(d) Constructing a nonparametric confidence interval for an unknown median is not that simple –

the ‘usual recipe’ works, up to a point, and tells us that if we first find a consistent estimator

κ̂ of the doubly unknown quantity f(θ) (f is unknown, and so is θ, its median), then we’re

in business. We would then have

Zn =

√
n(Mn − θ)

τ̂
→d N(0, 1), with τ̂ = 1

2/κ̂,

from which it then follows that

In = θ̂ ± 1.96 τ̂ /
√
n obeys Pr{θ ∈ In} → 0.95.

The trouble lies in finding a satisfactory κ̂. Try to construct such a consistent estimator.

19. Limiting local power games

This exercise is meant to study a ‘prototype situation’ in some detail; the type of calculation and

results will be seen to rather similar in a long range of different situations. – Let X1, . . . , Xn be

i.i.d. data from N(θ, σ2). One wishes to test H0 : θ = θ0 vs. the alternative that θ > θ0, where θ0

is a known value (e.g. 3.14). Two tests will be considered, based on respectively

X̄n = n−1
n∑
i=1

Xi and Mm = median(X1, . . . , Xn).

(a) For given value of θ, prove that

√
n(X̄n − θ) →d N(0, σ2),
√
n(Mn − θ) →d N(0, (π/2)σ2).

Note that the first result is immediate and actually holds with exactness for each n; the

second result requires more care, e.g. working with the required density, cf. Exercise xx.

(b) Working under the null hypothesis θ = θ0, show that

Zn =
√
n(X̄n − σ0)/σ̂ →d N(0, 1),

Z∗n =
√
n(Mn − θ0)/{(π/2)1/2σ̂} →d N(0, 1),

where σ̂ is any consistent estimator of σ.

– [xx Figure 1: Limiting local power functions for two tests for θ ≤ θ0 against θ > θ0, in the

situation with N(θ, σ2) data. based on the mean (full line) and on the median (dotted line).

xx]

(c) Conclude from this that the two tests that reject H0 provided respectively

X̄n > θ0 + z0.95σ̂/
√
n and Mn > θ0 + z0.95(π/2)1/2σ̂/

√
n,
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where z0.95 = Φ−1(0.95) = 1.645, have the required asymptotic significance level 0.05;

αn = Pr{reject H0 | θ = θ0} → 0.05.

(There is one such αn for the first test, and one for the other; both converge however to 0.05.)

(d) Then our object is to study the local power, the chance of rejecting the null hypothesis under

alternatives of the type θn = θ0 + δ/
√
n. In generalisation of (b), show that

Zn =
√
n(X̄n − σ0)/σ̂ →d N(δ/σ, 1),

Z∗n =
√
n(Mn − θ0)/{(π/2)1/2σ̂} →d N((π/2)1/2δ/σ, 1),

[xx check this xx] where the convergence in question takes place under the indicated θ0+δ/
√
n

parameter values. (You need to generalise the results of Exercise xx, to the δ 6= 0 case.)

(e) Use these results to show that

πn(δ) = Pr{reject | θ0 + δ/
√
n} → Φ(δ/σ − z0.95),

π∗n(δ) = Pr{reject | θ0 + δ/
√
n} → Φ((2/π)1/2δ/σ − z0.95),

for the two power functions. Draw these in a diagram, and compare; cf. Figure xx.

(f) Assume one wishes n to be large enough to secure that the power function is at least at level

β for a certain alternative point θ1. Using the local power approximation, show that the

required sample sizes are respectively

nA
.
=

σ2

(θ1 − θ0)2
(z1−α + zβ)2 and nB

.
=

σ2/c2

(θ1 − θ0)2
(z1−α + zβ)2

for tests A (based on the mean) and B (based on the median), with c =
√

2/π. Compute

these sample sizes for the case of β = 0.05 and θ1 = θ0 + 1
2σ, when also α = 0.05.

(g) Lehmann defines ‘the ARE [asymptotic relative efficiency] of test B with respect to test A’

as

ARE = lim
nA(θ1, β)

nB(θ1, β)
,

the limit in question in the sense of alternatives θ1 coming closer to the null hypothesis at

speed 1/
√
n. Show that indeed

ARE =
σ2

σ2/c2
= c2 = 2/π = 0.6366

in this particular situation – test A needs only ca. 64 percent as many data points to reach

the same detection power as B needs.

20. Testing the normal scale

We have essentially covered Exercise 19 in class [xx alter this xx], as a ‘prototype illustration’ of

the themes developed in Chapter 3 [xx change this xx]. Here is another illustration, for you to

check that you may develop similar results in a different situation. Data X1, . . . , Xn are now taken

to be i.i.d. N(0, σ2), and the object is to construct and compare tests for H0 : σ = σ0 vs. σ > σ0,

where σ0 is some known quantity.
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(a) Show that EX2
i = σ2 and E |Xi| = bσ, with b =

√
2/π. Show that the estimators

σ̂A =
{
n−1

n∑
i=1

X2
i

}1/2

and σ̂B = n−1
n∑
i=1

|Xi|/b

are both consistent for σ.

(b) Find the limit distributions for

Zn,A =
√
n(σ̂A − σ) and Zn,B =

√
n(σ̂B − σ),

and comment on your findings.

(c) Construct explicit tests A and B, based on respectively σ̂A and σ̂B , that have asymptotic

level α = 0.01.

(d) Show that both tests are consistent.

(e) Then we need to compare the two tests in terms of local power. For alternatives of the type

σ = σ0 + δ/
√
n, establish limit distributions of the type

√
n(σ̂A − σ0) →d N(δ, τ2Aσ

2),
√
n(σ̂B − σ0) →d N(δ, τ2Bσ

2),

with certain values (that you should find) for τA and τB .

(f) Establish the limiting local power functions πA(δ) and πB(δ), and plot them in a diagram

(cf. Figure xx of the previous exercise).

(g) Compute the required sample sizes nA and nB for tests A and B to achieve detection power

0.99 when the true state of affairs is σ = 1.333σ0.

(h) Compute the ARE for test A w.r.t. test B, and comment.

(i) Could there be other tests for H0 here that would outperform test A?

21. Algebras of sets

Let X be a non-empty set, and let A be a class of subsets of X . We say that A is an algebra if

(i) both X and the empty-set is in A; (ii) each time A is in A, then also its complement Ac is in

A; (iii) whem A1, . . . , An are sets in A, then also their union ∪ni=1Ai is in A. In other words: an

algebra is closed with respect to the formation of complements and finite unions.

(a) Are you yourself closed with respect to compliments?

(b) What’s the world’s smallest algebra?

(c) Show that an algebra is also closed with respect to finite intersections.

(d) And show that A−B = A ∩Bc is within the algebra if A and B are so.

(e) Construct an example of an algebra.

(f) What was Muhammad ibn Musa al-Khvarizmi [xx fix xx]?
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22. Sigma-algebras of sets

A sigma-algebra is an algebra A which is also closed with respect to countably infinite formations

of unions, that is, if A1, A2, . . . are in A, then so is ∪∞i=1Ai.

(a) Let A consist of all those subsets of R, the real numbers, which are themselves either finite

or have finite complements. Is A an algebra? A sigma-algebra?

(b) Show that a sigma-algebra is closed with respect to countably infinite intersection operations.

23. Inverse and direct images of functions

Let f : X → Y be an arbitrary function, from set X to set Y. For subsets A of X , define the

direct image as fA = f(A) = {f(x) : x ∈ A}. And for subsets B of Y, define the inverse image as

f1B = f−1(B) = {x : f(x) ∈ B}.

(a) Let {Bi : i ∈ I} be a collection of subsets of Y. Show that f−1(∪iBi) = ∪if−1(Bi).

(b) And that f−1(∩iBi) = ∩if−1(Bi).

(c) Then show f−1(Y −B) = X − f−1(B).

(d) Show that A ⊂ f−1f(A) for all A.

(e) And that B ⊃ ff−1B for all B.

(f) For functions f : X → Y and g : Y → Z, show that (g ◦ f)−1(C) = f−1g−1C.

24. Independence of complements

We say that A1, . . . , An are independent if

P (Ai1 ∩ · · · ∩Ai,m) = P (Ai1) · · ·P (Aim)

for all subsets {i1, . . . , im} of {1, . . . , n}. Thus we demand quite a bit more than merely saying

that P (A1 ∩ · · · ∩An) = P (A1) · · ·P (An).

Show that if A1, . . . , An are independent, then so are Ac1, . . . , A
c
n.

25. The Borel–Cantelli emma

Let A1, A2, . . . denote events with probabilities P (A1), P (A2), . . .. We are interested in the event

that infinitely many of these Aj occur, i.e.

Ai.o. = ∩i≥1 ∪j≥i Aj .

(a) Show that if
∑∞
i=1 P (Ai) < ∞, then P (Ai.o.) = 0. In other words, it is certain that only a

finite number of the Ai will occur.

(b) Show under the additional assumption that the Aj are independent, that the previous result

holds in the ‘if and only if’ sense, i.e. that if
∑∞
i=1 P (Ai) = ∞, then P (Ai.o.) = 1. In

particular, under independence, the probability of Ai.o. is either 0 or 1, there is no ‘middle

ground’ possibility.
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26. Does this happen infinitely often?

Let X1, X2, . . . be independent with the same Expo(1) distribution, i.e. with density e−x for x ≥ 0.

(a) Will Xn > 10 + 0.99 log n infinitely often ?

(b) Will Xn > 10 + 1.00 log n infinitely often?

(c) Will Xn > 10 + 1.01 log n infinitely often?

(d) Will Xn > 1012 + log n infinitely often?

27. Normal deviations

Let X be standard normal, and write as usual Φ(x) for its cumulative distribution function and

φ(x) for its density.

(a) Show that Pr{X > x} = 1− Φ(x)
.
= φ(x)/x for large x.

(b) Let X1, X2, . . . be independent standard normals. Pray, will Xn > 0.000001
√
n for infinitely

many n?

(c) Let X̄n be the average of the first n of these observations. Show that |X̄n| > ε for at most a

finite number of n.

(d) If X1, X2, . . . are independent and N(ξ, 1), what is the probability that X̄n converges to ξ?

28. If you are sure about infinitely many things

Show that the event ∩∞n=1Bn is certain (i.e. it takes place with probability 1) if and only if each of

the Bn is certain. Construct an example to show that this is not the case for uncountably many

certain events.

29. At msot countably many discontinuities

Let F be a one-dimensional cumulative distribution function, and let D be the set of its disconti-

nuities. Show that D is either empty, finite, or countably infinite.

30. Borel sets in dimensions one and two

Let B be the Borel sets in R; it is the smallest sigma-algebra containing all intervals. Define then

B × B = σ(C),

the smallest sigma-algebra containing all A×B, with A and B in B. (This is the usual definition

of a product-sigma-algebra.) Define also

B2 = σ(O),

where O is the set of all open sets in R2 (This is the usual definition of a Borel-sigma-algebra.)

Show that, luckily & conveniently, B × B = B2.

31. Measurability of coordinate functions

12



Let f, g : (Ω,A)→ (R,B) be two functions, and let h : Ω→ R2 be given by

h(ω) = (f(ω), g(ω)).

Show that h is measurable if & only if both f and g are measurable. Generalise.

32. Normal mixtures

Let first X and Y be independent, with X a standard normal and Y very discrete, Pr{Y = y} = 1
2

for y ∈ {−1, 1}. Note that a sum of a continuous and a discrete variable will have a continuous

distribution. Find the density for X + Y . Find also its mean and variance.

Generalise to finite normal mixtures, which may be done in several ways, with one path as

follows. Start with the density

f(x) =

k∑
j=1

pjφσj (x− µj),

defined via the triples (pj , µj , σj) for j = 1, . . . , k. Here the pj make up a probability vector,

i.e. nonnegative with sum 1, and φσ(x−u) = σ−1φ(σ−1(x−µ)) is the density of the normal (µ, σ).

One may now view X, drawn from f , as the result of the two-stage operation where the index

J = j is drawn from {1, . . . , k} first, with Pr{J = j} = pj , and X | j ∼ N(µj , σ
2
j ). Use this to find

E (X | j) and Var (X | j), and then the unconditional mean and variance for X.

The class of finite normal mixtures is a large one, and even with say k ≤ 5 components a broad

range of shapes may be attained – play a bit with this on your computer, drawing f(x) curves on

your screen, by mixing in different input vectors of pj , µj , σj .

Find also a formula for the skewness of f , i.e. γ = E {(X − µ)/σ}3, in terms of the overall

mean and standard deviation µ and σ.

33. The Markov inequality, and bounding tails

Sometimes one wishes to bound tail probabilities, say Pr{X ≥ a} ≤ B(a), and there are several

ways in which to do this.

(a) Let X be a nonnegative random variable, and let h(x) be a nonnegative and nondecreasing

function for x ≥ 0. Demonstrate Neravenstvo Markova (Markov’s inequality), that

Pr{X ≥ a} ≤ Eh(X)/h(a).

(b) If X is a random variable with mean ξ, show that

Pr{|X − ξ| ≥ ε} ≤ E |X − ξ|p

εp
for each p > 0.

For p = 2 we have the famous special case of Neravenstvo Qebyxëva (Chebyshov’s in-

equality, from about 1853).

(c) Let X1, X2, . . . be independent normals N(ξ, 1), so that X̄n ∼ N(ξ, 1/n). Writing N for a

standard normal, show that

Pr{|X̄n − ξ| ≥ ε} ≤
n−p/2E |N |p

εp
for each p > 0.

For n = 100 and ε = 0.05, compute the exact probability in question and track the right

hand bound as a function of p. Which p gives the sharpest bound, in this case?

13



(d) Let X have moment generating function M(t) = E exp(tX), assumed to be finite for at least

0 ≤ t ≤ t0. Show that

Pr{X ≥ a} ≤ min
0≤t≤t0

exp(−ta)M(t).

(e) For the case of X̄n ∼ N(ξ, 1/n) studied above, show that

Pr{X̄n − ξ ≥ ε} ≤ exp(− 1
2nε

2).

Compare this bound with the one reached via Chebyshov above.

(f) Let X1, X2, . . . be i.i.d. from the χ2
b distribution, with E X̄n = b and Var X̄n = 2b/n. Show

that with ε > 0 given, there will with probability 1 be only finitely many n with X̄n ≥ b+ ε.

(g) [xx invent another application here. xx]

34. Amor’s arrows sometimes miss

[From Nils Exam ST 200 December 1989, Exercise 1(e).] Amor shoots her arrows infinitely many

times. Her shots are independent of each other, and shot no. n is (Xn, Yn), measured from origo,

where Xn and Yn are independent and standard normal. The distance from origo is hence Rn =

(X2
n + Y 2

n )1/2, the square-root of a χ2
2. Show that its density becomes f(r) = r exp(− 1

2r
2). So

how often does she miss, and by how much? Find the probabilities for these three events: that

Rn ≥ 0.99
√

2 log n infinitely often; that Rn ≥ 1.00
√

2 log n infinitely often; that Rn ≥ 1.01
√

2 log n

infinitely often.

35. Twins and paradigm shifts

Let X1, X2, X3, . . . be an infinite sequence of independent standard normals. Say that Xi−1 and

Xi are twins if |Xi −Xi−1| ≤ ci, and that there is a regime shift if |Xi −Xi−1| ≥ di. Such ci and

di will be specified below. Let A be the event that the sequence experiences infinitely many twins,

and B the event that the history sees infinitely many regime shifts.

(a) Write up an exact formula for the expected number of twins in the course of the first n = 1012

observations. Put up similarly a formula for the expected number of regime shifts over the

same period.

(b) Find P (A) for the cases ci = 1/i and ci = 1/i2.

(c) Find P (B) for the cases di = 2
√

log i and di = 2.001
√

log i.

(d) Construct a criterion, expressed in terms of the ci and di, for the history to experience with

probability 1 both infinitely many twins and infinitely many regime shifts. Here it many be

convenient to first deal with the situations where infi ci > 0 and supi di <∞, and then focus

on the cases where ci → 0 and di →∞.

36. Quickness of convergence of average to its mean

Assume that X1, X2, . . . is a sequence of i.i.d. variables with mean zero. Hence X̄n will converge

to 0 in probability, and even with probability 1, by the Law of Large Numbers. But how fast will

pn(a) = Pr{X̄n ≥ a} → 0, for fixed a > 0?

14



(a) Assume VarXi = σ2 is finite. Show that pn(a) ≤ σ2/(na2), hence speed of order 1/n.

(b) Assume that also the fourth order moment is finite, EX4
i < ∞. Show that pn(a) ≤

Kσ2/(n2a4), for a certain K, which gives speed of order 1/n2.

(c) Let us generalise: Assume that E |Xi|p <∞, for a suitable p ≥ 2. The central limit theorem

says
√
nX̄n/σ →d N(0, 1). One may show that

E |
√
nX̄n/σ|p → E |N(0, 1)|p,

see e.g. von Bahr (1965). Show from this that

E |X̄n|p ≤ cpn−p/2 E |N(0, 1)|p σp for all n,

for a suitable constant cp – and one may use cp = 1.001 if ‘for all n’ is replaced by ‘for all

large enough n’.

(d) Show that pn(a) ≤ Kp/(n
p/2ap) for a suitable constant Kp.

(e) Assume Xi has moments of all orders, such that (d) holds for each p. If you should succeed

in proving that pn(a) ≤ 0.999999n, is this a sharper result?

(f) Assume that the moment generating function M(t) = E exp(tX) exists for (at least) 0 ≤ t ≤
t0. Show that

pn(a) ≤ ρn, where ρ = ρ(a) = min
0≤c≤t0

M(c)

exp(ac)
,

and show that ρ < 1. (If ρ = 1 the result would still hold, but it would be a boring and

rather unpublishable one.)

(g) Find ρ = ρ(a) explicitly, when Xi ∼ N(0, 1), and when Xi ∼ N(0, σ2).

(h) It is practical to have explicit results also for pn(a) = Pr{X̄n ≥ ξ+ a}, of the type above, for

the case of EXi = ξ. Establish such results.

(i) Find ρ = ρ(a) explicitly for the cases (1) Xi ∼ χ2
m; (2) Xi ∼ Bin(1, p); and (3) Xi ∼ Pois(λ).

37. The discrete and continuous parts of a cumulative distribution function

Let F be an arbitrary cumulative distribution function onR. Show that one always may decompose

F into F = Fc + Fd, where Fc is continuous and Fd is discrete.

38. A probabilistic excursion into number theory

In this exercise we shall construct certain types of probability distributions on the natural numbers,

via placing probabilities on the the exponents in their prime number factorisations. This becomes

an excursion into the world of number theory, to show some their results and formulae, but with

the probabilist’s hat and spectacles. Let p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11, etc., be the prime

numbers.

(a) Find, like Gauß did when he was a little kid, all the prime numbers up tp 100. Gauß didn’t

stop there; as a 15 year old boy in 1792 he had essentially understood the fundamental prime

number theorem π(x)
.
= x/ log x, where π(x) is the number of primes below x, see point (xx)

below. This was not formally proven until about 1896.
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(b) Prove, as Euclid did about 2300 year ago, that there are infinitely many primes! (Later

proofs of interest include those of Kummer, Pólya, Euler, Axel Thue, Perott, Auric, Métrod,

Washington, and Fürstenberg. Even further proofs flow as corollaries of statements proved

below, in points (g) and (k).)

(c) We do have 63 = 32·71, 104 = 23·131, 30 141 766 = 32·51·171·312·41, 702 958 333 = 71·114·193,

right? Make it clear to you that each natural number n may be expressed in a unique prime

factorisation fashion, in the form n = px1
1 p

x2
2 · · · pxmm . Here m is the number of the highest

prime in n, and x1, x2, · · · , xm are the exponents. We may also write n as the infinite product∏∞
j=1 p

xj
j , where all xj from a certain j0 + 1 onwards are equal to zero.

(d) This opens a probabilistic door for us, creating a random natural number N by expressing

it as

N = pX1
1 pX2

2 · · · =
∞∏
j=1

p
Xj
j ,

where X1, X2, . . . are random variables in {0, 1, 2, . . .}, with the property that only a finite

number of them are above 1. Let us try: assume the Xj are independent. Show that N is

then a well-defined random variable if and only if

∞∑
j=1

Pr{Xj ≥ 1} =

∞∑
j=1

[1− Pr{Xj = 0}] <∞.

The division here is sharp: if the sum diverges, then not only is N = ∞ with positive

probability, but with probability 1.

(e) As a preliminary example, let the Xj be independent with Xj ∼ Pois(dj). Show that N is

well-defined if and only if
∑∞
j=1 dj <∞. Find under this condition the expected values of N

and logN . Simulate say 104 such N , with dj = 1/i3/2.

(f) There’s more beauty to be revealed for the case where the Xj are taken independent and

geometrically distributed. Let Xj ∼ Geo(cj), which means

Pr{Xj = x} = (1− cj)xcj for x = 0, 1, 2, . . . .

Find the mean, the variance, and the generating function for Xj :

EXj =
1− cj
cj

, VarXj =
1− cj
c2j

, E sXj =
cj

1− (1− cj)s
.

Show also that Pr{Xj ≥ x} = (1 − cj)x. Demonstrate that N is well-defined if and only if∑∞
j=1(1− cj) <∞.

(g) You recall
∑∞
n=1 1/n2 = π2/6, Euler’s sensational finding from about 1734? Consider the

choice cj = 1−1/p2j . Find the probability that N is equal to 1, 11, 63, 103 141 766. Show that

Pr{N = n} =
6

π2

1

n2
for n = 1, 2, 3, . . . . (0.1)

Then you have also essentially deduced the following intriguing formula:

π2

6
=

∞∏
j=1

p2j
p2j − 1

=
4

3

9

8

25

24

49

48

121

120
· · · .

As a low-hanging fruit in this garden: If there had been merely a finite number of primes,

then π2 would have been rational. Hence (fill in!).
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(h) Show also, conversely, that if N is given the (0.1) distribution, then by necessity this leads

to independent Xj which are geometrically distributed with parameters cj = 1− 1/p2j .

(i) With this distribution for N , find the following probabilities:

(i) that N is odd [answer: 3
4 ];

(ii) that N is a prime numbers;

(iii) that N is a a ‘prime potens’, of the form py, for some y ≥ 1;

(iv) that N is a factor in 100;

(v) that 100 is a factor in N [answer: 1/1002];

(vi) that N turns out to be a square [answer: π2/15 !];

(vii) invent something yourself.

(j) Find the mean for N and for logN . And their variances, unless your willpower is strong

enough to resist.

(k) Riemann’s zeta function is defined as ζ(α) =
∑∞
n=1 1/nα, for α > 1. Thus ζ(2) = π2/6,

ζ(4) = π4/90, ζ(6) = π6/945, etc. Agree to say that N is zeta distributed with parameter α

provided

Pr{N = n} =
1

ζ(α)

1

nα
for n = 1, 2, 3, . . . .

Assume from this point (k) onwards, up to point (y) below, thatN has this distribution. Show

that this is equivalent to having the Xj independent and geometric, with Xj ∼ Geo(1−1/pαj ).

Derive in particular the following intriguing representation for the zeta function:

ζ(α) =
∏

prime

pα

pα − 1
=

∞∏
j=1

pαj
pαj − 1

.

This formula was first derived by Euler. So now we know that

π4

90
=

16

15

81

80

625

624

2401

2400
· · · .

Show also that ζ(α) → ∞ as α → 1, which would not have been true if God had given us

only a finite number of prime numbers.

(l) Generalise the questions and solutions from point (i) to the more general situation with

parameter α rather than 2. Replace also ‘100’ with an arbitrary n = px1
1 · · · pxmm for sub-points

4 and 5. [A few answers: (l1) 1−1/2α; (l2) ζ(α)−1
∑∞

1 1/pαj ; (l3) ζ(α)−1
∑∞

1 1/(pαj −1); (l4)

Pr{N is a factor in n} = ζ(α)−1n−α
∏m
j=1(1+pαj + · · ·+p

αxj
j ); (l5) Pr{n is a factor in N} =

1/nα; (l6) ζ(2α)/ζ(α); (l7) go confidently in the direction of your dreams.]

(m) Say that the number n is modest if all prime exponents xj for n are 0 or 1. Show us three

modest and three immodest numbers. Show that the probability that N is modest is ζ(2α)−1.

Demonstrate also that

B(α) =
∑

n modest

1

nα
=

ζ(α)

ζ(2α)
=

∏
p primtall

pα + 1

pα
.
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(n) Say that n is second-order modest if all prime exponents are less than or equal to 2. Show

that the probability that N is such a second-order modest number is ζ(3α)−1.

(o) Show that the events {63 is a factor in N} and {100 is a factor in N} are independent, whereas

{18 is a factor in N} and {52 is a factor in N} are dependent. Generalise – ask the right

questions, and find the right answers.

(p) Show, by studying EN for α = 2, that
∏
p prime(1 + 1/p) = ∞, and deduce from this that∑

p prime 1/p =∞. This was first proven by Euler.

(q) Let M = max{j : Xj ≥ 1} be the last prime factor present in the random N . FInd the

probability distribution of M , and show that it has expected value

∞∑
m=1

[
1−

∞∏
j=m

(
1− 1

pαj

)]
.

(r) Let f and g be functions defined on the natural numbers. Define the Dirichlet convolution

or Dirichlet product f ∗ g by

(f ∗ g)(n) =
∑
d|n

f(d)g(n/d), n ≥ 1,

with the sum taken over those d in {1, . . . , n} which are factors in n. Show that

∞∑
n=1

f(n)

nα

∞∑
n=1

g(n)

nα
=

∞∑
n=1

(f ∗ g)(n)

nα
, or E (f ∗ g)(N) = ζ(α) E f(N) E g(N),

if the two series converge.

(s) Let σ(n) be the number of d in {1, . . . , n} which are factors in n. Show that
∑∞
n=1

σ(n)
nα =

ζ(α)2; (i) by working with Eσ(N), (ii) by Dirichlet convolution.

(t) Let φ(n) be the so-called Euler totient function, defined as the number of numbers in

{1, . . . , n} which are reciprocally prime with n. It is an important tool in mathematical num-

ber theory. Show that φ(p) = p−1 if p is a prime; that more generally φ(px) = px−px−1 if p

is a prime; that the function is so-called multiplicative, which means that φ(mn) = φ(m)φ(n)

for reciprocally primeish numbers; that n =
∑
d|n φ(d); that (1 ∗ φ)(n) = n; and that

φ(n) = n
∏
p|n(1− 1/p). Prove the formulae

∞∑
n=1

φ(n)

n2
=∞,

∞∑
n=1

φ(n)

nα
=
ζ(α− 1)

ζ(α)
;

(1) by working with Eφ(N), (2) by working with Eφ(N)/N ; (3) by using Dirichlet convolu-

tions.

(u) Another number theoretic function of importance is the Möbius function, defined by µ(1) = 1;

µ(pj1 · · · pjr ) = (−1)r if the number is over distinct prime numbers; and µ(n) = 0 for all

other n. Show that µ(n) 6= 0 only for the modest numbers studied in point (m). Prove the

glamorous formula

∞∑
n=1

µ(n)

nα
=

1

ζ(α)
, or

∞∑
n=1

1

nα

∞∑
n=1

µ(n)

nα
≡ 1,
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by working with the mean of the random µ(N) in a couple of different ways. This point may

also be solved by conditioning a zeta distribution on the event that the outcome is modest;

check point (
√
π).

(v) It follows without too much efforts that limα→1

∑∞
n=1

µ(n)
nα = 0; mathematical finesse is

however called for to really prove that
∑∞
n=1

µ(n)
n = 0. Attempt to come up with such

finesse. Then attempt to attach The Fundamental Prime Number Theorem, which says that

if π(x) is the number of primes in {1, 2, . . . , x}, then π(x)
.
= x/ log x. [One may prove that

this implies and is implied by
∑∞
n=1

µ(n)
n = 0; see Amitsur’s ‘On arithmetic functions’ in

Journal of Analytic Mathematics, 1956.]

(w) Time has come to introduce the von Mangholdt function, defined by Λ(n) = log p for prime

potens numbers n = px for x ≥ 1, and Λ(n) = 0 for all numbers not being prime potenses.

Work with E Λ(N) and show that

∞∑
n=1

Λ(n)

nα
=

∑
p primtall

log p

pα − 1
;

(x) and show that ∑
p primtall

log p

pα − 1
=

∞∑
n=1

log n

nα

/ ∞∑
n=1

1

nα
=
−ζ ′(α)

ζ(α)
,

by working with logN . Prove also that (1 ∗ Λ)(n) = log n.

(y) Find a numerical value for B, the Viggo Brun constant. [Answer: 1.90216054 ...]

(z) Let N1 and N2 be independent and zeta distributed with the same parameter α. Find the

distribution for the product N1N2.

(æ) If n1, . . . , nk are given numbers, let γ{n1, . . . , nk} be their greatest common divisor; for

instance, γ{20, 30} = 10 and γ{18, 24, 36} = 6. If N1 and N2 are independent and zeta

distributed with parameters α1 and α2, show that γ{N1, N2} becomes zeta distributed with

parameter α1 + α2. Generalise.

(ø) Find also the probability distribution for λ{N1, N2}, the smallest common multiplum for N1

and N2, when α1 = α2. [The answer is more complicated than for γ{N1, N2}.]

(̊a) Back to semi-reality, or perhaps pseudo-reality, for a little while: The zeta distribution has

been applied in certain linguistic studies; it has e.g. been tentatively shown that the frequency

of words, in long text corpora, to a certain degree of accuracy follows a zeta distribution.

Assume you read V words by Shakespeare, that V1 words are seen only once, that V2 words

are seen precisely twice, etc. Then the relative frequencies Vn/V should be fitted to the zeta

model’s ζ(α)−1/nα. Estimate α for a few of your favourite authors. Who has the lowest α,

Anne-Catharine Vestly or Knud Pedersen Hamsun? – The zeta distribution is also partly

like a discretised Pareto distribution, and will perhaps fit sufficiently well to distributions of

income in different socio-economic groups. Try it out, for a group you know.

(ß) Assume N1, . . . , Nk are independent numbers drawn from the zeta distribution with parame-

ter α. Show that the geometric mean (N1 · · ·Nk)1/k is sufficient and complete. Explain how

you can find the maximum likelihood estimator.
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(�oo) I have simulated 25 realisations from a zeta distribution, using a simple R programme, and

found

2, 3, 3, 1, 8, 1, 1, 1, 3, 1, 12, 29,

1, 37, 10, 2, 5, 1, 1, 6, 10, 1, 4, 1, 6.

Only I know the value of α being used. Estimate this value, and give a confidence interval.

(a̋) Show that the maximum likelihood estimator is strongly consistent, and find its limit distri-

bution.

(ç̈) Show that every even number (except 2) can be expressed as a sum of two primes, e.g. by

studying the behaviour of an analytic continuation of the zeta function near zero.

(
√
π) Let us attempt another type of distributions for the Xj than the geometric ones. Let Xj be

0 or 1, with probabilities 1 − aj and aj . Then N is accordingly a random modest number

(see point (m)). Show that N is well-defined if and only of
∑∞
j=1 aj < ∞. Show that if aj

is taken to be 1/(pαj + 1), then Pr{N = n} = B(α)−1/nα, for modest n. Show again that

B(α) =
∏
p prime(p

α + 1)/pα = ζ(α)/ζ(2α). Show that this model may be characterised as

the conditional zeta distribution given that N is modest, and, alternatively, as the conditional

zeta distribution given that all the geometric Xj are in {0, 1}. Do a little formula excursion

by finding expressions for natural quantities in two ways; in one way, working with the

N distribution directly, in another way, using the Xj distributions. You may e.g. impress

yourself by showing ∑
n modest

log n

nα
=

ζ(α)

ζ(2α)

∑
p primtall

log p

pα + 1
,

and your surroundings by proving

Pr
{ ∞∑
j=1

Bin{1, 1/(1 + p2j )} becomes even
}

= 0.70.

[Consider Eµ(N).]

(�oı) Then try out Poisson distributed prime number exponents. Say that N is Poisson prime

number exponentially distributed with parameters {d1, d2, d3, . . .} provided Xj ∼ Pois(dj),

where these are still independent. Let in particular dj = d/pαj , and show that

Pr{N = n} = e−dA(α) ds(n)

nαg(n)
, n = 1, 2, 3, . . . ,

where s(n) =
∑m
j=1 xj and g(n) =

∏m
j=1 xj !, for given n with factorisation as in (c), and

where A(α) =
∑
p primtall 1/pα. Show, for example, that

∞∑
n=1

1

nα
1

g(n)
= exp{A(α)},

∞∑
n=1

log n

nαg(n)
= exp{A(α)}

∑
p primtall

log p

pα
.

Show that the probability of having a prime number for N is A(α) exp{−A(α)} when dj =

1/pαj . Find some further formulae in the flow created. Show that products of independent

Poisson prime number exponentially distributed variables stay being Poisson prime number

exponentially distributed. Find a sufficient and complete statistic based onN1, . . . , Nk when d

and α are unknown parameters. Study the large-sample properties of the maximum likelihood

estimators.
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(γ) We know that
∏
p p

2/(p2 − 1) = π2/6, but what is
∏
p p

2/(p2 − 0.99)? – Allow me to show

you my generalised zeta function:

ζd(α) =

∞∑
n=1

ds(n)

nα
, 0 < d ≤ 2, α > 1,

where s(n) = x1 + x2 + · · · is the extravaganza for the number n. Show taht this de facto

exists for 0 < d ≤ 2 and α > 1. Give probabilistic proofs for the following formulae, which

all reduce to previous results when d is set equal to 1:

ζd(α) =
∏

p primtall

pα

pα − d
,

∞∑
n=1

ds(n)µ(n)

nα

∞∑
n=1

ds(n)

nα
≡ 1,

∞∑
n=1

ds(n)σ(n)

nα
= ζd(α)2,

∑
n beskjeden

ds(n)

nα
=

∏
p primtall

pα + d

pα
=

ζd(α)

ζd2(2α)
,

∞∑
n=1

ds(n)φ(n)

nα
=
ζd(α− 1)

ζd(α)
,

∞∑
n=1

ds(n)f(n)

nα

∞∑
n=1

ds(n)h(n)

nα
=

∞∑
n=1

ds(n)(f ∗ h)(n)

nα
,

∞∑
n=1

ds(n) log n

nα
= ζd(α)

∞∑
n=1

ds(n)Λ(n)

nα
,

Pr
{ ∞∑
j=1

Bin{1, d/(pαj + d)} becomes even
}

=
1

2
+

1

2

ζd2(2α)

ζd(α)2
.

Employ as probabilistical tools (1) Xj ∼ Poisson(d/pαj ); (2) Xj ∼ Bin{1, d/(pαj + d)}; (3)

Xj ∼ Geo(1− d/pαj ). Discuss relations between these models.

(œ) Investigate consequences for the distribution of primes among the natural numbers, from∑∞
n=1 d

s(n)µ(n)/n = 0; as mentioned this statement, for the special case of d = 1, implies

the glorious prime number distribution theorem.

(α) Put a probability distribution on the modest numbers by taking the Xj to form a time

inhomogeneous Markov chain on {0, 1}. Grei ut.

(ω) Find out a wholde deal on how the prime numbers and their cousins are distributed among

the natural numbers, by studying distributions of the type D{N |N ≤ n0}, where n0 is big,

and by moving this threshold for the α parameter to the left of 1. Meld fra hvor du g̊ar.

39. Quartile and quantile differences

One way of assessing the spread of a distribution F , based on data X1, . . . , Xn, is via the quartile

difference Q3 −Q1, the difference between the upper and lower quartiles. Often this difference is
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multiplied with a well chosen constant, such that the resulting spread estimate becomes approxi-

mately unbiased for the the standard deviation parameter in the case of F being normal.

What is this constant? How clever is this estimator, compared with the usual one under

normal conditions? Which cons and pres does the estimator have, compared to others? How do

yet other naturally generalised competitors behave, where one uses upper and lower ε quantile,

instead of upper and lower 25 percent quantiles? Which of these is best, on Gauß’s home turf?

(a) Attempt to make your own exam type exercise, containing progressively more detailed ques-

tions, based on the above sentences.

(b) Define Q3 = X[0.75n] and Q3 = X[0.25n], where X(1) < · · · < X(n) are the order statistics.

Speculate a little regarding suitable interpolation tricks to make them better.

(c) For a few of the points below we shall take F to be the normal N(ξ, σ2). Assume for this

point only that F is strictly increasing with a continuous density f . Show that Q3 − Q1

converges almost surely to q3 − q1 = F−1(0.75) − F−1(0.25). With which constant do we

need to multiply Q3 −Q1 in order to get a consistent estimator of σ, in the case where F is

a normal?

(d) Show that (√
n(Q1 − q1)
√
n(Q3 − q3)

)
→d

(
(F−1)′(0.25)U

(F−1)′(0.75)V

)
,

where (
U

V

)
∼ N2(

(
0

0

)
,

(
3/16 1/16

1/16 3/16

)
.

(e) Let z(ε) = Φ−1(1− ε) be the upper ε quantile for the standard normal, and let

σ̃ =
Q3 −Q1

2z(0.25)
=
Q3 −Q1

1.349
.

Show that
√
n(σ̃ − σ) tends to N(0, κ2), with κ = 1.1664σ.

(f) Here it is natural to compare with the traditional estimator σ̂, the empirical standard devi-

ation. Show (which is more standard, right?) that
√
n(σ̂ − σ)→d N(0, (0.7071σ)2).

(g) Then generalise! That is, consider

σ̃(ε) =
X[(1−ε)n] −X[εn]

2z(ε)
=
F−1n (1− ε)− Fn(ε)

2z(ε)
,

where Fn is the empirical cumulative distribution function, and find the limit distribution

for
√
n(σ̃ − σ) under normal conditions. The answer should becomes N(0, κ(ε)2), where

κ(ε) =

√
2π

2ε

√
2ε(1− ε) exp{ 12z(ε)

2}σ.

(h ) Investigate how the precision of σ̃(ε) changes when ε varies between 0 and 1
2 . Show in

particular that the asymptotically speaking very best estimator of this type, under normality,

is

σ∗ =
F−1n (0.931)− F−1n (0.069)

2.9666
,
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with limit distribution N(0, (0.8755σ)2), a loss of 1.2382 compared with the optimal value

σ/
√

2.

(i) Investigate the behaviour of such estimators outside normality.
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Figure 0.1: For each n, from 5 to 50, I have simulated sim = 104 realisations of Zn of Exercise 41, and then computed

the Kolmogorov–Smirnov test statistic Dsim = sim1/2 maxt |Fsim(t) − Φ(t)| to check whether the Zn

distribution is close to the limiting standard normal. The red horizontal line is at 1.358, the 0.95 point

of the null distribution.

40. Checking out the CLT

This is a cousin exercise to Exercise 1, using simulation to check whether the variable

Zn = (X1 + · · ·+Xn − nµ)/(
√
nσ) =

√
n(X̄n − µ)/σ

has a distribution decently close to the limiting standard normal, nor not. This is a function of

both the underlying distribution and the size of n, of course. One learned in Exercise 1 that if

the start distribution of a single Xi is the uniform, then the histograms of say 104 realisations

of Zn succeed in getting pretty close to the normal, for pretty low n. This might be classified

as ‘disappointing’ or ‘encouraging’, avhengig av dagsformen – at any rate, a key reason why this

happens is that the start distribution is symmetric.

To investigate different scenarios, with skewness on board, and where convergence towards

limiting normality is decidedly slower, let’s make the Beta distribution the start distribution, with
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parameters (a, b) = (1, 5). Display the density of this distribution; use the formulae

EX = ξ =
a

a+ b
and VarX =

ξ(1− ξ)
a+ b+ 1

ti find the mean and standard deviation, and compute the skewness γ3 = E (X − ξ)3/σ3. Show

also that

skew(Zn) = γ3/
√
n.

Your task is now to simulate sim = 104 realisations of the variable Zn, for say n = 5, 6, . . . , 50.

For each such n, you might check the corresponding histogram, and observe how these become

steadily ‘more normal’; you may also use plot(density(zz)) to look at the empirical densities

based on the sim realisations. Also, for each such simulated dataset of Zn, carry out two tests

for standard normality, in order to see how ‘far off’ from the limit one might still be. These tests

are first the Kolmogorov–Smirnov one, from 1933, and then the Karl Pearson one, from 1900, see

Figures 0.1 and 0.2. The first is

Dsim =
√

sim max
t
|Fsim(t)− Φ(t)|,

with Fsim(t) the empirical distribution function of the simulated data. The Pearson chi-squared

statistic is

Ksim =

m∑
j=1

(Nj − sim p0,j)
2

sim p0.j
,

withNj the number of datapoints landing in cell j, and p0,j the standard normal probability for that

cell. The cells can be constructed as one pleases, but here I have taken (Φ−1((j−1)/m),Φ−1(j/m)),

so that each of these have probability p0,j = 1/m under standard normality.

Observe how the distribution of Zn comes closer and closer to the standard normal, as n

increases, but rather slowly, and much more slowly than for Exercise 1, due to the skewness γ3/
√
n

tending slowly to zero. With 104 datapoints we observe that the distributions underlying the data

are in fact not really normal, yet, for n ≤ 40, say, but for larger n we would need even more data

to be able to statistically see that they are not really from the standard normal.

Feel free to build in your own extra test for normality, and make a figure corresponding to

Figures 0.1–0.2. You may also play around with the (a, b) parameters of the Beta distribution you

sample from, to check more extreme behaviour, in the sense of the Zn needing larger sample sizes

n in order to have a distribution closer to the standard normal.

41. The Strong Law of Large Numbers: Basics

Suppose X1, X2, . . . are i.i.d. from a distribution with finite E |Xi|. Then the mean ξ = EXi exists,

and the event

A = {X̄n → ξ} = ∩ε>0 ∪n0≥1 ∩n≥n0
{|X̄n| ≤ ε}

has probability equal to one hundred percent. As usual X̄n is the sample average of the n first

datapoints. I will tend to various steps to eventually demonstrate this statement, which is the

Strong Law of Large Numbers (first proven by Kolmogorov in 1933). We may for simplicity and

without loss of generality take ξ = 0 below.
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Figure 0.2: For each n, from 5 to 50, I have simulated 104 realisations of Zn of Exercise 41, and then computed

the Pearson chi-squared test statistic Kn =
∑20

j=1(Nj − 104p0,j)2/(104 p0,j), for closeness of Nj , the

number of points in cell j, namely (Φ−1((j− 1)/20),Φ−1(j/20)), to 104 p0,j , with p0,j = 1/20. The red

horizontal line is at 30.144, the 0.95 point of the null distribution.

(a) Show that A is the same as

∩N≥1 ∪n0≥1 ∩n≥n0{|X̄n| ≤ 1/N},

and deduce in particular from this that A is actually measurable – so it does make well-defined

sense to work with its probability.

(a) Show that if Pr(AN ) = 1 for all N , then Pr(∩N≥1An) = 1 – if your fully certain about a

countable number of events, then you’re also fully certain about all of them, jointly. This is

actually not true with a bigger index set: if X ∼ N(0, 1), then you’re 100 percent sure that

Bx = {X is not x} takes place, for each single x, but from this does it not follow that you

should be sure about ∩all xBx. Explain why.

(c) Show that Pr(A) = 1 if and only if Pr(Bn0
)→ 0, for each ε > 0, where

Bn0 = ∪n≥n0{|X̄n| ≥ ε}.

In words: for a given ε, the probability should be very low that there is any n ≥ n0 with

|X̄n| ≥ ε.
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(d) A simple bound is of course

Pr(Bn0
) ≤

∑
n≥n0

Pr{|X̄n| ≥ ε},

so it suffices to show, if possible, under appropriate conditions, that
∑

Pr{|X̄n| ≥ ε} is a

convergent series. With finite variance σ2, show that the classic simple Chebyshov bound

does not solve any problem here.

(e) Show, however, that if the fourth moment is finite, then

Pr{|X̄n| ≥ ε} ≤
1

ε4
E |X̄n|4 ≤

c

ε4
1

n2
,

for a suitable c. So under this condition, which is moderately hard, we’ve proven the strong

LLN.

(f) One may squeeze more out of the chain of arguments below, which I indicate here, without

full details. Assume E |Xi|r is finite, for some r > 2, like r = 2.02. Then one may show, via

arguments in von Bahr (1965), that the sequence E |
√
nX̄n|r is bounded. This leads to the

bound

Pr{|X̄n| ≥ ε} ≤
1

(
√
nε)r

E |
√
nX̄n|r,

and these form a convergent series. We have hence proven (modulo the von Bahr thing) that

the strong LLN holds for finite E |Xi|2+ε, an improvement over the finite E |Xi|4 condition. –

To get further, trimming away on the conditions until we are at the Kolmogorovian position

of only requiring finite mean, we need more technicalities; see the following exercise.

42. The Strong Law of Large Numbers: nitty-gritty details

This exercise goes through the required extra technical details, along with a few intermediate

lemmas, to secure a full proof of the full LLN theorem: as long as E |Xi| is finite, the infinite

sequence of sample means X̄n will with probability equal to a hundred percent converge to ξ = EXi.

(a) We start with Kolmogorov’s inequality: Consider independent zero-mean variablesX1, . . . , Xn

with variances σ2
1 , . . . , σ

2
n, and with partial sums Si = X1 + · · ·+Xi. Then

Pr{max
i≤n
|Si| ≥ ε} ≤

VarSn
ε2

=
1

ε2

n∑
i=1

σ2
i .

Note that this is a much stronger result than the special case of caring only about |Sn|, with

Pr{|Sn| ≥ ε} ≤ VarSn/ε
2, which is the Chebyshov inequality. To prove it, work with the

disjoint decomposition

Ai = {|S1| < ε, . . . , |Si−1| < ε, |Si| ≥ ε} and A = ∪ni=1Ai = {max
i≤n
|Si| ≥ ε}.

Show that

ES2
n ≥ ES2

nI(A) =

n∑
i=1

ES2
nI(Ai),

that

ES2
nI(Ai) = E (Si + Sn − Si)2I(Ai) ≥ ε2 Pr(Ai),

and that this leads to the inequality asked for.
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(b) Consider a sequence of independent X1, X2, . . . with means zero and variances σ2
1 , σ

2
2 , . . ..

Show that if
∑∞
i=1 σ

2
i is convergent, then

∑∞
i=1Xi is convergent with probability 1. – It

suffices to show that the sequence of partial sums Sn = X1 + · · · + Xn is Cauchy with

probability 1. Show that this is the same as

lim
n→∞

Pr
[
∪i,j≥n{|Si − Sj | ≥ ε}

]
= 0 for each ε > 0.

Use the Kolmogorov inequality to show this.

(c) A quick example to illustrate this result is as follows. Consider

X =
X1

10
+
X2

100
+

X3

1000
+ · · · ,

a random number in the unit interval, with the Xi independent, and with no further assump-

tions. Show that X exists with probability 1.

(d) Prove that if
∑∞
i=1 ai/i converges, then ān = (1/n)

∑n
i=1 ai → 0. To show this, consider

bn =
∑n
i=1 ai/i, so that bn → b for some b. Show an = n(bn − nn−1), valid also for n = 1 if

we set b0 = 0, and which leads to

n∑
i=1

ai = nbn − b0 − b1 − · · · − bn−1.

(e) From the above, deduce that ifX1, X2, . . . are independent with means ξ1, ξ2, . . . and variances

σ2
1 , σ

2
2 , . . ., and

∑∞
i=1 σ

2
i /i

2 converges, then X̄n − ξ̄n →a.s. 0. Here ξ̄n = (1/n)
∑n
i=1 ξi.

(f) Use the above to show that if X1, X2, . . . are independent with zero means, and all variances

are bounded, then indeed X̄n →a.s. 0. Note that this is a solid generalisation of what we

managed to show in Exercise 42 – first, the distributions are allowed to be different (not

identical); second, we have landed at a.s. convergence with the mild assumption of finite and

bounded variances, whereas we there needed the harsher conditions of finite fourth moments.

(g) We need characterisations of the tails of a distribution with finite mean. Show that if X ≥ 0,

with distribution function F , then EX =
∫∞
0
{1 − F (x)} dx. Show more generally that for

any X,

EX =

∫ 0

−∞
F (x) dx+

∫ ∞
0

{1− F (x)} dx.

(h) Then show that if X has finite mean, then

∞∑
i=1

1

i2

∫
(−i,i)

x2 dF (x) <∞.

(i) I note that upon examining the arguments needed to prove (h), one learns that this is an

if-and-only-if result. More generally, attempt to prove that

E |X|m <∞ if and only if

∞∑
i=1

1

i2

∫
(−i,i)

|x|m+1 dF (x) <∞.
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(j) We’re close to the Pole, ladies and gentlemen. For i.i.d. zero mean variables X1, X2, . . ., split

them up with the little trick

Xi = Yi + Zi, with Yi = XiI(|Xi| < i), Zi = XiI(|Xi| ≥ i).

We have X̄n = Ȳn+ Z̄n, so it suffices to demonstrate that Ȳn →a.s. 0 and Z̄n →a.s. 0 (since an

intersection of two sure events is sure). Use Borel–Cantelli to show that only finitely many Zi

are non-zero, and use previous results to demonstrate Ȳn − ξ̄n →a.s.→ 0 and ξ̄n → 0, where

ξ̄n is the average of ξi = EYi.

(j) So we’ve managed to prove the Strong LLN, congratulations. Attempt also to prove the

interesting converse that if E |Xi| =∞, then the sequence of sample means is pretty erratic

indeed:

Pr{lim sup
n→∞

X̄n =∞} = 1.

Simulate a million realisations from the density f(x) = 1/x2, for x ≥ 1, in your nearest

computer, display the sequence of X̄n on your screen, and comment.

43. Yes, we converge with probability one

We’ve proven that the sequence of empirical means converges almost surely to the population

mean, under the sole condition that this mean is finite. This half-automatically secures almost

sure convergence of various other natural quantities, almost without further efforts.

(a) Suppose X1, X2, . . . are i.i.d. with finite variance σ2. Show that the classical empirical stan-

dard deviation

σ̂n =
{ 1

n− 1

n∑
i=1

(Xi − X̄n)2
}1/2

converges a.s. to σ. Note again that nothing more is required than a finite second moment.

(b) Suppose the third moment is finite, such that the skewness γ3 = E {(X − ξ)/σ}3 is finite.

Show that

γ̂3,n =
1

n

n∑
i=1

(Xi − X̄n)3

σ̂3

is strongly consistent for γ3.

(c) Then suppose the fourth moment is finite, such that the kurtosis γ4 = E {(X − ξ)/σ}4 − 3 is

finite. Construct a strongly consistent estimator for this kurtosis.

(d) Assume that (X1, Y1), (X2, Y2), . . . is an i.i.d. sequence of random pairs, with finite variances,

and define the population correlation coefficient in the usual fashion, as ρ = cov(X,Y )/(σ1σ2).

Show that the usual empirical correlation coefficient

Rn =

∑n
i=1(Xi − X̄n)(Yi − Ȳn)

{
∑n
i=1(Xi − X̄n)2}1/2{

∑n
i=1(Yi − Ȳn)2}1/2

converges with probability one hundred percent to ρ.
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(e) Formulate and prove a suitable statement regarding almost sure convergence of smooth func-

tions of means.

44. Exam STK 201 1989, #1

Determine for each of the following statements whether it is true or not. If it is correct, give a

short proof; if it is incorrect, construct a counterexample.

(a) If X and Y are two real random variables defined on the same probability space, and

φX(t) = E exp(itX) = E exp(itY ) = φY (t) for all t,

then X = Y with probability 1.

(b) If (X,Y ) is a random pair, with the property that

E exp{i(sX + tY )} = E exp(isX) E exp(itY ) for all s and t,

then X and Y are stochastically independent.

(c) If Xn and X are real random variables, and Xn converges in distribution to X, then

lim
n→∞

Pr{Xn = x} = 0

for each continuity point x for the cumulative distribution function for X.

(d) If Xn and X are real random variables, and Xn converges in distribution to X, and a certain

set A has the property that Pr{Xn ∈ A} = 1 for every n, then Pr{X ∈ A} = 1 too.

45. Exam STK 201 1989, #2

One wants to estimate the position of a parameter point (a, b) in the plane. For this task one obtains

n independent pairs of measurements (X1, Y1), . . . , (Xn, Yn). These come from the same unknown

distribution, but it is known that the Xi have expected value a and standard deviation 1, and that

the Yi have expected value b and standard deviation 1. Finally, Xi and Yi are uncorrelated.

(a) Introduce ân = (1/n)
∑n
i=1Xi and b̂n = (1/n)

∑n
i=1 Yi. Find the simultaneous (joint) limit

distribution for (√
n(ân − a)
√
n(̂bn − b)

)
.

(b) Construct an asymptotic 90 percent simultaneous (joint) confidence region for (a, b). What

is the shape of this region?

(c) Itis often useful to give the position of (a, b) in polar coordinates, that is, by the length

ρ = (a2 + b2)1/2 and the angle θ = arctan(b/a). [This is equivalent to a = ρ cos θ and

b = ρ sin θ.] Let

ρ̂n = (â2n + b̂2n)1/2 and θ̂n = arctan(̂bn/ân).

Find the simultaneous (joint) limit distribution for(√
n(ρ̂n − ρ)
√
n(θ̂n − θ)

)
,

and comment on thie result. [The derivative of the arctanx function is 1/(1 + x2).]
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46. Exam STK 201 1989, #3

LetX1, X2, X3, . . . be a sequence of independently and identically distributed real random variables.

The common distribution of Xi is continuous. Agree to say that if

Xn > max{X1, . . . , Xn−1},

then ‘Xn has set a new record’. Let

Rn =

1, if Xn has set a new record;

0, if Xn has not set a new record.

We count X1 as a ‘new record’, so that R1 = 1.

(a) Show, by direct arguments, that

Pr{Rn = 1} = 1/n for n ≥ 1.

Note: One can also prove that the Rn become stochastically independent. You do not have to

show this (during exam hours), but you can use the result in the rest of the present exercise.

(b) Let Yn be the number of new records during the first n observations. Introduce

an =

n∑
i=1

1

i
and σ2

n =

n∑
i=1

1

i

(
1− 1

i

)
.

Show that

Yn − an
σn

→d N(0, 1).

(c) Then use this result to reach the following:

Yn − log n√
log n

→d N(0, 1).

Here log n is the natural logarithm (the one with the Ibsen-Tolstoy base number e), and the

following mathematical results are at your disposal:

n∑
i=1

1

i
− log n→ γ = 0.5772...,

∞∑
i=1

1

i2
=
π2

6
= 1.6449...

(d) I wonder: about how many new records will be set during the first million observations?

Construct an interval that with probability approximately 95 percent contains Y1 000 000.

(e) Let Zn be the number of new records among the observations Xn+1, . . . , X2n. Prove that Zn

converges in distribution to a Poisson with parameter λ = log 2.

47. Exam STK 201 1989, #4

The following situation was studied in Exercise 4 of the ST 001 exam in May 1989 (yesterday, ac-

tually). Certain measurements X1, . . . , Xn are independent and have the same probability density

f , with expected value ξ and standard deviation σ. The parameters are unknown. Introduce

ξ̂n = X̄ =
1

n

n∑
i=1

Xi and σ̂2
n = s2 =

1

n− 1

n∑
i=1

(Xi − X̄)2.

The ST 001 students were among other things asked to answer this question:
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(a) Explain briefly how you by counting the number of observations in the intervals

(X̄ − s, X̄ + s), (X̄ − 2s, X̄ + 2s), (X̄ − 3s, X̄ + 3s) may get a rough idea of whether

the observations X1, . . . , Xn are normally distributed or not.

The present ST 201 exercise takes a closer look at the intuitive arguments that were expected of

the ST 001 students. Assume in what follows that X1, X2, . . . really are independent and normal

(ξ, σ2), so that the common underlying cumulative distribution function is

F (t) = Pr{Xi ≤ t} = Pr
{

N(0, 1) ≤ t− ξ
σ

}
= Φ

( t− ξ
σ

)
.

(a) Let Fn(t) = (1/n)
∑n
i=1 I{Xi ≤ t} be the empirical cumulative distribution function. What

can you say about the behaviour of Fn for large n?

(b) Assume that you have succeeded in proving the following statement: For each given c will

Fn(ξ̂n + cσ̂n)→a.s. F (ξ + cσ).

Show that this leads to

An =
1

n

n∑
i=1

I
{
a <

Xi − ξ̂n
σ̂n

≤ b
}
→a.s. Pr{a < N(0, 1) ≤ b} = Φ(b)− Φ(a).

(c) Explain why this gives an answer to the ST 001 exam question quoted above!

(d) Finally, prove the result given in (b). Note: There are several ways of proving this result.

If you should choose a method of proof that leads to convergence in probability, and not

convergence almost surely, then you will still be awarded full score by the examination censors

& markers.

48. Exam STK 201 1989, cont., #1

Determine for each of the following four statements whether it is correct or wrong. If it is correct,

give a brief argument for this; if not, give a counterexample.

(a) Dersom Xn converges in distribution to the normal N(0, 1), then the mean of Xn converges

to zero.

(b) Hvis Xn converges to a in probability, then Xn will also converge to a almost surely.

(c) S̊afremt Xn →d X and Yn →d Y , then Xn + Yn →d X + Y .

(d) Ifall Xn = (Xn,1, . . . , Xn,p)
t converges in distribution to X = (X1, . . . , Xp)

t in distribution,

where the components of the latter are independent and standard normal, then
∑p
i=1X

2
n,i

will converge in distribution to the χ2
p.

49. Exam STK 201 1989, cont., #2

LetX1, X2, X3, . . . be a sequence of independently and identically distributed real random variables.

The common distribution of Xi is continuous. Agree to say that if

Xn > max{X1, . . . , Xn−1},

31



then ‘Xn has set a new record’. Let

Rn =

1, if Xn sets a new record,

0, if Xn does not set a new record.

We count X1 as a ‘new record’, so that R1 = 1.

(a) Show via direct arguments that

Pr{Rn = 1} = 1/n for n ≥ 1.

(b) Explain what it means that a sequence of random variables are stochastically independent.

Show explicitly that R1, R2, R3 are independent. – Note: One may show that the full sequence

of R1, R2, R3, . . . are indeed independent, but you need not show this during exam hours.

You may however use this fact for the points below.

(c) Let’s push the records aside for two minutes, but formulate and prove the so-called Borel–

Cantelli lemma.

(d) What is the probability that the sequenceX1, X2, X3, . . . will produce infinitely many records?

50. Exam STK 201 1989, cont., #3

Make the following statement precise, and then prove it: A binomial (n, p) variable is approximately

a Poisson, when n is large and p is small.

51. Exam STK 201 1989, cont., #4

The following result is to taken as known: If Y1, Y2, . . . are independent and come from the same

distribution, of the parametric form f(y, θ), and θ̂n is the rimelighetsfunksjonsmaksimeringsesti-

matoren, then, under appropriate and mild regularity conditions, we have

√
n(θ̂n − θ)→d Np(0, J(θ)−1).

Here p is the dimension of θ, and

J(θ) = Eθ u(Y, θ)u(Y, θ)t = −Eθ
∂2 log f(Y, θ)

∂θ∂θt

is Fisher’s information matrix, involving also the score function u(y, θ) = ∂ log f(y, θ)/∂θ. Finally

Eθ signals expectation under the distribution f(y, θ).

(a) Assume the parameter θ is one-dimensional. Show that

√
n(θ̂n − θ)→d τ(θ)N(0, 1),

where

τ(θ) =
1√

−Eθ∂2 log f(Y, θ)/∂θ2
.

(b) Apply this to the exponential model, where f(y, θ) = θ exp(−θy) for positive y and θ is a

positive parameter.
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(c) It is often important to estimate the underlying density behind the observations, say f(y).

In the parametric case, where f(y) = f(y, θ), it is natural to use the simple plug-in estimator

f̂(y) = f(y, θ̂n). Show, in the general but still one-dimensional case, that

√
n{f(y, θ̂n)− f(y, θ)} →d f(y, θ)u(y, θ)τ(θ)N(0, 1).

(d) An often used measure of quality for a density estimator f̂ for f is the integrated squared

error

isen =

∫
{f(y, θ̂n)− f(y, θ)}2 dy.

Show, still for the general but one-dimensional case, that

n isen →d c(θ)χ
2
1,

where the proportionality factor involved is

c(θ) = τ(θ)2
∫
f(y, θ)2u(y, θ2) dy.

(e) Show that mean integrated squared error,

misen = Eθ

∫
{f(y, θ̂n)− f(y, θ)}2 dy,

with a first-order approximation, is equal to θ/(4n) for the exponential distribution case.

(f) Then establish the following intriguingly simple, general, and informative result concerning

iwsen and miwsen, the 1/f weighted versions of isen and misen:

n iwsen = n

∫
{f(y, θ̂n)− f(y, θ)}2

f(y, θ)
dy →d χ

2
p, miwsen

.
= p/n.

Again, p is the number of parameters in the model. Note that this result does not depend

on which parametric model is used, or on the sample space for the observations (or, for that

matter, on the dominating measure used to define the densities f(y, θ) = dPθ(y)/∂µ).

52. Exam STK 201 1995, #1

Here are some questions from the core curriculum of the course.

(a) Explain what a probability spacae (Ω,A, P ) is. List the demands for P being a probability

measure.

(b) From the definitions in (a), show that if B1, B2, . . . are arbitrary sets in A, then we have

P (∪ni=1Bi) ≤
∑n
i=1 P (Bi), and also P (∪∞i=1Bi) ≤

∑∞
i=1 P (Bi).

(c) Formulate and prove the so-called Borel–Cantelli lemma.

53. Exam STK 201 1995, #2

This exercise concerns the use of characteristic functions to, well, characterise distributions.
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(a) Define the characteristic function φ for a real random variable X. Show that this function is

bounded and uniformly continuous.

(b) Assume X has mean zero and finite variance σ2. Show that

φ(t) = 1− 1
2σ

2t2 + o(t2).

[Here I wish for ‘direct arguments using the definitions’; simply saying this is inside the

curriculum is not sufficient, on this particular occasion.]

(c) Let in this point X and X ′ be independent and normal (0, σ2) variables. Show, using charac-

teristic functions, that (X+X ′)/
√

2 has the same distribution as each of the two observations.

Give a generalisation.

(d) Let X be as in point (b), and assume that its distribution has the invariance property from

point (c), i.e. that if X and X ′ are independent with this same distribution, then (X+X ′)/
√

2

has the same distribution as each of X and X ′. Show that this leads to

φ
( t

2k/2

)2k
= φ(t) for all natural numbers k and all real t.

(e) Show that the assumption of point (d) implies that X by necessity must be normally dis-

tributed, or equal to zero. – The zero-mean normal is hence the only distribution in this

universe with the (X +X ′)/
√

2 ∼ X property.

54. Exam STK 201 1995, #3

This exercise works itself towards the construction of a certain natural test for the hypothesis that

different groups of normally distributed data have the same standard deviation. Such a test is

important also since many standard techniques use such an equality of spread parameters as a

basic working assumption.

(a) Let Y1, . . . , Yn be independent with the same distribution, and assume this distribution has

a finite fourth moment. Let mean and standard deviation be µ and σ, and let γ4 = E (Y −
µ)4/σ4 − 3 be the so-called kurtosis. Construct a consistent estimator for γ4.

(b) The usual empirical variance is σ̂2
n = (1/n)

∑n
i=1(Yi − Ȳn)2, where Ȳn is the sample mean

(1/n)
∑n
i=1 Yi. Show that

√
n(σ̂2

n − σ2)→d N(0, σ4(2 + γ4)).

(c) Find the limit distribution for
√

2n(log σ̂n − log σ). Show in particular that the limit is the

standard normal N(0, 1) in the case where the Xi are normal.

(d) Construct a confidence interval with coverage approximately 90 percent for σ, which ought

to be valid also outside normal conditions.

(e) Assume now that there are n observations for each of five normally distributed populations,

with standard deviations σ1, . . . , σ5. Let further σ̂2
n,j be the empirical variance for group j,

for j = 1, . . . , 5. Find the limit distribution for
√

2n(log σ̂n,1 − log σ1)
...√

2n(log σ̂n,5 − log σ5)

 .
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(f) Construct a test for the hypothesis H0 : σ1 = · · · = σ5, using the result from the previous

point, and which should have limiting significance level 5 percent. [For simplicity it is assumed

that there are equally many observations in each group here. It is however not difficult to

generalise this to the case of sample sizes n1, . . . , n5 being different. You may do this after

exam hours.]

55. Exam STK 201 1995, #4

This exercise concerns estimation in the so-called truncated Poisson model.

(a) Assume that a certain Y0 has a Poisson distribution with parameter θ, but that X0 can only

be observed if its value is at least 1. Let Y be such an observation. Show that its probability

distribution is

Pr{Y = y} = f(y, θ) =
exp(−θ)θy/y!

1− exp(−θ)
for y = 1, 2, 3, . . . .

(b) Assume Y1, Y2, . . . are independent observations from such a truncated Poisson distribution.

Put up an equation to determine the rimelighetsfunksjonsmaksimeringsestimatoren θ̂n for θ.

(c) Describe the large-sample behaviour of θ̂n, e.g. by using results about the rimelighetsfunksjon-

smaksimeringsestimatorsekvensen from the course curriculum.

(d) Suppose now that one cannot necessarily trust the parametric modelling assumption of (a),

but that there is a certain underlying true data generating mechanism, on {1, 2, 3, . . .}. As-

sume that this true distribution has a finite mean ξ and standard deviation τ . Explain what

the rimelihetsfunksjonsmaksimeringsestimatoren θ̂n converges towards, under these wider

assumptions. Express your answers in terms of ξ and τ .

56. Exam STK 201 1995, #5

The usual ingredients in so-called linear-normal statistical theory are as follows: (i) observations

are independent; (ii) they have the same variance; (iii) the mean structure is linear in certain

explanatory variables, or covariates; and (iv) the underlying distribution is normal. Under these

assumptions there is as we know built a broad, very frequently applied, and exact theory.

This particular exercise is meant to illustrate that one also might come a long way also in the

absence of the exact normality condition (iv). Assume that

Yi = βxi + εi for i = 1, . . . , n,

where the xi are given, and where the error terms ε1, . . . , εn are independent from the same

distribution, with mean zero and standard deviation σ (i.e. without the traditional extra words

‘and their distribution is normal’). The parameters β and σ are unknown and need to be estimated.

(a) Show that the least squares estimator for β is β̂n =
∑n
i=1 xiYi/Mn, where Mn =

∑n
i=1 x

2
i .

Give an estimator also for σ.

(b) Under the exact normality assumption it holds that Zn = M
1/2
n (β̂n − β) is normal (0, σ2),

and the classical inference methods are based on this fact. Your task is now to demonstrate

that the limit distribution of Zn is indeed this N(0, σ2), under certain conditions, but without

assuming that the εi follow a normal distribution.
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(c) Construct a confidence interval for β with coverage converging to 0.90, and make your as-

sumptions and arguments clear.

57. How large is the last time?

Let Y1, Y2, . . . be an infinite sequence of independent normal (ξ, σ2) variables, and let ξ̂n, σ̂n be the

maximum likelihood estimators.

(a) Find these, by all means & for all del.

(b) Show that (√
n(ξ̂n − ξ)√
n(σ̂n − σ)

)
→d N2(

(
0

0

)
,

(
σ2 0

0 1
2σ

2

)
).

(c) Results from Hjort and Fenstad (1992) may be applied here, to show that the following. Let

N1,ε is the very last time |ξ̂n − ξ| ≥ ε, and N2,ε the very last time |σ̂n − σ| ≥ ε. Why are

N1,ε and N2,ε well-defined random variables? Then(
ε2N1,ε

ε2N2,ε

)
→d

(
σ2W 2

1,max
1
2σ

2W 2
2,max

)

when ε marches to zero, where W1,max and W2,max are the maximal absolute values ot two

independent Brownian motions over the [0, 1] interval. (You are not yet supposed to show

this.) Let Nε tbe the very last n where either |ξ̂n − ξ| ≥ ε or |σ̂n − σ| ≥ ε. Show that

ε2Nε →d σ
2 max{W 2

1,max,W
2
2,max}.

Attempt to finds its distribution.

(d) Generalise.

58. Bernshtĕın and Weierstraß

In c. 1885, Karl Weierstraß proved one of the fundamental and insightful results of approximation

theory, that any given continuous function can be approximated uniformly well, on any finite

interval, by polynomials (see also Hveberg, 2019). A generation or so later, such results have been

generalised to so-called Stone–Weierstraß theorems, stating, in various forms, that certain classes

of functions are rich enough to deliver uniform approximations to bigger classes of functions. This

is useful also in branches of probability theory.

In the present exercise we give a constructive and relatively straightforward proof of the Weier-

straß theorem, involving so-called Bernshtĕın polynomials. Let g : [0, 1] → R be continuous, and

construct

Bn(p) = Ep g(Xn/n) =

n∑
j=0

g(j/n)

(
n

j

)
pj(1− p)n−j for p ∈ [0, 1],

where Xn ∼ Bin(n, p). Note that Bn(p) is a polynomial of degree n.

(a) Show that Bn(p)→pr g(p), for each p.
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Figure 0.3: The given non-polynomial function g(p), along with approximating Bernshtĕın polynomials, of order

10, 20, . . . , 90, 100.

(b) Then show that the convergence is actually uniform. For ε > 0, find δ > 0 such that |x−y| < δ

implies |g(x) − g(y)| < ε (which is possible, as a continuous function on a compact interval

is always uniformly continuous). Then fill in the required arguments for the following:

|Bn(p)− g(p)| ≤ Ep |g(Xn/n)− g(p)|

≤ Ep |g(Xn/n)− g(p)| I{|Xn/n− p| < δ}

+Ep |g(Xn/n)− g(p)| I{|Xn/n− p| ≥ δ}

≤ ε+ 2M Pr{|Xn/n− p| ≥ δ},

with M a bound on |g(x)|.

(c) Show from this that

max
p
|Bn(p)− g(p)| → 0 as n→∞.

(d) Consider the marvellous function

g(x) = sin(2πx) + exp(1.234 sin3√x)− exp(−4.321 cos5 x2)

on the unit interval. Compute the Bernshtĕın polynomials of various orders, and display

these in a diagram, alongside the curve of g. Attempt to construct a version of Figure 0.3,
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which does this for n = 10, 20, . . . , 90, 100. How high n is needed for the maximum absolute

difference to creep below 0.01?

(e) Let now g(x, y) be an arbitrary function on the unit simplex, {(x, y) : x ≥ 0, y ≥ 0, x+y ≤ 1}.
Construct a mixed polynomial Bn(x, y) of degree n such that it converges uniformly to g on

the simplex.

(f) Speculation, Your Honor: a distribution F is completely specified by its characteristic func-

tion

φ(t) = E exp(itX) =

∫
cos(tx) dF (x) + i

∫
sin(tx) dF (x).

This can be proven in various ways, see earlier Exercises 15–16. But it may be attacked

afresh, in the spirit of Weierstraß type approximations etc. It is sufficient to show that with

two distributions F and G with the same φ(t), we must have
∫
hdF =

∫
hdG for each

continuous bounded h (cf. the master theorem of Exercise 6). From the assumption we know

that ∫
h∗(x) dF (x) =

∫
h∗(x) dG(x) for all h∗(x) =

m∑
j=1

aj{cos(tjx) + i sin(tjx)}.

So try to show that for the given continuous and bounded h, and for each bounded interval

[−c, c] and ε > 0, there must exist such a function h∗ with maxx∈[−c,c] |h(x) − h∗(x)| ≤ ε.

Prove that this would be sufficient to prove that F = G (once again). Could there be a

Bernshtĕın type result lurking here?

59. Even more on characteristic functions

Here we go into a couple of helpful intermediate results for characteristic functions. Let φ(t) =

E exp(itX), for X with a distribution F .

(a) Show that | exp(it)− 1| ≤ |t| for all t, and that this implies

|φ(t)− 1| ≤
∫
|tx|dF (x) = |t|E |X|.

(b) Show that | exp(it)− 1− it| ≤ 1
2 |t|

2 for all t, and with ξ = EX show that this implies

|φ(t)− 1− itξ| ≤ 1
2 |t

2|E |X|2.

(c) Generalise further to

| exp(it)− 1− it− 1
2 (it)2| ≤ 1

6 |t|
3 for all t.

Assume ξ = EX = 0 and that VarX = σ2 is finite. Show that if also the third moment is

finite, then

|φ(t)− 1− 1
2 (it)2σ2| = |φ(t)− (1− 1

2 t
2σ2)| ≤ 1

6 |t|
3 E |X|3.

In particular,

φ(t) = 1− 1
2σ

2t2 +O(|t|3).
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(d) Show that we may rid ourselves with the finite third moment assumption here, by proving

that

φ(t) = 1− 1
2σ

2t2 + o(|t|2),

under only zero mean and finite σ conditions. Specifically, the task is to show that

1

t2

∫
{exp(itx)− 1− itx− 1

2 (it)2x2} dF (x)→ 0 as t→ 0.

This is also related to the fact that when E |X|2 is finite, then

φ′′(t) = E (iX)2 exp(itX) =

∫
(ix)2 exp(itx) dF (x)

exists and is a continuous function in t.

(e) Use induction to show that

| exp(it)− 1− it− 1
2 (it)2 − · · · − (1/m!)(it)m| ≤ |t|m+1/(m+ 1)! for all t,

and that this implies

|φ(t)− 1− itEX − 1
2 (it)2 EX2 − · · · − (1/m!)(it)m EXm| ≤ |t|

m+1 E |X|m+1

(m+ 1)!
.

Show also, without a finite E |X|m+1, that if E |X|m is finite, then

φ(m)(t) = E (iX)m exp(itX) =

∫
(ix)m exp(itx) dF (x),

and that this function is continuous in t.

60. A tail inequality & tightness & limits

Let X have distribution F and characteristic function φ. The aim of this exercise is to establish

the useful tail inequality

Pr
{
|X| ≥ 2

ε

}
≤ 1

ε

∫ ε

−ε
{1− φ(t)} dt.

So, tail probabilities for X are tied to the behaviour of φ close to zero.

(a) Use the Fubini theorem (you know, interchanging the order of integration) to demonstrate

that ∫ ε

−ε
{1− φ(t)} dt = 2ε

∫ (
1− sinxε

xε

)
dF (x).

In particular, the integral of φ(t) over an interval symmetric around zero is really a real

number (i.e. the complex component disappears).

(b) Deduce that

1

ε

∫ ε

−ε
{1− φ(t)} dt ≥ 2

∫
|xε|≥c

(
1− sinxε

xε

)
dF (x) ≥ 2(1− 1/c) Pr{|X| ≥ c/ε},

with the value c = 2 yielding the inequality given above.
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(c) For the case of X being standard normal, check the precision of the tail inequality. (The

answer appears to be: no, it’s rather unsharp, and is utterly conservative in its tail probability

assessment.) From the simple approximation φ(t)
.
= 1− 1

2σ
2t2, for t small, for a variable with

zero mean and standard deviation σ, work out that Pr{|X| ≥ 2/ε} ≤ (1/3)σ2ε. Explain why

this is blunter, as in less sharp, than with e.g. the Chebyshov inequality.

(c) If we now have a collection of random variables, where their characteristic functions have

approximately the same level of smoothness around zero, then we should get tightness, a

guarantee there is no runaways with mass escaping from the crowd. Assume that Xn has

characteristic function φn, with φn(t) converging pointwise to some φ(t), continuous at zero,

on some [−ε, ε]. For a given ε′, find ε such that |1− φ(t)| ≤ ε′ for |t| ≤ ε. Show that

lim sup
n→∞

Pr{|Xn| ≥ 2/ε} ≤ 1

ε

∫ ε

−ε
{1− φ(t)}dt ≤ 2ε′.

We’ve hence found a broad interval, namely [−2/ε, 2/ε], inside which each single Xn lies,

with high enough probability. This is called tightness of the Xn sequence.

(d) It’s somewhat technical, but the following argument can be understood even without the finest

nitty-gritty details. With the situation as in point (c), there is always some subsequence,

say Xn′ for some subsequence n′ running to infinity, such that their cumulative distribution

functions Fn′ tends to some appropriate nondecreasing right-continuous F on the latter’s

continuity points – but technically speaking we do not know yet that F is a proper cumulative

distribution function; it could be degenerate. With the tightness, however, we’re guaranteed

that F is bona fide, with F (−∞) = 0 and F (∞) = 1. Hence Xn′ →d X, for the X having

this F as its cumulative. But that again implies φn′(t) → φX(t), pointwise, and the limit

function φ(t) is identical to φX(t) and hence a bona fide characteristic function.

(e) Verify that all of this implies the following highly useful device: Suppose Xn is such that

its characteristic function φn(t) converges to some φ(t), in a neighbourhood around zero,

and that the limit function φ(t) is continuous at zero. Then (1) the limit is a characteristic

function, for some appropriate X, and, lo & behold, Xn →d X. – The point is also that in

some cases, one discovers and then proves the existence of a new probability distribution in

this fashion.

(f) Suppose you just arrived at this planet this morn’ and first invented the super-simple two-

point distribution with values ±1 with equal probabilities 1
2 and 1

2 – show that its charac-

teristic function is φ(t) = cos t. Then you wonder what happens if you sum outcomes of

that distribution, and form Zn =
∑n
i=1Xi/

√
n. Then you deduce that this variable’s char-

acteristic function is cos(t/
√
n)n, and then that it converges ... to exp(− 1

2 t
2). You would

then have discovered, and proven the existence of, the standard normal distribution, from

the proverbial scratch.

61. The Liapunov and Lindeberg theorems: main story

When Jarl Waldemar Lindeberg was reproached for not being sufficiently active in his scientific

work, he said, ‘Well, I am really a farmer’. And if somebody happened to say that his farm was

not properly cultivated, his answer was, ‘Of course my real job is to be a mathematics professor’.
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Hundred years ago!, i.e. in 1920, he published his first paper on the CLT, and in 1922 he generalised

his findings to the classical Lindeberg Theorem, with the famous Lindeberg Condition, securing

limiting normality of a sum of independent but not identically distributed random variables. He

did not know about L�punov’s earlier work, and therefore not about uslovie L�punova, the

Lyapunov condition, which we treat below as a simpler-to-reach condition than the more general

one of Lindeberg. Other luminaries whose work touch on these themes around the 1920ies and

beyond include Paul Lévy, Harald Cramér, William Feller, and, intriguingly, Alan Turing who

(allegedly) won the war and invented computers etc.

So let X1, X2, . . . be independent zero-mean variables with at the outset different distributions

F1, F2, . . . and hence different standard deviations σ1, σ2, . . .. Below we also need their characteristic

functions φ1, φ2, · · · . The question is when we can rest assured that the normalised sum,

Zn =
X1 + · · ·+Xn

Bn
=

∑n
i=1Xi

(
∑n
i=1 σ

2
i )1/2

,

really tends to the standard normal, as n increases.

(a) As an introductory useful lemma, demonstrate the following. With a1, a2, . . . a sequence of

numbers coming closer to zero, we have
∏n
i=1(1 + ai) → exp(a) provided (1)

∑n
i=1 ai → a;

(2) maxi≤n |ai| → 0; and (3)
∑n
i=1 |ai| stays bounded. It may be helpful to show first that

log(1 + x) = x− 1
2x

2 + 1
3x

3 − · · · = x+K(x)x2,

with K(x) is a continuous function such that |K(x)| ≤ 1 for |x| ≤ 1
2 , and K(x)→ −1

2 when

x→ 0. These statements are valid also when the ai are the x are complex numbers inside the

unit ball, in which case the logarithm is the natural complex extension of the real logarithm.

The lemma is stated, proven, and used in Hjort (1990, Appendix).

(b) Show that Zn has characteristic function

κn(t) = E exp(itZn) = φ1(t/Bn) · · ·φn(t/Bn).

(c) We know that φi(s)
.
= 1− 1

2σ
2
i s

2 for small s, so the essential idea is to write

κn(t) =

n∏
i=1

{1− 1
2σ

2
i t

2/B2
n + εn,i(t)}

and not give up until one has found conditions that secure convergence to the desired

exp(− 1
2 t

2). In view of the lemma of (a), this essentially takes

(1)
∑n
i=1 εn,i(t)→ 0;

(2) maxi≤n σ
2
i /B

2
n → 0 and maxi≤n |εn,i(t)| → 0; and

(3)
∑n
i=1 |1− φi(t/Bn)| staying bounded.

Show that

|φi(s)− (1− 1
2σ

2
i s

2)| =
∣∣∣ ∫ {exp(isx)− 1− isx− 1

2 (isx)2} dFi(x)
∣∣∣

≤
∫
| exp(isx)− 1− isx− 1

2 (isx)2|dFi(x)

≤ 1
6 |s|

3 E |Xi|3.
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(d) This leads to the uslovie L�punova version of the Lindeberg theorem: show that if the

variables all have finite third order moments, with Bn →∞ and

n∑
i=1

E
∣∣∣Xi

Bn

∣∣∣3 → 0,

then κn(t) → exp(− 1
2 t

2), which we know is equivalent to the glorious Zn →d N(0, 1). This

is (already) a highly significant extension of the CLT. If the Xi are uniformly bounded, for

example, with Bn of order
√
n, which would rather often be the case, then the uslovie

L�punova holds. It is also possible to refine arguments and methods to show that

n∑
i=1

E
∣∣∣Xi

Bn

∣∣∣2+δ → 0, for some δ > 0,

is sufficient for limiting normality.

(e) The issue waits however for an even milder and actually minimal conditions, and that is,

precisely, the Lindeberg condition:

n∑
i=1

E
∣∣∣Xi

Bn

∣∣∣2I{∣∣∣Xi

Bn

∣∣∣ ≥ ε}→ 0 for all ε > 0.

Show that if uslovie L�punova is in force, then the Lindeberg condition holds (so farmer

Lindeberg assumes less than Lyapunov).

(f) Inlow (2010) has shown how one can prove the usual CLT without the technical use of

characteristic and hence complex functions. Essentially, he writes the Xi in question as

Yi + Zi with Yi = Xi I{|Xi| ≤ ε
√
n} and Zi = Xi {|Xi| > ε

√
n}, after which ‘ordinary’

moment-generating functions may be used for the part involving the Yi, yielding the normal

limit, supplemented with analysis to show that the part involving the Zi tends to zero in

probability. – It is a non-trivial matter to extend Inlow’s arguments, from the CLT to the

Lindeberg theorem, but this is precisely what Emil Stoltenberg (2019) has done, in a technical

note to the STK 4011 course (he’s incidentally too modest when he writes that his note is an

epsilon-extension of Inlow’s 2010 paper; the extension is harder than several ε). Check his

note, on the course website, and make sure you understand his main tricks and steps.

62. The Lindeberg theorem: nitty-gritty details

The essential story, regarding Lyapunov and Lindeberg, has been told in the previous exercise.

Here we tend to the smaller-level but nevertheless crucial remaining details, in order for the ball

to be shoven across the finishing line after all the preliminary work. You may also check partly

corresponding details in Stoltenberg’s note (2019). Again, let X1, X2, . . . be independent, with

distributions F1, F2, . . ., standard deviations σ1, σ2, . . ., and characteristic functions φ1, φ2, . . .. The

creature studied is

Zn =
X1 + · · ·+Xn

(σ2
1 + · · ·+ σ2

n)1/2
=

n∑
i=1

Xi

Bn
,

with B2
n =

∑n
i=1 σ

2
i . We assume the uslovie Lindeberga, that

Ln(ε) =

n∑
i=1

E
∣∣∣Xi

Bn

∣∣∣2I{∣∣∣Xi

Bn

∣∣∣ ≥ ε}→ 0 for all ε > 0.
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(a) Show that Bn →∞, and that

αn = max
i≤n

σ2
i

B2
n

→ 0.

From this in particular follows

|φi(t/Bn)− 1| ≤
∫
| exp(itx/Bn)− 1− itx/Bn|dFi(x) ≤ 1

2 t
2

∫
(x/Bn)2 dFi(x) ≤ 1

2 t
2αn,

so all φi(t/Bn) are eventually inside radius say 1
2 of 1, which means we’re in a position to

take the logarithm and work with

κn(t) = log E exp(itZn) =

n∑
i=1

log φi(t/Bn)

etc.; see the start lemma of the preceding exercise.

(b) In continuation and refinement of arguments above, show that

|φi(t/Bn)− (1− 1
2σ

2
i t

2/B2
n)| =

∣∣∣ ∫ {exp(itx/Bn)− 1− itx/Bn − 1
2 (itx/Bn)2}dFi(x)

∣∣∣
≤
∫
| exp(itx/Bn)− 1− itx/Bn − 1

2 (itx/Bn)2|dFi(x)

≤
∫
|x|/Bn≤ε

1
6

|t|3|x|3

B3
n

dFi(x)

+

∫
|x|/Bn>ε

(
1
2

|t|2|x|2

B2
n

+ 1
2

|t|2|x|2

B2
n

)
dFi(x)

≤ 1
6 |t|

3ε
σ2
i

B2
n

+ t2 E
∣∣∣Xi

Bn

∣∣∣2I{∣∣∣Xi

Bn

∣∣∣ ≥ ε}.
(c) Show that this leads to

n∑
i=1

∣∣φi(t/Bn)− (1− 1
2σ

2
i t

2/B2
n)
∣∣ ≤ 1

6 |t|
3ε+ t2 Ln(ε),

and via the start lemma of the previous exercise that this secures what we were after, that∏n
i=1 φi(t/Bn) → exp(− 1

2 t
2) and hence triumphantly Zn →d N(0, 1), under the Lindeberg

condition only.

63. Convergence in Euclidean space

[xx spelling out the basics for Xn →d X in Rk. The Portmanteau Lemma holds, with the required

modifications. Also, Xn →d X is equivalent to

φn(t) = E exp(ittXn)→ φ(t) = E exp(ittX) for all t ∈ Rk.

show that if X ∼ Nk(0,Σ), then

φ(t) = exp(− 1
2 t

tΣt).

a simple example or two. xx]

64. The Cramér–Wold device
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Consider random vectors Xn and X in Rk. Using the characterisations of convergence of distri-

butions via characteristic functions, show that Xn →d X if and only if all linear combinations

converge appropriately, i.e. atXn →d a
tX for all a. This is called the Cramér–Wold device, from

Harald Cramér and Herman Wold (1936).

(a) Prove the k-dimensional Central Limit Theorem: if X1, X2, . . . are i.i.d. in Rk with finite

variance matrix Σ = E (X − ξ)(X − ξ)t, then

Zn =
√
n(X̄n − ξ)→d N(0,Σ).

(b) Let X1, X2, . . . be i.i.d. from the unit exponential distribution. Find first the limit distribu-

tions of
√
n(n−1

∑n
i=1Xi−1) and

√
n(n−1

∑n
i=1X

2
i −2). Then find the joint limit distribution

of (√
n(X̄n − 1)
√
n(Wn − 2)

)
,

with X̄n = n−1
∑n
i=1Xi andWn = n−1

∑n
i=1X

2
i , and also the limit distribution of

√
n(Wn/X̄n−

2).

(c) Suppose X1, X2, . . . are independent with mean zero and variance matrices Σ1,Σ2, . . .; their

distributions are here not assumed to be equal. Find suitable conditions, of the Lyapunov or

Lindeberg type, which secure limiting normality of
∑n
i=1Xi, suitably normalised.

65. The sample mean and standard deviation

Consider i.i.d. data X1, . . . , Xn, from which we compute the classical

ξ̂ = X̄ = n−1
n∑
i=1

Xi and σ̂ =
{ 1

n− 1

n∑
i=1

(Xi − X̄)2
}1/2

.

These are of course estimators for the underlying mean ξ and standard deviation σ. Here we

derive their joint limit distribution, after which the delta method may be called upon to deduce

approximate distributions for several quantities of interest.

(a) Make sure you understand and can prove that ξ̂ and σ̂ are strongly consistent for ξ and σ,

assuming only that the standard deviation is finite.

(b) Assume now that also the fourth order moment is finite. Use

S2
n =

1

n

n∑
i=1

(Xi − X̄)2 =
1

n

n∑
i=1

(Xi − ξ)2 − (X̄ − ξ)2

to deduce that

√
n(S2

n − σ2) and
√
n
{
n−1

n∑
i=1

(Xi − ξ)2 − σ2
}

must have identical limit distributions, and that this limit is a N(0, σ4(2 + γ4)), in terms of

the kurtosis parameter

γ4 = E {(Xi − ξ)/σ}4 − 3.

The ‘subtract 3’ is merely a thing of mild convenience, making the kurtosis equal to zero for

normal distributions.
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(c) A minor kjepphest of mine is that statisticians should work with and tell stories about

standard deviations, not variances – nobody should say ‘my variance is 64 square metres’

when the point, regarding interpretation and communication, is that the standard deviation

is 8 metres. So let’s transform the above, from variance to its square root, getting back to

the real scale of the measurements: show that

√
n(σ̂ − σ)→d N(0, ( 1

2 + 1
4γ4)σ2).

(d) Show that

γ̂4 = n−1
n∑
i=1

(Xi − X̄
σ̂

)4
− 3

is consistent for γ4, and use this to construct an approximate 90 percent confidence inter-

val for σ. Note that this is a nonparametric procedure, totally free of other distributional

assumptions, like normality – if one assumes normality, as an extra condition, one may do

more, of course.
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Figure 0.4: Simulations, with datasets of size n = 500 from the unit exponential, displaying lower and upper

confidence points; the intervals attempt to cover the true value σ = 1.

(e) Ok, let’s bother enough to do it, it’s a useful and not too hard simulation exercise. Consider

the unit exponential distribution; show that the standard deviation is 1 and that the kurtosis

is γ4 = 6. Simulate a suitably high number of datasets of size n = 500 from this distribution
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(e.g. via rexp in R). For each simulated dataset, compute γ̂4, to check how close it is to

γ4, and the approximate 90 percent confidence interval for σ. Make suitable diagrams to

summarise what you find, and examine in particular the coverage of your intervals – how

often do they contain the correct σ? See Figure 0.4.

(f) Coming back to the general situation, define the skewness as γ3 = E {(X − ξ)/σ}3, which is

zero for all symmetric distributions. Show that( √
n(X̄ − ξ)

√
n(S2

n − σ2)

)
→d N2(

(
0

0

)
,

(
σ2 σ3γ3

σ3γ3 σ
4(2 + γ4)

)
),

and also that (√
n(ξ̂ − ξ)
√
n(σ̂ − σ)

)
→d N2(

(
0

0

)
, σ2

(
1 1

2γ3
1
2γ3

1
2 + 1

4γ4

)
),

(g) Generate a dataset of size n = 444 from the unit exponential, and construct an approximate

90 percent confidence ellipsoid on your screen for (ξ, σ). Check if it contains the true values.

66. Functions of the sample mean and standard deviation

With full large-sample control for the joint behaviour of sample mean and standard deviation,

from the previous exercise, we may deduce approximations for a long list of interesting functions

of these.

(a) In the situation above, with X1, . . . , Xn being i.i.d. from some distribution with finite fourth

moment, show that if g(ξ, σ) is any smooth function of these two parameters, then

√
n{g(ξ̂, σ̂)− g(ξ, σ)} →d Z =

∂g(ξ, σ)

∂ξ
A+

∂g(ξ, σ)

∂ξ
B,

in which (
A

B

)
∼ N2(

(
0

0

)
, σ2

(
1 1

2γ3
1
2γ3

1
2 + 1

4γ4

)
).

Why is Z a zero-mean normal?

(b) Consider the parameter δ = ξ/σ, with estimator δ̂ = ξ̂/σ̂. Find the limit distribution for
√
n(δ̂ − δ), and construct a confidence interval for δ.

(c) For this point assume that the distribution is normal, and verify that(√
n(ξ̂ − ξ)
√
n(σ̂ − σ)

)
→d N2(

(
0

0

)
, σ2

(
1 0

0 1
2

)
).

Find the limit distribution for
√
n(δ̂ − δ) in this case, and check how your confidence con-

struction simplifies. Comment on the off-diagonal zero for the covariance matrix.

(d) Still under normality, consider the threshold probability

p = Pr{Xn+1 ≤ x0} = Φ
(x0 − ξ

σ

)
for some x0. Find the limit distribution for

√
n(p̂ − p), with p̂ = Φ((x0 − ξ̂)/σ̂). Compare

your result to that for the simple binomial procedure which does not care about normality,

but merely takes p̃ = Fn(x0), the relative frequency of data points below x0. Comment on

your findings.
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67. Are your count data overdispersed?

Everyone in the room knows that for the Poisson distribution, the variance is equal to the mean. It

is not uncommon for count data to display a bit more variability than what the Poisson assumption

points to, however. In this exercise we construct a test for Poisson-ness of a dataset, by checking

if the empirical variance is too big compared to the empirical mean.

(e) For X having a Poisson distribution with parameter θ, show that

EX = θ,

EX(X − 1) = θ2,

EX(X − 1)(X − 2) = θ3,

EX(X − 1)(X − 3)(X − 4) = θ4,

tenk det, and deduce from these formulae not merely for EX = θ and VarX = θ, but also

for

γ3 = E
(X − θ√

θ

)3
=

1

θ1/2
and γ4 = E

(X − θ√
θ

)4
− 3 =

1

θ
.

(f) Suppose X1, . . . , Xn are i.i.d. from the Poisson, and compute from the sample the usual X̄

and empirical variance S2
n. Show that(√
n(X̄ − θ)
√
n(S2

n − θ)

)
→d N2(

(
0

0

)
,

(
θ θ

θ 2θ2 + θ

)
).

What is the limiting correlation, between X̄ and S2
n?

(g) There is often overdispersion in count data, with variance somewhat bigger than the mean

(see Hjort’s FocuStat Blog Post, 2018b). Show that if the data really come from a Poisson,

then

√
2n(S2

n/X̄ − 1)→d N(0, 1),

and use this to build a test for Poisson-ness against overdispersion.

68. Correlation measures

Ferguson’s book has a separate section with analysis of the classical empirical correlation coefficient

Rn, yielding the limit distribution of
√
n(Rn − ρ), etc. The present exercise considers a couple of

simpler related situations, with simpler in the sense of adding more modelling assumptions. In the

following, let (X1, Y1), . . . , (Xn, Yn) be i.i.d. from some joint distribution, where Xi and Yi have

finite fourth moments.

(a) For deriving certain moment formulae, for the case where the (Xi, Yi) have a binormal

distribution, the following is useful. Assume (X0, Y0) has the binormal distribution with

means zero and standard deviations one, and correlation ρ = corr(X0, Y0). Show that

Y0 |x0 ∼ N(ρx0, 1− ρ2). Use this to show that

EX2
0Y

2
0 = E E (X2

0Y
2
0 |X0) = EX2

0 (ρ2X2
0 + 1− ρ2) = 1 + 2ρ2,

and find with similar type of efforts formulae for

EX3
0Y0, EX0Y

3
0 , EX4

0Y0, EX0Y
4
0 , E (X0 − Y0)3, E (X0 − Y0)4.
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(b) Assume first that the means ξ1, ξ2 are zero and the standard deviations σ1, σ2 are one. With

ρ̂b = n−1
∑n
i=1XiYi a natural estimator of ρ = EXY , show that

√
n(ρ̂a − ρ) has a N(0, τ2b )

limit distribution. Give a suitable expression for τ2b , and find what τ2b is in the case of the

underlying distribution for (Xi, Yi) being binormal.

(c) Next consider the setup where the means are known to be zero, the standard deviations taken

to be equal, but unknown. The natural correlation estimator is then

ρ̂c = n−1
n∑
i=1

XiYi
σ̃2
c

, with σ̃2
c = 1

2 (σ̃2
1 + σ̃2

2),

in terms of σ̃2
1 = n−1

∑n
i=1X

2
i and σ̃2

2 = n−1
∑n
i=1 Y

2
i . Show that this estimator is strongly

consistent for ρ, and find the limit distribution N(0, τ2c ) for
√
n(ρ̂c − ρ), both under general

conditions and under the specific extra assumption of binormality. Comment on τc versus τb.

(d) Then work out what happens in the more general situation where the means are known and

equal to zero, but where the correlation ρ as well as the standard deviations σ1 and σ2 are

unknown. The natural estimator is then

ρ̂d = n−1
n∑
i=1

XiYi
σ̃1σ̃2

,

with σ̃1 and σ̃2 as above. In other words, find expressions for the limiting standard deviation

in for
√
n(ρ̂d − ρ)→d N(0, τ2d ), both under general conditions and under binormality.

(e) Finally do the Full General Story, where the five parameters in question are unknown, and

where everyone uses the classic

Rn =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
∑n
i=1(Yi − Ȳ )2

= n−1
n∑
i=1

(Xi − ξ̂1)(Yi − ξ̂2)

σ̂1σ̂2
,

in terms of the usual empirical means and standard deviations. Show that this situation is

actually not genuinely more complicated than under (d), so in a sense the work has been

done; one does not earn precision, for large n, by knowing the means.

(f) Conclude from your efforts above that
√
n(Rn − ρ) →d N(0, (1 − ρ2)2) under binormality.

Use this to also show that

√
n(ζ̂ − ζ)→d N(0, 1), where ζ = 1

2 log
1 + ρ

1− ρ
and ζ̂ = 1

2 log
1 +Rn
1−Rn

.

This is Fisher’s variance stabilising transformation for the correlation coefficient. Once upon

a time, Florence Nightingale Davis carried out numerical work to ascertain that this trans-

formation also affords better approximation to normality, for moderate to low sample sizes;

her approximation is ζ̂ ≈d N(ζ, 1/(n− 3)). This makes statistical inference for the binormal

correlation parameter easy.

(g) [xx nils puts in a bit more here, in a little while. xx]

69. The Karl Pearson statistic and the chi-squared

Isn’t it a glorious & rather informative title, for a journal article? In 1900, Karl Pearson (1857–

1936) published the deservedly famous On the criterion that a given system of deviations from the
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probable in the case of a correlated system of variables is such that it can be reasonably supposed to

have arisen from random sampling in Philosophical Magazine, Series 5. (a) He invents a very useful

general test, to check whether a probability vector is equal to a set of specified values; (b) he shows

that the test statistic can be approximated with a new distribution, which is the first-ever published

chi-squared distribution, which conveniently does not depend on the specified probability vector,

but only the number of boxed under consideration; and (c) he develops logically sound arguments

for when should keep one’s theory, and when one should reject it. In yet other words, he invents

the notion of statistical testing, via a test statistic, which he shows has a limit distribution, and

he almost touches on p-values. In one of perhaps several nutshells, Pearson builds a full apparatus

to test a given theory.

The notes below are supplements to Ferguson’s brief treatment. Let N = (N1, . . . , Nk) be

a multinomial vector, with n independent draws for k given boxes, and probability vector p =

(p1, . . . , pk). A favourite example to point to is to roll your die n times, count the numbers

(N1, . . . , N6) of the different outcomes 1, 2, 3, 4, 5, 6; if your die is fair, this is a multinomial vector

with p = (1/6, . . . , 1/6).

(a) Show that each Nj is binomial, with Nj ∼ Bin(n, pj). Hence ENj = npj and VarNj =

npj(1− pj).

(b) It’s actually not necessarily important to know the formula for the joint distribution of the

(N1, . . . , Nk), but please check that you both understand and may derive the formula

f(N1, . . . , N6) =
n!

N1! · · ·N6!
pN1
1 · · · p

Nk
k for N1 ≥ 0, . . . , Nk ≥ 0, N1 + · · ·+Nk = n.

(c) Write

N1 = Y1,1 + · · ·+ Y1,n,

N2 = Y2,1 + · · ·+ Y2,n,

· · ·

Nk = Yk,1 + · · ·+ Yk,n,

or more compactly N = Y1 + · · · + Yn with Yj the vector of length k, with 0-s and 1-s,

for trial j. It can take the values (1, 0, . . . , 0), . . . , (0, . . . , 0, 1), with probabilities p1. . . . , pk.

Show that

EYj = p and VarYj = Σ,

where Σ is a matrix of size k×k, with elements pj(1−pj) on the diagonal and −pjpl outside.

It is convenient to write the (j, l) element as δj,lpj−pjpl, where δj,l is the Leopold Kronecker

delta (“Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk”), equal

to 1 if j = l and 0 if else.

(d) Write p̂ = N/n = Ȳn, with components p̂j = Nj/n. With

Xn =
√
n(Ȳn − p) =

√
n(p̂− p),

show that Xn →d X ∼ Nk(0,Σ). Note that Σ is not invertible, since p1 + · · ·+ pk = 1, and

show that indeed
∑k
j=1Xj = 0.
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(e) Now introduce the super-famous Pearson statistic,

Kn =

k∑
j=1

(Nj − npj)2

npj
=

k∑
j=1

(obsj − expj)
2

expj
=

k∑
j=1

n(p̂j − pj)2

pj
,

with the familiar ratios of (obsj − expj)
2/expj , involving ‘observed’ and ‘expected’ numbers.

Show that

Kn =

k∑
j=1

X2
n,j

pj
→d K =

k∑
j=1

X2
j

pj
,

with the X ∼ Nk(0,Σ) above. This is ‘the main job’ (now accomplished); the rest of the

story is to demonstrate that this K has a χ2
k−1 distribution. Show, directly, that EK = k−1.

(f) For the case of k = 3 boxes, start with the smaller 2× 2 submatrix Σ0, and show that

Σ−10 =

(
p1(1− p1) −p1p2
−p1p2 p2(1− p2)

)−1

=

(
1/p1 + 1/p3 1/p3

1/p3 1/p2 + 1/p3

)
=

(
1/p1 0

0 1/p2

)
+

1

p3

(
1 1

1 1

)
.

Show that

X2
1/p1 +X2

2/p2 +X2
3/p3 =

(
X1

X2

)t

Σ−10

(
X1

X2

)t

.

Show from this that K ∼ χ2
2, for this case of k = 3 boxes.

(g) Generalise the arguments above. For the (k − 1)× (k − 1) submatrix Σ0, show that

Σ0 = D0 − p0pt0,

where D0 is diagonal with p0 = (p1, . . . , pk−1)t on its diagonal. Use this to show that

Σ−10 = D−10 + (1/pk)11t,

where 1 is the (k − 1)-length vector (1, . . . , 1)t. Show that K = Xt
0Σ−10 X0, and conclude,

as Pearson did some 120 years ago, but with other words and symbols and arguments and

thoughts that presently in your head, that K ∼ χ2
k−1.

(h) An alternative to the classic Kn is

K ′n =

k∑
j=1

(Nj − npj)2

Nj
=

k∑
j=1

(obsj − expj)
2

obsj
=

k∑
j=1

n(p̂j − pj)2

p̂j
,

i.e. using observed and not expected in the denominator. Show that K ′n and Kn must have

identical limit distributions; hence K ′n →d χ2
k−1 too. [xx nils: check reference Laake et

al. book, what they write about such matters. xx]

(i) Presumably ‘all students’ in beginning statistics courses are told to memorise the (obsj −
expj)

2/expj formula. If tired with this, why not do the presumably also clever root variant,

Ln =

k∑
j=1

|obsj − expj|√
expj

=

k∑
j=1

|Nj − npj |√
npj

=

k∑
j=1

√
n|p̂j − pj |
p
1/2
j

.

Show that Ln →d L =
∑k
j=1 |Xj |/p1/2j . Find an expression for its mean. Speculate on useful

alternatives.
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(j) With h(p) = 2 arcsin
√
p, show that the transformation stabilises the variance, in the sense

that

√
n{h(p̂j)− h(pj)} →d h

′(pj)Xj ∼ N(0, 1).

This is at least very fine for each individual pj . What are the limit distributions for

k∑
j=1

√
n|h(p̂j)− h(pj)| and

k∑
j=1

n{h(p̂j)− h(pj)}2,

as n increases?

70. Estimating f

Suppose X1, . . . , Xn are i.i.d. from some density f? Well, if a parametric model is thought to fit

well, we may use the ensuing f(x, θ̂), but without such additional assumptions it’s not entirely

clear how to do it, nor how well the nonparametric job can be done.

(a) It’s in several ways easier to estimate the cumulative F nonparametrically, where the natural

method is that of the empirical distribution function (try ecdf in R),

Fn(t) = n−1
n∑
i=1

I{Xi ≤ t}.

This is simply the binomial estimator, counting the number of Xi ≤ t. Show that EFn(t) =

F (t), that its variance is n−1F (t){1− F (t)}, and also that

Zn(t) =
√
n{Fn(t)− F (t)} →d Z(t) ∼ N(0, F (t){1− F (t)}).

Later on we shall learn more about this empirical process and its full convergence to a full

stochastic process Z = {Z(t) : t ∈ R}.

(b) Since f is the derivative of F , consider

fn(t) =
Fn(t+ h)− Fn(t− h)

2h
,

for a ‘suitably small’ h. Find expressions for the precise mean and variance of fn(t).

(c) It’s not enough to say ‘let h → 0’ above, since the variance will then explode. Show in fact

that if h→ 0 and nh→∞, then both the bias and variance go to zero, and that this impies

fn(t)→pr f(t) for each t.

(d) Try it out – simulate n = 500 points from e.g. f = 0.50 N(−1, 1)+0.50N(1, 1), then compute

and plot the density estimate function fn(t), as above, with ε = c/
√
n, where you can attempt

to finetune the c in question. Incidentally, don’t cheat, please, when you simulate 500 points

from the bimixture here; don’t just take 250 points from each of the two components.

71. Density estimation: more!

Here I spell out a bit more regarding the problem of estimating the density f underlying an observed

sample x1, . . . , xn. The topic of density estimation is a very large one, see e.g. Hjort and Glad

(1995), Hjort and Jones (1996). First, there are many methods out there, and yet to be invented,

for estimating f , and, secondly, each of these methods have smoothing or finetuning parameters,

and the accurate setting of these is often complicated and delicate. The intention here is to show

‘the basics’, for the kernel density estimation method, with easy conditions for consistency.
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(a) Let K(u) be a density, symmetric around zero, e.g. the standard normal, with finite values

of

k2 =

∫
u2K(u) du and R(K) =

∫
K(u)2 du.

For the normal choice K = φ, show that k2 = 1 and R(K) = φ(0)/
√

2 = 1/(2
√
π) = 0.2821.

The K is our kernel function.

(b) Our kernel density estimator is

fn(x) = n−1
n∑
i=1

Kh(xi − x), where Kh(u) = h−1K(h−1u).

The idea is to let h tend slowly to zero with increasing n. Show that fn is a density function,

and work out that

E fn(x) =

∫
Kh(x′ − x)f(x′) dx′ =

∫
K(u)f(x+ hu) du.

Show that the bias of the estimator tends to zero if h→ 0.

(c) Then, assuming f has at least two continuous derivatives, use Taylor expansion f(x+ hu)
.
=

f(x) + f ′(x)hu+ 1
2f
′′(x)h2u2 to show that

E fn(x) = f(x) + 1
2k2h

2f ′′(x) +O(h3).

Show similarly that

Var fn(x) =
R(K)

nh
f(x) +O(h/n).

(d) Show that fn(x) is consistent for f(x) provided h → 0 and nh → ∞. So, if h = cn−a, we

need a ∈ (0, 1).

(e) So what’s the wisest choice of the bandwidth h? That’s a somewhat tricky question to sort

out fully (there are a few hundred technical journal articles about that topic), but start by

working with the approximate mean squared error at position x, say

mse(x) = bias2(x) + var(x)
.
= 1

4k
2
2h

4f ′′(x)2 +
R(K)

nh
f(x).

Show in general terms that ah4 + b/(nh) becomes smallest for h of rate n−1/5, with minimal

value of size n−4/5. This is already an important finding, that one cannot achieve the usual

1/n rate, for parametric problems, but must be content with n−0.80 for smooth nonparametric

problems.

(f) Show, with more detail, that the best bandwidth, using the approximate mse above, becomes

h∗n(x) =
{R(K)

k22

}1/5{ f(x)

f ′′(x)

}1/5 1

n1/5
.

Compute and display this h∗n(x) for the case of f being the standard normal.
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(g) It is fully ok to use a perhaps complicated bandwidth h = hn(x) depending on the position

x, but with a complicated rule for this one risks messing up the overall performance. Also for

that reason it is customary to select one h to be used for all x. Consider the mean integrated

squared error

mise =

∫
mse(x)2 dx =

∫
{bias(x)2 + var(x)} dx,

and show that this may be approximated with

mise
.
= 1

4k
2
2h

4R(f ′′) +
R(K)

nh
,

with R(f ′′) =
∫

(f ′′)2 dx sometimes called the roughness of the density.

(h) Show that the best bandwidth, in the sense of minimising the approximate mise, is

h∗n =
{R(K)

k22

}1/5

R(f ′′)−1/5
1

n1/5
.

Find also an expression for the corresponding best possible mise, and note the crucial aspect

that this quantity goes to zero with n at the speed of 1/n4/5 = 1/n0.80. This is the price to

pay for being nonparametric, compared to the parametric rates 1/n.

(i) For the case of f being a classic normal N(ξ, σ2), show that

R(f ′′) =
3

8
√
π
σ−5.

This leads to a ‘rule of thumb’ density estimator: use the kernel density estimator fn, with

the normal kernel, and bandwidth

h = (4/3)1/5σ̂/n1/5 = 1.0592 σ̂/n1/5,

with a suitable robust estimate for the standard deviation of the data.

72. Convergence of means

well

73. The last time for estimator functionals

[xx point to Steffen Grønneberg’s master thesis and later paper, and also Hjort and Fenstad (1992).

xx]

74. Confidence ellipsoids

well

75. The arctan estimator

[xx the exercise from emil stoltenberg’s exam set, 2016, with a little more. xx]

76. The score function, the information function, and the Bartlett identity

Consider a parametric density model f(y, θ), where θ = (θ1, . . . , θp)
t, the parameter of the model,

is contained in some open parameter region Ω. Introduce

u(y, θ) =
∂ log f(y, θ)

∂θ
and i(y, θ) =

∂2 log f(y, θ)

∂θ∂θt
,
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called the score function, with p components, and the information function, a p× p matrix. These

partial derivatives are assumed to exist and be continuous; note that this concerns smoothness in

the parameter θ, not necessarily smoothness in y. We also assume the support for the distribution,

the smallest closed set for which the density is positive, does not depend on θ. Cases falling outside

such assumptions are e.g. the uniform on an unknown interval [0, θ].

(a) Show that the score function has mean zero, i.e.

Eθ u(Y, θ) =

∫
f(y, θ)u(y, θ) dy = 0.

(b) Let next

J(θ) = −Eθ i(Y, θ) and K(θ) = Varθ u(Y, θ),

and show that indeed J(θ) = K(θ), the so-called Bartlett identity. This matrix is often called

Fisher’s information matrix for the model. Note that the calculation of both J(θ) and K(θ)

is taking place under the assumption that the model is actually correct.

(c) For the exponential model, with density θ exp(−θy), find the score function, and compute

the Fisher information function in two ways.

(d) For the normal N(ξ, σ2) model, show that the score function can be expressed as

u(y, ξ, σ) =

 1
σ
y−ξ
σ

1
σ

{(
y−ξ
σ

)2
− 1
} =

1

σ

(
z

z2 − 1

)
,

writing z = (y−ξ)/σ, which is a standard normal when y comes from the model. Demonstrate

that the Fisher information matrix becomes

J(ξ, σ) = Varξ,σ u(Y, ξ, σ) =

(
1/σ2 0

0 2/σ2

)
.

(e) Check with a few more of your favourite parametric models, where you find the score function

and the information function, and where then formulae for both J(θ) and the variance matrix

K(θ) of the score function, verifying that they are the same.

77. Behaviour of the maximum likelihood estimator, under model conditions

Let Y1, . . . , Yn be independent from the same density f(y, θ), where θ = (θ1, . . . , θp)
t. As in

the previous exercise, let u(y, θ) and i(y, θ) be the score function and information function. The

log-likelihood is `n(θ) =
∑n
i=1 log f(Yi, θ), with first order derivative Un(θ) =

∑n
i=1 u(Yi, θ), and

second order derivative In(θ) =
∑n
i=1 i(Yi, θ), a p× p matrix. The ML estimator θ̂ = θ̂n based on

the first n observations maximises `n(θ) and is also a solution to Un(θ̂) = 0.

(a) Assume that the model is correct for a certain ‘true parameter point’ θ0. Show that n−1`n(θ)

converges with probability 1 to a function A(θ) which attains its maximum value for θ = θ0.

This suggests that the maximiser θ̂n of n−1`n(θ) should tend with probability 1 to the

maximiser θ0 of the limit function. – A rigorous proof requires certain regularity conditions

to hold. Try to construct such a proof and see what kind of conditions would suffice.
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(b) Taylor-expand Un(θ̂) around θ0 to show

√
n(θ̂ − θ0) = {−n−1In(θ̃)}−1n−1/2Un(θ0),

where θ̃ is somewhere between θ0 and θ̂. Why does

n−1/2Un(θ0)→d U ∼ Np(0, J(θ0),

and why will −n−1In(θ0)→pr J(θ0)?

(c) Deduce that

√
n(θ̂n − θ0)→d J(θ0)−1U ∼ Np(0, J(θ0)−1).

This is the celebrated theorem on the large-sample behaviour of ML estimates (under model

conditions). – What regularity conditions do you need to construct a rigorous proof?

(d) Check that you understand (and can use) the delta method consequence of the above: if

γ = g(θ) is some parameter of interest, a smooth function of the basic model parameter

vector, then γ̂ = g(θ̂) is the ML estimator, and

√
n(γ̂ − γ)→d c

tJ(θ0)−1U ∼ N(0, τ2),

with τ2 = ctJ(θ0)−1c. Here c = ∂g(θ0)/∂θ.

(e) How can you test the hypothesis θ1 = θ01, where θ01 is a specified value? Also give an

approximate 90 percent confidence interval for θ1.

(f) Construct an approximate 90 percent confidence ellipsöıd for the unknown parameter vector.

[Recall that if X ∼ Np(µ,Σ), then (X − µ)tΣ−1(X − µ) is χ2 distributed with p degrees of

freedom.] Can you prove that your chosen region has the minimal possible volume, among

all asymptotic 90 percent confidence regions for θ?

78. The Kullback–Leibler distance, from one density to another

For two densities g and f , defined on a common support, the Kullback–Leibler distance, interpreted

to be ‘from the first density to the second’, is

d(g, f) =

∫
g log

g

f
dy.

It is an important concept and tool for communication and information theory, and also for proba-

bility theory and statistics. In particular, it turns out that the KL distance is intimately connected

to maximum likelihood, to the most well-used model selection method AIC (the Akaike Information

Criterion), etc.

(a) The log(g/f) term will be both positive and negative, in different parts of the domain. Show

nevertheless that indeed d(g, f) ≥ 0, and that d(g, f) = 0 only when the two densities are

equal a.e. The ‘a.e.’ is a measure theoretic little standard miniphrase, meaning ‘almost

everywhere’, i.e. the set where g(y) 6= f(y) is so small that it has Lebesgue measure zero

(the integral does not change its value if the integrand function changes its value in a finite

number of points, or, for that matter, if g(y) somewhat artificially should change its value in

every rational number). Try to prove nonnegativity via Jensen’s inequality.
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(b) A useful way of proving nonnegativity, since it opens a little door to certain generalisations,

is as follows. Write first

d(g, f) =

∫ {
g log

g

f
− (g − f)

}
dy,

and then show that the function which for fixed g is equal to A(u) = g log(g/u) − (g − u),

has its minimum position at u = g, where Amin = A(g) = 0.

(c) For two normal densities, N(a, 1) and N(b, 1), show that the KL distance becomes 1
2 (b− a)2.

Prove also the somewhat more general result, that with g ∼ N(ξ1, σ
2) and f ∼ N(ξ2, σ

2), the

KL distance is 1
2 (ξ2 − ξ1)2/σ2.

(d) The KL distance is also perfectly well-defined and meaningful in higher dimension. Show

that the KL distance from Np(ξ1,Σ) to Np(ξ2,Σ) can be expressed as 1
2δ

2, where

δ = {(ξ2 − ξ1)tΣ−1(ξ2 − ξ1)}1/2

is the so-called Mahalanobis distance between the two populations.

(e) The above few examples led to KL distances being symmetric, between the two densities in

question, but this is more unntak than regel. Compute the KL distance from N(ξ, σ2
1) to

N(ξ, σ2
2), and compare to the reciprocal case.

(f) For densities which are not far from each other, start from

d(g, f) = −
∫
g log

{
1 +

(f
g
− 1
)}
,

and use Taylor expansion to find

d(g, f) ≈ 1
2

∫
g(f/g − 1)2 dy = 1

2

(∫
f2/g dy − 1

)
.

– As noted the KL distance is not symmetric, so ‘distance’ has a direction. In various sta-

tistical setups it makes sens to interpret d(g, f) as the the distance from ‘home density g’

to ‘approximation candidate f ’. As also becoming clear from examples above, it’s somehow

quadratic in nature, so when numbers are involved, measuring the KL distances, it would

typically make more sense to give their square roots, as with {d(g, fθ)}1/2, the degree of

closeness of the parametric approximant fθ to the ground truth g.

79. What is the maximum likelihood aiming for?

Assume independent observations Y1, Y2, . . . become available, from a certain data generating mech-

anism g, the famous true but typically unknown data density. With a parametric model fθ, with

fθ(y) = f(y, θ), what it the maximum likelihood method aiming for? We learn here that there is a

clear answer, intimately connected to the Kullback–Leibler distance from truth to approximation:

ML ♥ KL and KL ♥ ML.

(a) Consider the usual log-likelihood function `n(θ) =
∑n
i=1 log f(yi, θ). The framework of Ex-

ercise 77 involved the assumption that the model was actually correct, and then we saw that
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the ML estimator θ̂ is consistent for the true parameter θ0. Now there is no ‘true parameter’,

however. But show that

An(θ) = n−1`n(θ)→pr A(θ) = Eg log f(Y, θ) =

∫
g log fθ dy

for each θ.

(b) Note that this involves the Kullback–Leibler distance, since d(g, fθ) =
∫
g log g dy − A(θ).

Under reasonable regularity conditions, which we’ll be coming back to during lectures, it will

then be the case that the maximiser of An, which is the ML estimator θ̂, will tend to the

maximiser θ0 of A, which is also the minimiser of the KL distance d(g, fθ) – we do assume

that there is precisely one such minimiser. Attempt to formalise such regularity conditions,

going from (i) An(θ)→pr A(θ) for each θ to (ii) argmax(An)→pr argmax(A). You may also

check with Hjort and Pollard (1993), to see simple conditions via convexity, but in many

cases the convexity condition is not met.

– So we’ve uncovered what goes on in the mindset of the maximum likelihood operator – it

aims for the least false parameter, the θ0 minimising the Kullback–Leibler distance d(g, fθ).

The principle itself does not say or claim to say how well this might be working, as the size

of the minimal distance

dmin = min d(g, fθ) = d(g, f(·, θ0))

will depend on both g and the parametric family being used,

(c) Suppose data y1, y2, . . . are recorded on the positive halfline, from some underlying density

g. Suppose that the exponential model θ exp(−θy) is being used. What is the maximum

likelihood estimator θ̂ aiming for?

(d) Assume independent data y1, y2, . . . stem from some density g on the line, with finite mean

ξ0 and standard deviation σ0. Using the normal model N(ξ, σ2), show that

d(g, f(·, ξ, σ)) =

∫
g log g dy + log σ + 1

2

σ2
0 + (ξ − ξ0)2

σ2
,

and that this is being minimised, over all (ξ, σ) pairs, for precisely ξ = ξ0 = EY and

σ = σ0 = (VarY )1/2.

(d) Let’s do a few exercises where the point is to set up a real data generating density g, and

then check how well a certain parametric family f(y, θ) does the approximation job. For each

case, this tells us how well the maximum likelihood can do its job, with enough data. For the

various cases, find the minimiser, i.e. the best approximation; find the minimum square-root

distance d(g, f(·, θ0))1/2 (since this gives a better picture than on the KL scale itself); and

plot the true g alongside the parametric approximant.

(i) Let g = 0.33 N(−1, 1) + 0.67 N(1, 1). Find the best normal approximation.

(ii) The Gamma distribution with parameters (a, b) has density f = {ba/Γ(a)}ya−1 exp(−by),

and the Weibull distribution [note the Swedish pronunciation] with parameters (c, d) has

cumulative distribution F (y) = 1− exp{−(y/c)d}. Let g be a Gamma with parameters

(2.22, 3.33). Find the best Weibull approximant, and also the best log-normal approxi-

mant.
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(iii) Let g = 0.95 Expo(1) + 0.05 Expo(0.01), which roughly means that about 5 percent

of the data come from a distribution which much higher mean than the mainstream

exponential data. Find the best exponential model approximation, and also the best

Gamma and Weibull approximations. Display the true g and these three best parametric

approximations in the same diagram.

(iv) Invent your own test case.

(e) Suppose data really come from N(0.333, σ2
1), with σ1 = 1.111, where a statistician fits the

simpler N(0, σ2) model. First, find out what happens to the maximum likelihood estimator.

Secondly, illustrate ‘what goes on’ by drawing e.g. ten samples of size n = 50 from the true

density, and then display the ten versions of n−1`n(σ), along with its limit A(σ). Comment

on your findings.

80. Behaviour of the maximum likelihood estimator, under agnostic conditions

Luckily, it might be fair to say, maximum likelihood estimation still manages to make sense, even

when the parametric model employed is not 100 percent correct. Statistics would have been a

somewhat different discipline, with lower ambition level and bragging rights, if all its methods had

a Red Warning Flag on top of all papers and algorithms and applications, saying ‘can only be used

if the model is perfect’. The aim here is to uncover and understand more of what happens with

the ML estimator, in the case that the true density g is outside the {fθ : θ ∈ Ω} in question.

(a) Let y1, . . . , yn be independent realisations from an underlying g, with θ̂ the ML estimator.

We have seen that θ̂ →pr θ0, the least false parameter value (a term invented by Hjort, Hjort

believes, see Hjort 1986b, 1992, and now used somewhat frequently in the literature), as

judged by the Kullback–Leibler distance d(g, fθ). With terms and notation from Exercise 77,

establish that the score function has mean zero, at this true parameter value:

Eg u(Y, θ0) =

∫
g(y)u(y, θ0) dy = 0.

Explain in detail why this generalises a corresponding result for the ‘under the model’ case.

(b) Under model conditions, certain essential things could be told using only one matrix, namely

Fisher’s information matrix J = J(θ). Now we are in need of as many as two matrices, it

turns out. Define

J = −Eg i(Y, θ0) = −
∫
g(y)

∂2 log f(Y, θ0)

∂θ∂θt
,

K = Varg u(Y, θ0) =

∫
g(y)u(y, θ0)u(y, θ0)t dy,

assumed to be finite and positive definite. Verify (again) that under model conditions, these

are identical.

(c) In extension of the previous ‘under the model’ exercise, show that

n−1/2Un(θ0) = n−1/2`′n(θ0) = n−1/2
n∑
i=1

u(Yi, θ0)→d U ∼ Np(0,K),
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(d) Use arguments similar to an in fact extending those of the previous ‘under the model’ exercise,

to learn that the basic Taylor expanion consequence

√
n(θ̂ − θ0) = {−n−1In(θ̃)}−1n−1/2Un(θ0),

still holds, where θ̃ is somewhere between θ0 and θ̂.

(e) Show from this that

√
n(θ̂ − θ0)→d J

−1U ∼ Np(0, J
−1KJ−1),

with the ‘sandwich matrix’ as the limit distribution variance matrix.

(f) Natural estimators for J and K, needed for estimating the sandwich from data, are

Ĵ = − 1

n

n∑
i=1

∂2 log f(yi, θ̂)

∂θ∂θt
and K̂ =

1

n

n∑
i=1

u(yi, θ̂)u(yi, θ̂)
t.

Attempt to show in general terms that n−1
∑n
i=1 h(Yi, θ̂)→d h0 = Eg h(Y, θ0), which is what

required to prove that Ĵ and K̂ are consistent for J and K. This is also yields what we need,

a consistent estimator of the sandwich.

81. Examples of agnostic ML operations

It is useful to go through a list of special cases, to see how the agnostic ML theory pans out in

practice. Note that convergence to the normal Np(0, J
−1KJ−1) takes place in general, model after

model after model (including those you might invent next week), without any need for working

with explicit formulae for the ML estimators etc.

(a) For the exponential model θ exp(−θy), show that the score function is u(y, θ) = 1/θ−y, that

its least false parameter value is θ0 = 1/ξ0, in termas of the true mean ξ0 = EY . Show that
√
n(θ̂ − θ0) has limit distribution N(0, σ2

0θ
4
0), where σ2

0 is the true variance. Show that this

generalises the ‘usual result’ derived under model conditions.

(b) Then do the normal: assume data follow some density g, and the normal N(ξ, σ2) model is

used. We already know that the least false parameters are ξ0 and σ0, the true mean and

standard deviation (i.e. even if g is far from the normal). Assume that the fourth moment is

finite, so that

skew = EZ3 and kurt = EZ4 − 3

are finite, with Z = (Y −EY )/sd(Y ) = (Y −ξ0)/σ0; see Exercise 65. Working with the score

function, and the second order derivatives, show that

J =
1

σ2
0

(
1, 0

0, 2

)
and K =

1

σ2
0

(
1, γ3

γ3, 2 + γ4

)
.

(c) For the ML estimators ξ̂ and σ̂, show from this that(√
n(ξ̂ − ξ)
√
n(σ̂ − σ)

)
→d N2(

(
0

0

)
, σ2

(
1, 1

2γ3
1
2γ3,

1
2 + 1

4γ4

)
).

Note that this is a ‘rediscovery’ of what we found in Exercise 65, but here we managed to

find the limit distribution fully without knowing (or caring) about the exact expressions for

the ML estimators.
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(d) [xx one more case to come here. xx]

82. Extension to regression setups

[xx nils spells out, in time, that the essential stories for ML, told above for i.i.d. setups, extend

very nicely and conveniently to regression setups, with f(yi |xi, θ) etc. xx]

83. A log-likelihood function process

Consider i.i.d. observations Y1, Y2, . . . from some density g, with a model f(y, θ) fitted via maximum

likelihood. Thus θ̂ maximises the log-likelihood function θ. It is fruitful to work the random

function

An(s) = `n(θ0 + s/
√
n)− `n(θ0).

(a) Simulate a sample of n = 25 points from the exponential model with θ0 = 3.333. Compute

and display the An(s) function. Then do this with say ten different samples, from the same

model and the same n, and display the ten An curves in a diagram.

(b) Use Taylor expansion to find

An(s) = U t
ns− 1

2s
tJs + εn,

where

Un = n−1/2
∂`n(θ0)

∂θ
= n−1/2

n∑
i=1

u(Yi, θ0)→d U ∼ Np(0,K)

and

Jn = −n−1 ∂
2`n(θ0)

∂θ∂θt
= −n−1

n∑
i=1

i(Yi, θ0)→d J,

and give conditions under which the remained term εn →pr 0.

(c) Use the ‘argmax to argmax principle’ to argue that

argmaxAn →d argmaxA,

and translate this to

√
n(θ̂ − θ0)→d J

−1U.

This gives the limiting normality results for maximum likelihood once again, with the sand-

wich matrix J−1KJ−1 in general and the Fisher information matrix inverse J(θ0)−1 under

model conditions.

(d) Then use the ‘max to max principle to argue that

maxAn →d maxA,

and translate this to the nice result

Dn(θ0) = 2{`n,max − `n(θ0)} →d W = U tJ−1U.

Show that the mean of the limit is p∗ = Tr(J−1K), and that W ∼ χ2
p under model conditions.

The Dn(θ) is called the deviance function, and the result reached is called a Wilks theorem

(there are several of them, hence the ‘a’), and we extend this later on to more general setups.
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(e) Go back to your ten simulated versions of An(s) for the exponential case, where the true

θ0 = 3.333. Use the above results to test the hypothesis that θ = 4.444.

84. The deviance function and the confidence curve

Here we illustrate the Wilks theorem (or slightly more precisely ‘the first Wilks theorem) and uses

of the deviance function, including construction of confidence curves, with more to come.

(a) Assume Y1, . . . , Yn are modelled via the usual normal N(ξ, σ2). Find a formula for Dn(ξ0, σ0),

and verify that indeed Dn(ξ0, σ0)→d χ
2
2 if these parameters are the correct ones. Note that

with a given data set, fitted to the normal, you would be able to compute Dn(ξ0, σ0) just

from working numerically with the log-likelihood function, i.e. you would not necessarily need

the explicit formula I ask for here.

(b) Since Dn(ξ0, σ0)→d χ
2
2 at the true value of the parameter pair, we can construct the set

C0.90 = {(ξ, σ) : Dn(ξ, σ) ≤ 4.605}.

Show that the probability that this set will cover the true (ξ, σ) converges to 0.90; it’s hence

a confidence set (here in dimension two, since the model parameter is two-dimensional).

Simulate a set of n = 50 normal data, from (ξtrue, σtrue) = (3.33, 0.77), and construct and

display this confidence set. If I have 100 clever students all doing this, how many of them

will have made confidence sets covering (3.33, 0.77)?

(c) Consider the simple dataset

0.038 0.075 0.091 0.185 0.190 0.347 0.378 0.423 0.482 0.735 0.898 0.933

with values in the unit interval. Fit these to the model with cumulative distribution F (y, θ) =

yθ on the unit interval. Compute not only the maximum likelihood estimate, but also the

full deviance curve

Dn(θ) = 2{`n,max − `n(θ)}.

Then construct and plot the confidence curve,

cc(θ,data) = Γ1(Dn(θ0)),

with Γ1(x) the pchisq(x,1), the cumulative χ2
1 function; in other words, produce a version

of Figure 0.5. Show that the magical property

Prθ{cc(θ,data) ≤ α} → α for all α ∈ (0, 1).

holds at the true model. Hence

C0.90 = {θ : cc(θ,data) ≤ 0.90}

has in the limit probability 0.90 of covering the true θ, etc. So confidence intervals at all

levels may be read off from Figure 0.5.
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Figure 0.5: Confidence curve cc(θ) for the simple dataset of Exercise 84(b). It points to the maximum likelihood

estimate 0.764, and confidence intervals at all levels may be read off. The 0.90-line gives [0.457, 1.185].

85. Maximum likelihood analysis in practice!

We have seen above that for a given dataset and parametric model, with a model parameter θ

of dimension p, we can carry out maximum likelihood analysis, with (at least ) two very useful

and versatile results. Under model conditions, with θ0 denoting the true parameter. these are as

follows:

(i) For the maximum likelihood estimator, θ̂ ≈d Np(θ0, Ĵ
−1), where

Ĵtotal = −∂2`n(θ̂)/∂θ∂θt

is the Hessian matrix associated with the log-likelihood maximisation, also called the observed

Fisher information matrix. Here Ĵ = Ĵtotal/n is estimating the Fisher information matrix J(θ0),

so think about Ĵtotal as the information matrix for the total dataset, and it grows in size with n.

We can hence read off confidence intervals for all model parameters, etc.

(ii) The deviance function

Dn(θ) = 2{`n,max − `n(θ)}

can be computed, for any θ, and Dn(θtrue) →d χ
2
p. This can be used for testing, for finding a

confidence set for the full parameter, etc. For the one-dimensional case this also leads to an easy

to construct confidence curve, the

ccn(θ,data) = Γ1(Dn(θ)),
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as in Figure 0.5.

We need machinery for handling a given focus parameter. In exercises below we come to the

profiled log-likelihood, and a generalised Wilks theorem, but in the present exercise we keep to the

structurally simpler ways associated with the delta method. So consider such a focus parameter,

say γ = g(θ) = g(θ1, . . . , θp). For a Gamma distribution (a, b), this could be the mean a/b or

the standard deviation a1/2/b; for the normal N(ξ, σ2) it could be the quantile ξ + 1.645σ; in a

regression setup it could be βnorway/βsweden, etc.

(a) We do have our friend the delta method on board. It is always useful, but occasionally a bit

too rough, and the log-likelihood profiling with Wilks will often be better. But show indeed,

or perhaps you’ve done it before, that with γ̂ = g(θ̂), aiming for the true γ0 = h(θ0), we have

√
n(γ̂ − γ0)→d Z ∼ ct N(0, J(θ0)−1)

where c = ∂g(θ0)/∂θ. Hence Z ∼ N(0, τ2), with τ2 = ctJ(θ0)−1c, and we estimate τ/
√
n

using

τ̂2/n = ĉtĴ−1totalĉ,

with ĉ = ∂g(θ̂)/∂θ.

(b) Use two minutes to behold the beauty, the general versatility, and the generic practicality

of what is told in (a). For each application, as long as you manage to programme the log-

likelihood function, it’s essentially plain sailing from there: (i) you find the maximiser, the

ML; (ii) in the same operation, you find Ĵtotal, via a suitable hessian operation; (iii) when

required you also find ĉ, via a grad operation. The R package numDeriv has such hessian

and grad procedures, so you don’t need to crank out first and second order derivatives of the

log-likelihood function. My own default method for finding the ML in the first place, for a

given dataset and model (perhaps one I’ve just invented, and for which there is no package

doing things for me), is to first programme logL, then define minuslogL, then do

nils = nlm(minuslogL,starthere,hessian=T)

requiring also a start position starthere for the iterative nlm algorithm to start working.

After this, I can do my pretty generic

ML = nils$estimate

Jtotalhat = nils$hessian

se = sqrt(diag(solve(Jtotalhat)))

showme = cbind(ML,se)

print(round(showme,4))

With a focus parameter γ = g(θ) I can then more or less start with properly defining my gg

as a function, and then do

gammahat = gg(ML)

chat = grad(gg,ML)

kappahat <- sqrt(chat %*% solve(Jtotalhat) %*% chat)

giving me γ̂ and its estimated standard deviation κ̂ = τ̂ /
√
n, leading if I wish to γ̂ ± 1.96 κ̂

etc. I can also construct the very useful first order normal approximation confidence curve,
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which is

ccn(γ,data) =
∣∣∣1− 2Φ

(γ − γ̂
κ̂

)∣∣∣ =
∣∣∣1− 2Φ

( γ − γ̂
τ̂ /
√
n

)∣∣∣.
Show indeed that the two solutions to ccn(γ,data) = 0.95 is the familiar γ̂± 1.96 τ̂ /

√
n, etc.,

so this is a simple and good diagram from which all confidence intervals can be read off. The

(second) Wilks theorem in the next exercise gives another recipe, which tends to be better

for smaller sample sizes, when distributions for estimators are skewed, etc.

(c) Get hold of the egypt-data set from the course website, comprising life-lengths from Roman

era Egypt, a century B.C., for 82 men and 59 women. Use maximum likelihood to fit these

data to the Gamma (a, b) model, with density

f(y, a, b) =
1

Γ(a)
ya−1 exp(−by) for y > 0.

Present parameter estimates and their estimated standard deviations, assuming at least ini-

tially that the model is adequate. Produce histograms with the estimated gamma densities

on top, to check this.

(d) We then take an interest in γ = EY , the expected or mean life-length in ancient Egypt, for

men and for women. With the Gamma model this means γ = a/b. Use the delta method to

find estimated standard errors. You should find something like this:

men:

1.4457 0.2056 a

0.0424 0.0072 b

34.1203 3.1412 mean a/b

women:

2.0632 0.3544 a

0.0796 0.0155 b

25.9237 2.3526 mean a/b

(e) Test the hypothesis that the mean life-length is the same for men and for the women. If

the men had a significantly higher mean life expectancy, attempt to find a plausible expla-

nation. Use also the normal approximations to produce the confidence curves, say ccm(γm)

and ccw(γw), from the setup of (b) above. You should hence produce a version of the two

full curves of Figure 0.6. I find 95 percent confidence intervals [27.97, 40.27] for men and

[21.32, 30.53] for women. – Figure 0.6 also has to accompanying confidence curves, shown

as dashed curves. These are produced by the Wilks theorem, using the recipe in the next

exercise (see Schweder and Hjort, 2016, and Hjort and Schweder, 2018). As we see the delta

method and the Wilks theorem based method yield very similar results, for this particular

dataset, and this model.

(f) With the same gamma model, carry out similar analysis for two more focus parameters,

namely the standard deviation, σ = a1/2/b, and the median, µ = F−1( 1
2 , a, b).

(g) Then attempt to redo these analyses with a different model, namely the Weibull, with cu-

mulative distribution function F (y) = 1− exp{−(y/c)d}.
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Figure 0.6: Confidence curves ccm(γm) (black) and ccw(γw) (red), for the mean life-length distributions of Roman

Era Egypt, based on the gamma model. Full curves: normal approximation; dashed curves: via the

chi-squared approximation.

86. The profiled log-likelihood function and the Wilks theorem

In addition to the already rather well-working delta method things, spelled out and illustrated in

the previous exercise, it turns out to be very fruitful to generalise the deviance function and the

(first) Wilks theorem to the case of a one-dimensional focus parameter γ = g(θ1, . . . , θp). This

leads to the second and more general Wilks theorem, and to a general recipe for constructing a

confidence curve ccn(γ,data), which often will be more accurate than what the first order normal

approximation will provide. An ‘early warning’ here is that with good data, high enough n, and

so on, estimators will be close to normally distributed, limit distribution variances will be well

estimated, etc., implying that the first-order normal approximations apparatus of the previous

exercise will be well-working. In particular, the simple confidence curve, essentially saying that

post-data knowledge on the unknown focus parameter γ, corresponds in an almost Bayesian but

actually not-at-all-Bayesian manner to γ |data ≈d N(γ̂, τ̂2/n). The chi-squared approximations

worked with below will tend to work better in ‘less clear situations’, with moderate n, difficult

parameters, skewed distributions, etc.

(a) For the given focus parameter γ = g(θ) = g(θ1, . . . , θp), start with the full log-likelihood

function `n(θ) = `n(θ1, . . . , θp), and then do profiling,

`n,prof(γ) = max{`n(θ) : g(θ) = γ}.
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[xx simple illustration here. xx]

(b) Note that the ML for γ is simply γ̂ = g(θ̂), and that the maximum value of `n,prof(γ) is the

same as the maximum value of `n(θ):

`n,max = max
all θ

`n(θ) = `n(θ̂) is the same as `n,max = max
all γ

`n,prof(γ) = `n,prof(γ̂).

The deviance function for the γ parameter is defined as

Dn(γ) = 2{`n,max − `n,prof(γ)}.

[xx for the example, compute and display. xx]

– The (second) Wilks Theorem now very nicely says that

Dn(γ0)→d χ
2
1

at the true value γ0. This is a proper generalisation of the first version, where there is

no profiling. We come back to proofs and conditions, but at the moment we learn what the

deviance is, and note, with admiration and gratitude, its simple chi-squared limit distribution.

Part of the story is of course that this works for (almost) any smooth parametric model and

for (almost) any smooth focus parameter γ = g(θ).

(c) The deviance function is one-dimensional and can be displayed and inspected, even if θ is

seven-dimensional. We may also read off confidence intervals. Show that the true γ0 is

covered by the set Cn = {γ : Dn(γ) ≤ 3.941} with probability converging to 0.95.

(d) It’s convenient and fruitful to present the confidence curve instead, a simple transformation

of the deviance curve, namely

ccn(γ,data) = Γ1(Dn(γ)).

Show that ccn(γ0,data)→d unif at the true parameter value.

(e) For the simple setup with y1, . . . , yn coming from the Beta(θ, 1) model, with density θ yθ−1

on the unit interval, generate a dataset with e.g. n = 25 and θ = 0.333. Compute and display

the ccn(θ,data), and check the height of the confidence curve at the true value. Generate

perhaps N = 10 or N = 50 datasets, from the same model and the same θ0, display all the

confidence curves in the same diagram, and give a histogram of the N attained values of

ccn(θ0,data). These should follow the uniform distribution.

(f) Show the magical property

Prθ0{θ : ccn(θ,data) ≤ α} → α for all α ∈ (0, 1).

This means precisely that confidence intervals at all levels may be read off, in a simple and

clear fashion.

(g) Going back to Ancient Egypt, a century B.C., see the previous exercise, carry out such

log-likelihood profile computations for the focus parameter γ = EY = a/b with the two-

parameter gamma model. You should then attempt to reproduce Figure 0.6. In particular,

read off 0.95 intervals for the mean, for men and for women. I find quite similar results for
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the direct normal approximation (i.e. the delta method) and for the Wilks based method of

Schweder and Hjort (2016):

trad schweder-hjort

men 27.97 40.27 28.61 41.15

women 21.32 30.53 21.77 31.21

87. More on the Wilks theorems

[xx to come here. it’s somewhat technical, whether one attempts path 1 or path 2 or path 3. point

to Schweder and Hjort (2016, Appendix). linear algebra things come into the bargain. i decide that

in the course it’s good to understand the basic ideas also for the proof, and it isn’t very mysterious,

but it’s even more important to understand it and use it in practice, with the ccn(γ,data) among

its features. xx] The setup here is that of i.i.d. observations y1, . . . , yn from a data-generating

mechanism g(y), fitted to a parametric model f(y, θ), with the associated log-likelihood function

`n(θ) =
∑n
i=1 log f(yi, θ). We know then that the ML estimator θ̂ tends to the least false parameter

θ0 minimising the Kullback–Leibler distance d(g, fθ). We have also seen, in Exercise 83, that

√
n(θ̂ − θ0)→d J

−1U ∼ Np(0, J
−1KJ−1),

with U ∼ Np(0,K) and J = −Eg ∂
2 log f(y, θ0)/∂θ∂θt. Here we analyse associated deviance

functions and their limits.

(a) Consider first

Dn(θ0) = 2{`n,max − `n(θ0)}.

We have seen in or via Exercises 80 and 83 that

Dn(θ0)→d W = U tJ−1U,

a quadratic function of a multivariate vector, with mean p∗ = Tr(J−1K). Show that under

model conditions, J = K, and W ∼ χ2
p.

(b) Now consider a one-dimensional focus parameter φ = h(θ), where the ML estimator is φ̂ =

h(θ̂). Our task is to examine the random deviance function

Dn(φ) = 2{`n,max − `n,prof(φ)}.

Note that this is a function which can be computed and displayed, with minimum value zero

at the precise location φ̂. Explain indeed that

max
all θ

`n(θ) = max
all φ

`n,prof(φ),

which also can be expressed as

`n,max = `n(θ̂) = `n,prof(φ̂).

(c) It is useful to work with a Taylor approximation of `n(θ) around the ML estimator θ̂. Let

Jn = − 1

n

∂2`n(θ̂)

∂θ∂θt
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be the normalised observed information matrix, for which we have Jn →pr J . Verify that for

θ in the vicinity of θ̂,

`n(θ) = `n(θ̂)− 1
2n(θ − θ̂)tJn(θ − θ̂) +Opr(n‖θ − θ̂‖3),

under natural regularity conditions. A picture to have in mind is that the log-likelihood

surface is approximately a negative quadratic near its maximum point.

(d) Show that this leads to an alternative view of the log-likelihood profiling, namely to

D∗n(φ) = min{Qn(θ) : h(θ) = φ}, with Qn(θ) = n(θ − θ̂)tJn(θ − θ̂).

Give arguments showing that Dn(φ) and D∗n(φ) are large-sample equivalent, i.e. their differ-

ence tends to zero in probability, at the position φ0 = h(θ0).

(e) Assume now that φ = btθ = b1θ1 + · · · + bpθp, i.e. that the focus parameter is a simple

linear combination of the θ components (with known coefficients). In this case we can find

an explicit expression for the minimum of Qn(θ) under the side condition that btθ = φ.

This essentially becomes a linear algebra question, of finding the minimum of a quadratic

form xtAx under the side condition that btx = φ, with A a fixed symmetric positive definite

p × p matrix, b a fixed p-vector, and φ a given number. Show, perhaps using Lagrange

multiplicators, that the minimiser in this problem is

x0 =
A−1b

btA−1b
φ,

with

min{xtAx : btx = φ} = xt0Ax0 =
φ2

btA−1b
.

Use this, or show it directly, again with Lagrange multipliers being the presumably best

mathematical path, that minimisation of Qn(θ) = n(θ− θ̂)tJn(θ− θ̂) under constraint btθ = φ

takes place for ..., with minimum

D∗n(φ) = min{n(θ − θ̂)tJn(θ − θ̂) : btθ = φ} =
n(φ− φ̂)2

btJ−1n b
.

(f) For the situation of point (e), show that

√
n(φ̂− φ0)→d b

tJ−1U ∼ N(0, btJ−1KJ−1b),

at the least false position φ0. Conclude from this that at φ = φ0 = h(θ0),

D∗n(φ0)→d
btJ−1U

btJ−1b
=
btJ−1KJ−1b

btJ−1b

btJ−1U

btJ−1KJ−1b
∼ kχ2

1,

with

k =
btJ−1KJ−1b

btJ−1b
.

(g) This result, on the log-likelihood-ratio under agnostic conditions, is perhaps not so well

known, see Schweder and Hjort (2016, Appendix). Under model conditions, however, we

have

Dn(φ0)→d χ
2
1 and D∗n(φ0)→d χ

2
1,
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and these results are decidedly and deservedly statistically famous. The ‘Wilks theorem’ has

come to mean a little portmanteau bag of things, and one of these is the Dn(φ0)→d χ
2
1 under

model conditions. Explain why and how this result can be used in at least two ways. The

first is to test the null hypothesis that φ is equal to some given and sufficiently interestinug

φ0. The second is the confidence curves of Schweder and Hjort (2016): show that with

cc(φ) = Γ1(Dn(φ0)),

we have

Prθ0{φ : cc(φ) ≤ α} → α for all α ∈ [0, 1],

which means that confidence sets can be read off, at any desired level.

(h) Explain how the k quantity of point (f) can be estimated consistently, and give a recipe for

such a k̂. Under model conditions, we would have k̂ →pr 1. Explain how a model-robust

confidence curve can be constructed from this, say cc∗(φ), with the property that

Prg{φ : cc∗(φ) ≤ α} → α for all α ∈ [0, 1].

now to be seen as a confidence curve in the least false parameter value φ0 = h(θ0), rather

than in ‘the true parameter value’.

(i) The reasoning above has so far been limited to the simpler case of φ = btθ being a linear

function of θ. Of course we need the above apparatus also for general φ = h(θ), for any

smooth parameter function h. But this can be dealt with too, essentially ‘by linearisation’.

Since θ̂ is near θ0 with high probability, for growing n, actually as near as Opr(1/
√
n), we

have

φ = h(θ) = h(θ0) + bt(θ − θ0) +O(‖θ − θ0‖2),

with b = ∂h(θ0)/∂θ. Try to squeeze a proper proof for Dn(φ0)→d χ
2
1 out of this.

88. Yet more on Wilks

An alternative route for understanding and handling some of the finer mathematical details in

the various parts of longer proofs in the previous Wilks Theorems exercise is as follows. This

is also useful for certain generalisations, as with yet-to-come glorious insights for the II-CC-FF

meta-fusion setup of Cunen and Hjort (2020).

(a) We start off by ‘translating’ the starting insight

`n(θ) = `n(θ̂)− 1
2n(θ − θ̂)tJn(θ − θ̂) +Opr(n‖θ − θ̂‖3)

to the 1/
√
n scale, via the random process

Bn(s) = `n(θ̂ + s/
√
n)− `n(θ̂).

Show that

Bn(s) = − 1
2s

tJns+Opr(‖s‖3/
√
n).
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(b) Show next that the deviance function

Dn(φ) = 2{`n,max − `n,prof(φ)},

for a given smooth focus parameter φ = h(θ), can be written

Dn(φ) = min{stJns+Opr(‖s‖3/
√
n) : h(θ̂ + s/

√
n) = φ}.

With

h(θ̂ + s/
√
n) = h(θ̂) + b̂ts/

√
n+Opr(‖s‖2/n),

writing b̂ = ∂h(θ̂)/∂θ, show that Dn(φ) is large-sample equivalent to

D∗n(φ) = min{stJns : φ̂+ b̂ts/
√
n = φ}

= min{stJns : b̂ts =
√
n(φ− φ̂)}

=
n(φ− φ̂)2

b̂tJ−1n b̂
,

where these few steps involve ‘only’ the linear algebra results handled in the previous exercise,

about minimisation of a quadratic form under lineaer constraints. This large-sample equiva-

lence need to be shown at the true of least false position φ0 = h(θ0), but can incidentally be

proven to hold [xx nils thinks, at the moment xx] also for O(1/
√
n) neighbourhoods around

θ0, which is important for some further developments.

(c) Conclude, as with the previous exercise, that

Dn(φ0)→d kχ
2
1 =

btJ−1KJ−1b

btJ−1b
χ2
1,

where k = 1 under model conditions. Again, all of this leads to the splendidly useful confi-

dence curves

cc(φ) = Γ1(Dn(φ)) and cc∗(φ) = Γ1(Dn(φ)/k̂),

the first so to speak the classical one, under model conditions, the second valid also outside

model conditions, but then to be interpreted as the confidence curve for the least falso

parameter φ0 = h(θ0). For more discussion related to these matters, see Schweder and Hjort

(2016, Chs. 3, 4, 7).

(d) We learn here that under natural and broad regularity conditions, there’s ‘Wilks behaviour’

– a somewhat tentative term, perhaps introduced in Schweder and Hjort (2016), to indicate

that deviance type functions exhibit approximate chi-squared behaviour – of the deviance

function. Specifically,

Dn(φ) = 2{`n,max − `n,prof(φ)} =
n(φ− φ̂)2

b̂tJ−1n b̂
+ opr(1),

at and close to the φ0 = h(θ0) position in the parameter space. This again entails the χ2
1

limit under model conditions. There are many generalisations and extensions, also when it

comes to results concerning the accuracy of approximations, etc. Here I point to just a few

key points.
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(i) The setting above has been that of i.i.d. observations from a data generating density g,

modelled via some parametric f(y, θ), fitted via maximum likelihood. Conceptually and

operationally, it’s a significant lift from i.i.d. to regression models for (xi, yi) type data,

where yi |xi is modelled as coming from some f(yi |xi, θ) model. Here the θ in question

would contain both regression coefficients and perhaps just a few general parameters;

for linear regression, we would have θ = (β, σ), etc. Crucially, most of the arguments

and technical details carry over, from i.i.d. to regression, with the required amount of

extra bureacracy, book-keeping, the use of Lindeberg instead of the plain CLT, etc. The

key point for Wilks theorems to hold is as above, that

`n(θ) = `n(θ̂)− 1
2n(θ − θ̂)tJn(θ − θ̂) +Opr(n‖θ − θ̂‖3)

describes the behaviour of the log-likelihood function in the vicinity of its maximiser

θ̂. So Wilks theorems may be used for say Poisson regression, where some appropriate

deviance function

Dn(β3) = 2{`n,max − `n,prof(β3)}

may be used for at least two purposes. First, to test whether β3 = 0 or not, by comparing

Dn(0) to the χ2
1. Second, to compute and display a full confidence curve cc(β3) for that

regression parameter.

(ii) Sometimes data do not come from only one homogeneous group, of course; imagine

e.g. that we have nj data points for group j, for j = 1, . . . , k. If there is a parametric

model binding these data together, perhaps with some αj parameters specific to group

j and other parameters common to all, there would be a log-likelihood function

`grand(θ) =

k∑
j=1

`group j(θ),

and an ML estimator θ̂; here θ denotes the full parameter vector comibing those for

the individual groups. The crucial point is that maximum likelihood theory still works,

after appropriate checking of all steps of all arguments, so to speak. We would still have

`grand(θ) = `grand(θ̂)− 1
2 (θ − θ̂)tJgrand(θ − θ̂) +Opr(N‖θ − θ̂‖3),

under suitable and not hard conditions, with Jgrand = −∂2`grand(θ̂)/∂θ∂θt (this time not

normalised by sample size), and N =
∑k
j=1 nj the combined sample size. The necessary

requirement is that the diagonal elements of Jgrand become bigger with combined data

volume: then Wilks theorems and their consequent chi-squared approximations still

work.

For the Roman Era Egypt data, for instance, with nm = 82 men and nw = 59 women,

and with a model saying yi is Gamma(a, bm) for men and Gamma(a, bw) for women,

there’s a complete fine three-parameter log-likelihood function

`(a, bm, bw) =

nm∑
i=1

log f(ym,i, a, bm) +

nw∑
i=1

log f(yw,i, a, bw),

where ML theory and Wilks theory still work, complete with tests and confidence curves

etc. The key requirement is that the 3 × 3 Fisher information matrix has diagonal
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elements that are big enough. It wouldn’t work, however, if we attempted a model with

say 50 parameters for these 82 + 59 data values.

(iii) Above we’ve been discussing ‘Wilks behaviour’ up & down, in settings where the di-

mension of the parameter vector with fixed dimension, say p, and with sample size n

growing. This is the classical large-sample setup that we’ve been exploring for most of

the STK 4090 course. Sometimes one wishes to work with models with a growing num-

ber of parameters, however. The tentative point to make here, without full precision is

that extending the full ML theory to θ̂− θ0 is partly difficult, since the dimension of the

θ is growing under its feet, but that the Wilks theorem about focus parameters might

still be shown to hold, under not to strict conditions. In yet other words, we might still

have

Dn(φ) = 2{`n,max − `n,prof(φ)} =
n(φ− φ̂)2

b̂tJ−1n b̂
+ opr(1)

even when the profiling in φ = h(θ1, . . . , θp) might be over a long parameter vector. In

Schweder and Hjort (2016, Ch. 14) there’s a multi-billion-dollar lawsuit analysis of 48

court famous 2× 2 tables, where we use a model with 49 parameters, basically one for

each table and one crucial extra parameter to monitor the alleged extra deadliness of the

medicine in question. When we profiled the log-likelihood function `(θ1, . . . , θ48, γ) over

the first 48 parameters, we discovered a clear χ2
1 behaviour of the deviance function,

i.e. what we term Wilks behaviour. So the very carefully constructed and computed

optimal confidence curve cc(γ) was surprisingly very close to the ‘simpler’ thing we also

computed via profiling and the Wilks theorem.

89. Wilks Theorem for k-dim subsets of p-dim parameter space

Material on Wilks Theorems for courses such as this one is not ‘naturally completed’ before we

also come to and include the lifting from dimension 1 to dimension k, so to speak. The basic story

is simple to summarise, though not necessarily easy to prove with all the required steps, also since

there are different versions and setups. The main story, at any rate, is as follows. Suppose we have

n observations from a model f(y, θ), perhaps with regression parameters etc. Here θ is ‘the full

parameter vector’, belonging to a parameter region Ω, in say p-dimensional space. Then there’s a

well defined log-likelihood function, say

`n(θ) =

n∑
i=1

log fi(yi, θ).

Suppose one is interested in testing whether θ ∈ Ω0 a subset of lower dimension k < p; perhas this

corresponds to having θj = 0 for p− k of the components. Then we may define and compute

`max,all = max{`n(θ) : θ ∈ Ω},

`max,H0
= max{`n(θ) : θ ∈ Ω0},

the maximised log-likelihood values under the full model and under the hypothesis H0 that θ lies

in this smaller space. Maxing over a bigger space yields a bigger number than maxing the same

function over a small space. Then consider

∆n = 2(`max,all − `max,H0
).

72



Then the splendidly useful Wilks theorem, going all the way back to his 1938 paper, says that

under H0 conditions,

∆n →d χ
2
df , with df = p− k.

This is often presented, and made easier to remember and to use, by ‘counting the degrees of

freedom’ as the dimension a priori minus the dimension under the hypothesis. What I’ve just

summarised here is also presented and proved in Ferguson’s Chapter 22 – and there’s of course

more to say about it, other ways to express and prove parts of it, to extend it further, etc.

(a) Assume the H0 in question is the simple one of θ = θ0, so Ω0 is a single point, of dimension

zero. Verify that the Wilks theorem then is the same as what we’ve seen earlier, e.g. from

Exercise 83.

(b) Assume next that H0 correspons to φ = h(θ) = φ0, with h(θ) a smooth one-dimensional

function. Note that saying h(θ) = φ0 amounts to characterising a p−1-dimensional subspace

of Ω. Verify that the general Wilks theorem above then corresponds to what we’ve worked

with in the previous few exercises, with the deviance function, its limiting χ2
1 distribution at

the hypothesised value, etc.

(c)

90. Confidence curves, A

Here we visit Roman Era Egypt again, aiming for confidence curves for natural focus parameters.

In this exercise we fit the lifelengths for men and for women using Gamma distributions, with say

(am, bm) for men and (aw, bw) for women. You should work out details, and display results, both

with ‘Recipe One’, the direct normal approximation, and ‘Recipe Two’, with the Wilks theorem

with log-likelihood profiling and the chi-squared approximation.

(a) First, fit the two Gamma models for the men and the women data, and give 90 percent

confidence intervals for the parameter (am, bm) and (aw, bq).

(b) Find confidence curves for the two mean parameters ξm = am/bm and ξw = aw/bw.

(c) Find confidence curves for the two standard deviation parameters ξm = a
1/2
m /bm and ξw =

a
1/2
w /bw.

(d) We’re learning that men overall lived longer than women then. One of many ways in which

to express this statistically is to work with the ratio parameter

ρ = ξm/ξw =
am/mm

aw/bw
.

So find a confidence curves for this parameter.

(e) Produce a plot with the estimated quantile ratio

γ(q) =
F−1m (q, am, bm)

F−1w (q, am, bm)
, for q = 0.05, 0.06, . . . , 0.94, 0.95,

along with a 90 percent confidence band. Comment on what you find.
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(f) Re-do all of the above with the Weibull distribution in lieu of the Gamma.

91. Confidence curves, B

[xx a few examples, expo case with moderate n, etc. cc(ψ) for the win. xx]
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Figure 0.7: Density estimates for the distribution of birthweights, for boys (black, full) and girls (red, dashed), using

the Voldner et al. data from Rikshospitalet, Oslo, in the 2001–2008 period.

92. Birthweights for boys and girls

Get hold of the birthweigth-boys and birthweight-girls datasets from the course website,

with data from 480 girls and 548 boys, all born at Rikshospitalet, Oslo, in the 2001–2008 period;

I’ve been given these data, from bigger data files from the STORK study of Voldner et al. (2008).

(a) Use kernel density estimation to produce a version of Figure 0.7.

(b) Check via suitable tests if the data for the two groups can reasonably be seen as normally

distributed.

(c) Check with a t-test if the means of the two populations are the same.

(d) Assuming normality (regardless of what you find in (a)), test whether σb = σg, for the two

standard deviations, and also find a confidene interval for ρ = σb/σg.
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Figure 0.8: Density estimates for the distribution of birthweights, for boys (black, full) and girls (red, dashed), using

the Voldner et al. data from Rikshospitalet, Oslo, in the 2001–2008 period.

(e) Then carry out nonparametric quantile inference, producing a version of Figure 0.8. It

involves estimating

µq = F−1(q),

for each quantile level q, perhaps from 0.05 to 0.95, and also estimating the standard devia-

tions, using the large-sample formula (1/n)q(1− q)/f(µq)
2 for the approximate variance.

(f) Then flex your delta method muscles, to produce a plot of the curve ρ̂(q), with an approximate

95 percent confidence band around it, where ρ(q) = F−1b (q)/F−1g (q), the ratio of the boy

quantile to the girl quantile. Comment on what you find.

(g) Ask your parents how much you weighed when you were born, and estimate which quantile

you belonged to.

h) Do a similar but perhaps simpler analysi for ρ(q), assuming normality for the two populations,

and compare with your nonparametric analysis.

93. Brownian motion
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Time has come for us to consider stochastic processes, as opposed to ‘only’ random variables and

vectors. I’m willing to argue that the two most fantastic and crucial distributions, in the one-

dimensional situation, are (i) the central normal, the famous N(0, 1), and (ii) the Poisson. They

live, they are there, they serve as limits and approximations and Lego-brikker for a long list of

other things, in all of probability theory and statistics. Similarly, but slightly more tentatively,

the two central and deservedly superfamous stochastic processes are (i’) the Brownian motion and

(ii’) the Poisson process. In this exercise we learn the basics about Brownian motion, also called

the Wiener process (Robert Brown 1773–1858 is the British botanist, who once had a cup of tea;

Norbert Wiener 1894–1964 the father of cybernetics etc.; also Albert Einstein 1879–1955 belongs

on the list of famous scientists who early on worked with this process).

(a) Have a cup of tea, complete with the classical tea leaves (English Breakfast is slightly better

than Earl Grey). Study them for a minute. You’re observing Brownian motion. Try to

describe, in probability terms, what is going on, and simplify such descriptions to the one-

dimensional case.

(b) Consider then W = {W (t) : t ≥ 0}, a random process evolving over time t, with the following

properties: (i) W (0) = 0; (ii) increments W (t)−W (s) have normal N(0, t− s) distributions,

i.e. with variance equal to the length of the interval in question; (iii) increments over disjoint

intervals are independent. Show that cov{W (s),W (t)} = min(s, t), and for the random triple

(W (s),W (t),W (u)), with s < t < u, find the 3× 3 covariance matrix.

(c) It is incidentally fruitful and useful to think of theW process via cumulative small movements,

as in W (t) being the sum of many tiny and independent

dW (s) = W (s+ ds)−W (s) ∼ N(0,ds).

Express W (1) as the sum of 1000 tiny such W ((i+ 1)/n)−W (i/n), and show that you get

the right variance.

(d) Suppose a Crazy Probabilist tries to define a process W ∗ = {W ∗(t) : t ≥ 0} by putting up

(i), (ii), (iii) above, but now with Var {W (t) −W (s)} = (t − s)1/2, rather than t − s. Show

that it would all backfire solidly. – So it’s not enough to put up ‘something’ for the variance

or covariance function, as it may lead from Kapitol to the Trojan Cliffs. One needs to check

for logical coherency.

(e) Show that with t1 < · · · < tk, then by necessity the vector (W (t1), . . . ,W (tk)) must be

multinormal, and give its k × k covariance matrix.

– Note that the existence of the Brownian motion process is not entirely obvious, and there

is no easy way to put down a full joint probability density for the full thing – so the pure

existence of a stochastic process is a more delicate and complex matter than when working

in one- and finite-dimensional cases. But fear not, Brownian motion exists, which may be

proved in many ways, including via the Donsker theorem below, which says that a certain

well-defined sequence Xn = {Xn(t) : t ≥ 0} has a well-defined limit, and this limit behaves

according to (i), (ii), (iii) given above.

94. Partial-sum processes and the Donsker theorem
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Let U1, U2, . . . be i.i.d., with mean zero and variance one (though we do not need to say anything

more regarding their distribution). Then we know from the CLT that n−1/2(U1 + · · · + Un) →d

N(0, 1). But we also see that e.g. n−1/2(U1 + · · ·+U[n/2]) must have a normal limit, and similarly

with other partial sums. This exercise goes through the basics full process of partial sums, and

leads to the famous, fundamental, and very useful Donsker theorem. Define indeed the random

process

Xn = {Xn(t) : t ≥ 0}

via

Xn(t) = n−1/2
∑
i≤[nt]

Ui =
U1 + · · ·+ U[nt]√

n
.
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Figure 0.9: Simulated Brownian motion paths. Well, actually, these are simulated partial-sum processes, the Xn(t)

of Exercise 90, with n = 104, and the eye can barely see the difference between these and the Real

Brown McCoy.

(a) Use one or two of your favourite distributions for Ui, with mean zero and variance one, to

generate some sample paths of Xn. I’ve done this for Figure 0.9, actually using Ui = Vi − 1,

with the Vi being unit exponential; the point is to use something with a skewness, though

that aspect disappears with Xn in the limit.
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(b) Fix t positive. Show that Xn(t) has mean zero and variance [nt]/n converging to t. Show

also that Xn(t) →d N(0, t). In view of the Brownian motion process defined above, we may

write Xn(t)→d W (t).

(c) Show more generally that if s < t < u < v, then

(Xn(t)−Xn(s), Xn(v)−Xn(u))→d (W (t)−W (s),W (v)−W (u)),

namely two independent normal pieces with variances t− s and v − u.

(d) Show that with t1 < · · · < tk we have

(Xn(t1), . . . , Xn(tk))→d (W (t1), . . . ,W (tk)).

(e) Show then that for s < t < u, we have

E |Xn(t)−Xn(s)|2 |Xn(u)−Xn(t)|2 → (t− s)(u− t) ≤ (u− s)2.

(f) We have established that Xn →d W in the sense of finite-dimensional distributions, and the

bound (d) may be used to establish that the Xn sequence is tight (perhaps ‘stram’ p̊a norsk).

The technical definition is that for each ε > 0, there is a sufficiently big compact set K such

that

Pr{Xn ∈ K} > 1− ε for all big n.

The opposite of tightness, a sequence which is not stram, would then be that there is no

such big compact K holding on to the Xn sequence, which means, somehow, that ‘part of

the probability is escaping to infinity’. These delicate things by necessity involve even more

details, namely what is a compact set, in this space where the random processes live. Briefly,

the space is D[0, 1], all right-continuous functions x : [0, 1] → R with left-hand limits, and

the natural topology is that of the Skorokhod metric; see the classic Billingsley (1968) for

all details. The point, at present, is that with (i) finite-dimensional convergence and (ii)

tightness, via the sufficient condition in (d), we really have full, glorious, splendid, fruitful

convergence in distribution, of the Xn process to the W process:

Xn →d W in D[0, 1].

This is Donsker’s theorem, from 1951.

– There are of course other conditions securing the crucial tightness of a sequence of processes

Xn, but I refrain from going too deeply in that correction. One general sufficient condition,

which quite often can be established, is the following extension of what was used in (e) above:

suppose that for all s < t < u we have

E |Xn(t)−Xn(s)|2 |Xn(u)−Xn(t)|2 ≤ k |Gn(u)−Gn(s)|1+δ,

for some δ > 0, and some big enough k, where Gn converges pointwise to some continuous

and monotone G. Then {Xn : n = 1, 2, 3, . . .} is tight, and if in addition Xn tends to X for

all finite-dimensional distributions, then gloriously & triumphantly, Xn →d X in the D[0, 1]

space. [xx nils, check with Billingsley 1968 section 15 or so, when i get to the office. xx]
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95. Applying the Donsker theorem

Modulo some technicalities, which we do not have the proper time to go sufficiently deeply into here,

we have established that Xn →d W above: the natural partial-sum process tends to the Brownian

motion process. These technicalities are of course important, and when depth and precision are

called for one needs to deal with them. First of all, we need a proper definition for Xn →d X, in

the space D[0, 1] of such random processes, and it is that

Eh(Xn)→ Eh(X) for all bounded, continuous h : D[0, 1]→ R.

(a) Show from these definitions that if Xn →d X and g : D[0, 1]→ R is a continuous functional,

then g(Xn)→d g(X). Here the g does not need to be bounded. Examples are h1(x) = x(t0),

a simple projection; h2(x) = max |x(t)|; h3(x) = m{t ∈ [0, 1] : x(t) > 0}, the amount of time

x(t) has been above zero; h4(x) =
∫ 1

0
x(t) dt, etc. For each of these cases, we then have

Xn →d X implies h(Xn)→d h(X).

The point here is also that it might be quite hard to prove h(Xn) →d h(X) directly, or

separately; the ‘natural way’ to prove it is via the master lemma Xn →d X first. So such a

master lemma has a long list of consequences.

(b) Further, to the details of convergence in distribution apparatus for random processes: these

relate to (i) the precise understanding of the Skorokhod metric, used to set up a clear distance

d(x1, x2) between functions x1, x2 : [0, 1]→ R; (ii) how compact sets then can be characterised

and recognised; (iii) setting up good enough criteria for tightness; (iv) knowing and showing

the basic Prokhorov theorem, that if Xn →d X for all finite-dimensional vectors, and if there

is tightness, then we’re really guaranteed Xn →d X. – In this light, think through the full

Xn →d W again, the partial-sums process and their convergence to Brownian motion.

(c) A very simple continuous function is h(x) = x(1), reading off the value of x(t) at the endpoint

t = 1. It is continuous. Hence Xn(1)→d X(1). Go back to Donsker and deduce the CLT. –

In this light, the Donsker theorem is really a much bigger brother to the CLT; the Donsker

has a thousand corollaries, some simple, many complex, and one of these is the CLT.

(d) Consider the Donsker theorem setup, and define h(x) = max0≤t≤1 x(t). It is a continuous

functional. Deduce that with Mn = maxi≤n |Si|, where Si = U1 + · · ·+ Ui, we have

Mn/
√
n = max

0≤t≤1
Xn(t)→d M = max

0≤t
W (t).

Note that this limit ensues regardless of the distribution of the i.i.d. sequence Ui, as long

as these have mean zero and variance one. The limit is the same, with Ui being standard

normal, or symmetric ±1 variables, of Ui = Vi − 1 with unit exponential Vi, etc. A separate

matter

(e) We play a long game, you and I. My winning in game i is Ui, with a distribution symmetric

around zero and variance one; if it’s positive, good for me, it it’s negative, good for you.

After i games, my bank account has U1 + · · · + Ui, and your bank account has minus this

sum. We play a few thousand times. – How much of the time have I been in the lead? This

is food for the Donsker theorem, since this is about

Tn = (1/n)

n∑
i=1

I{U1 + · · ·+ Ui > 0} = m{t ∈ [0, 1] : Xn(t) > 0},
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the Lebesgue measure of how much time the process has been above zero. This is a continuous

functional, so

Tn →d T = m{t ∈ [0, 1] : W (t) > 0}.

The problem hence a clear-cut general solution: I’ve been in the lead, over you, a portion

Tn of the time, and Tn tends to T in distribution. So it’s ‘only’ a matter of finding the

distribution of T . This is non-trivial, but the solution is the Beta( 1
2 ,

1
2 ), intriguingly, with

U-shaped density

f(t) =
1

π

1√
t(1− t)

for t ∈ (0, 1).

Thus there’s a high chance that one of the two of us has been leading for a very long time;

the least likely outcome is that we’ve each been leading about half the time.

96. The Brownian bridge

We say that a process X = {X(t) : t ∈ [0, 1]} is normal, or Gaußian, if all its finite-dimensional

distributions are normal. This is the same as saying that all linear combinations are normal. Thus

the Brownian motion process is normal, for example.

(a) To define and describe a normal process X, show that it is sufficient to give (i) the mean

function ξ(t) = EX(t) and (ii) the covariance functionK(s, t) = cov{X(s), X(t)}. So nothing

more is required than these two functions.

(b) Describe the Brownian motion process via its mean and covariance functions.

(c) Then consider the process

W 0(t) = W (t)− tW (1) for t ∈ [0, 1],

with W being the Brownian motion. Show that W 0 is normal, with zero mean, and covariance

function min(s, t)− st, i.e. s(1− t) for s ≤ t. In particular, its variance is t(1− t). The W 0

is called the Brownian bridge.

(d) For two disjoint time windows, say [s1, s2] and [t1, t2], with s1 < s2 < t1 < t2, find the

covariance and correlation between the two bridge increments W 0(s2)−W 0(s1) and W 0(t2)−
W 0(t1).

(e) Simulate ten paths of W , and transform these to ten paths of W 0.

(f) Show that W 0 also can be characterised as W conditional on W (1) = 0.

97. The empirical distribution process

Consider U1, U2, . . . being i.i.d. from the uniform distribution. We study the empirical distribution

process,

Gn(t) =
1

n

n∑
i=1

I{Ui ≤ t} for t ∈ [0, 1].
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(a) Simulate n = 100 datapoints, and plot two processes: first the Gn(t), called the empirical

cumulative distribution function, and then the normalised and scaled process

Zn(t) =
√
n{Gn(t)− t}.

(b) Show that Gn(t) has mean t and variance t(1− t)/n. Hence show that Zn(t) has mean zero

and variance t(1− t). Note indeed that Zn starts and ends at zero.

(c) Show that Zn(t) →d N(0, t(1 − t)). Show also that for s < t, (Zn(s), Zn(t)) →d (A,B), say,

a binormal zero-mean with variances s(1− s) and t(1− t), and covariance s(1− t).

(d) As an interlude, which turns out to be relevant in a minute, consider a trinomial situation,

with (X,Y ) having the trinomial distribution with sample size n and probability parameter

(p, q). In other words,

Pr{X = x, Y = y} =
n!

x! y! z!
pxqyrz

for x ≥ 0, y ≥ 0, x+y ≤ n, with r = 1−p− q and z = n−x−y. We know from very classical

binomial analyses that

√
n(X/n− p)→d N(0, p(1− p)) and

√
n(Y/n− q)→d N(0, q(1− q)).

Now the ambition level is slightly higher, however, as you have to find the joint binormal

limit distribution of (
√
n(X/n − p),

√
n(Y/n − q)). Try to find the answer in two ways: via

the two-dimensional CLT, and via general limit distribution results for maximum likelihood

estimators.

(e) Now back to Gn and the empirical process Zn. There is actually full convergence in distri-

bution here,

Zn →d W
0 in D[0, 1],

to the Brownian bridge. Show this – which means demonstrating (i) finite-dimensional con-

vergence and (ii) tightness. For the latter you might need to work with a suitable upper

bound for

E |Zn(t)− Zn(s)|2 |Zn(u)− Zn(t)|2,

which might entail some efforts for trinomial probabilities.

(f) So how much can Gn(t) deviate from its mean function t? One answer is to apply the max

functional. Start with

Dn = max
0≤t≤1

|Gn(t)− t| = max
i≤n
{|Gn(i/n−)− i/n|, |Gn(i/n)− i/n|},

the maximum distance from Gn(t) to t. Then deduce

√
nDn = max

0≤t≤1
|Zn(t)| →d D = max

0≤t≤1
|W 0(t)|.

The distribution of this limit D is ‘somewhat famous’ and has been tabulated; it is sometimes

called the Kolmogorov–Smirnov distribution. I only remember one of the numbers, from

these tables, namely that 1.358 is the upper 0.05 point. So maxt |Gn(t) − t| ≤ 1.358/
√
n,

with probability 0.95. If you have data and compute Dn, with
√
nDn bigger than 1.358, you

might be skeptical about the assumption that your data are uniform.
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(g) Pretend that we have lost the Kolmogorov–Smirnov tables, and that we don’t have the time

to derive its (rather complicated) distribution. Simulate 105 paths in your computer, and

read off the 0.95 point, which should be close to the 1.358 number I remember from these

old tables. [xx nils check this. xx]

98. The Kolmogorov–Smirnov test

The above story can be nicely generalised, without many efforts. Suppose you have i.i.d. data

y1, . . . , yn and need to test the hypothesis H0 that their distribution F is equal to some given F0,

like the standard normal. Consider the e.c.d.f, the empirical cumulative distribution function

Fn(t) = (1/n)

n∑
i=1

I{yi ≤ t}.

, and form fom this the empirical process

Zn(t) =
√
n{Fn(t)− F (t)}.
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Figure 0.10: Plot of the Kolmogorov–Smirnov related process Zn =
√
n(Fn − F ), to check if 100 data points from

the standard normal look nonnormal or not. Here the maxt |Zn(t)| value is 1.229, which is smaller

than the 0.05 upper point of the maxs |W 0(s)| distribution.

(a) Show that Fn(t) has mean F (t) and variance F (t){1− F (t)}/n.
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(b) Show that Zn(t)→d N(0, F (t){1− F (t)}).

(c) Show that

Zn →d Z = W 0(F (·)),

i.e. with Z(t) = W 0(F (t)), the Brownian bridge time-transformed via F (t). You may prove

this via results in the previous simpler setup with uniforms, using that Ui = F (Yi) is uniform.

Figure 0.10 shows a plot of Zn, for n = 100 simulated points from the standard normal.

(d) Deduce that

√
nmax

t
|Fn(t)− F (t)| →d D = max

t
|W 0(F (t))| = max

s
|W 0(s)|.

(e) Show that

Pr{F (t) ∈ Fn(t)± 1.358/
√
n, for all t} → 0.95.

This is the famous Kolmogorov–Smirnov simultaneous confidence band.

(f) Consider the test for F = F0 consisting in rejecting if F0(t) for some part of the t domain is

outside the Kolmogorov–Smirnov band. Show that this test has level 0.05 for large n. Show

also that it is equivalent to rejecting if Dn = maxt |Fn(t)− F0(t)| > 1.358/
√
n.

(g) Note in particular that since
√
nDn has a limit distribution, we must have Dn →pr 0. For

large n, the maximal difference, between the e.c.d.f. Fn and the true F , goes to zero. There’s

a slightly stronger version of this statement, which says that Dn → 0 almost surely, or

Pr{Dn → 0} = 1. This is the Glivenko–Centelli theorem, from 1933 – and yes, it’s famous,

and it’s your cultural duty to know about it, it tells us that with lots of data, we can uncover

any tiny little aspect of their underlying distribution, we can be as sophisticated as we might

wish to. The result above is however more informative, since we learn how quickly it goes to

zero, namely with speed 1/
√
n. This is incidentally impossible for density estimators, where

the best one can hope for is that the maximal distance maxt |fn(t)− f(t)| goes to zero with

speed 1/n2/5.

99. The Poisson process

well

100. Integrate and display your integrity

well

101. Regression models

well

102. Mrs. Jones is pregnant

Access the smallchildren-data dataset from the course website, with data (x1, x2, x3, x4, y) on

n = 189 mothers and their newborns, from a wider research project carried out at a hospital

in Massachusetts, the US, in 1980ies. Here x1 is age of mother; x2 is weight (in kg) prior to

pregnancy; x3 is 0-1 for nonsmoker and smoker; x4 is 0-1 for white and nonwhite; and finally y is

0-1 for ‘normal weight’ and ‘small weight’ for the newborn (with small birthweight defined as less

than 2500 g). The task is to find which covariates influence the chance of y = 1 and in which ways.
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(a) Check the distribution of the four covariates, including correlations between them.

(b) Show that with any model for

pi = pi(β) = Pr{yi = 1 |xi,1, xi,2, xi,3, xi,4},

the log-likelihood function may be written

`n(β) =

n∑
i=1

{yi log pi + (1− yi) log(1− pi)}.

(c) Everyone’s favourite model (apparently) for such data is the logistic regression model, with

pi = H(β0 + β1xi,1 + β2xi,2 + β3xi,3 + β4xi,4),

with H(u) = exp(u)/{1 + exp(u)} the logistic transform. Programme the log-likelihood

function and find the ML estimators β̂ = (β̂0, . . . , β̂4).

(d) Show that the normalised Fisher observation matrix can be written

Jn = − 1

n

∂2`n(β̂)

∂β∂βt
=

1

n

n∑
i=1

p̂i(1− p̂i)xixti,

writing here xi for the 5× 1 vector (1, xi,1, xi,2, xi,3, xi,4)t. Compute the Jn matrix and the

estimated standard deviations, the square roots of the diagonal elements of J−1n /n. Make a

little table with the ML estimators, these standard errors, and the Wald ratios β̂j/sej . Which

of the four covariates can be seen to influence the small-baby probability?

(e) Mrs. Jones is pregant! She’s 28, weights 58 kg, is white, and has never smoked a cigarette in

her life. Estimate pjones, and find a 90 percent confidence interval, the probability that her

child will be below the 2500 g threshold. Then invent her cousin, Mrs. Smith, who is also 28,

with the same weight, but she’s a smoker, and is non-white (an euphemism for being either

black or if First Americans descent), and analyse similarly psmith. Attempt to construct full

confidence curves

cc(pjones) and cc(psmith).

(f) Parts of the above computations can incidentally be carried out in half a second using

glm(yy ~ x1 + x2 + x3 + x4, family="binomial")

in R. It is however very useful to be able to programme such log-likelihoods ‘from scratch’,

as models you might stumble into, or create yourself, might not at all be on the list of

super-famous already-implemented models. Complement the above analysis with using

pi = H(β0 + β1xi,1 + β2xi,2 + β3xi,3 + β4xi,4),

now using H equal to the cumulative distribution function for the standard Cauchy, or

pcauchy in R. Note how strangely easy it is to go from one model to another model, opera-

tionally speaking, as it often might amount to changing a few lines in a computer programme.

The formula for the Jn matrix above is however valid only for the logistic regression model,

but in general one may use minus the Hessian matrix from the computer maximisation.
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103. Yet other things to come

[xx We’ll see what I manage or decide to put in, in this growing collection of both exercises and

lecture notes. There must be empirical processes, some empirical likelihood, confidence curves,

something with nonstandard limits, and the Aalen–Nelson and Kaplan–Meier estimators. With

applications. And Cramér–Wold. And Hjort and Fenstad (1992) for the last n, and Hjort and

Pollard (1994) for asymptotics for minimisers. xx]
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Slutsky, E. (1925). Über stochastische Asymptoten und Grenzwerte. Metron 5, 3–89.

Stoltenberg, E. (2019). A moment generating function proof of the central limit theorem. Note,
related to his STK 4011 teaching, autumn semester 2019, Department of Mathematics, Uni-
versity of Oslo.

Stoltenberg, E.Aa. and Hjort, N.L. (2019a). Simultaneous estimation of Poisson parameters.
Journal of Multivariate Analysis, in its way.

Stoltenberg, E.Aa. and Hjort, N.L. (2019b). Modelling and analysing the Beta- and Gamma
Police Tweetery data. [Manuscript, in progress.]

Voldner, N., Frøslie, K.F., Haakstad, L., Hoff, C., Godang, K., Bollersleiv, J., and Henriksen, T.
(2008). Modifiable determinants of fetal macrosomia: role of lifestyle-related factors. Acta
Obstreticia et Gynecologica Scandinavia 87, 423–429.

87



Walker, S.-E. and Hjort, N.L. (2020). Estimation and model selection via weighted likelihoods.
Manuscript.

Wilks, S.S. (1938). The large-sample distribution of the likelihood ratio for testing composite
hypotheses. Annals of Mathematical Statistics 9, 60–62.

Wolpert, R.L. and Ickstadt, K. (1998). Poisson/gamma random field models for spatial statistics.
Biometrika 85, 251–267.

Aalen, O.O., Borgan, Ø., and Gjessing, H. (2008). Survival and Event History Analysis: a Process
Point of View. Springer-Verlag, Berlin.

88


