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Abstract. By means of two simple convexity arguments we are able to develop a gen-
eral method for proving consistency and asymptotic normality of estimators that are
defined by minimisation of convex criterion functions. This method is then applied to a
fair range of different statistical estimation problems, including Cox regression, logistic
and Poisson regression, least absolute deviation regression outside model conditions, and
pseudo-likelihood estimation for Markov chains.

Our paper has two aims. The first is to exposit the method itself, which in many
cases, under reasonable regularity conditions, leads to new proofs that are simpler than
the traditional proofs. Our second aim is to exploit the method to its limits for logistic
regression and Cox regression, where we seek asymptotic results under as weak regularity
conditions as possible. For Cox regression in particular we are able to weaken previously
published regularity conditions substantially.
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1. Introduction. This paper develops a simple method for proving consistency and asymp-

totic normality for estimators defined by minimisation of a convex criterion function. Versions of

the method have been used or partially used by several authors, for various specific occasions, in-

cluding Jurečková (1977, 1991), Andersen and Gill (1982), Hjort (1986, 1988a), Haberman (1989),

Pollard (1990, 1991), Bickel, Klaassen, Ritov and Wellner (1992), Niemiro (1992), but the general

principle has not been widely recognised.

Our aims in this paper are twofold. (i) The primary objective is to explain the basic method,

and to illustrate its use in a fair range of statistical estimation problems. In section 2 we state and

prove some general theorems about estimators that are defined via some form of convex minimi-

sation, and in sections 3 and 4 illustrate their use by means of applications to sample quantiles,

maximum likelihood and Bayes estimation when the likelihood is log-concave, and least squares

and least absolute deviation linear regression outside model conditions. Similarly sections 5 and 6

treat logistic and Cox regression, while still further applications are reported in section 7, including

Poisson regression. The proofs are relatively simple and instructive, at least when regularity condi-

tions are kept reasonable. (ii) The second objective is to improve on previously published results, in

the sense of pruning down the regularity conditions of theorems for two important models, namely

logistic regression in section 5 and Cox regression in sections 6 and 7A. The two aims are mildly

conflicting, editorially speaking. We soften the conflict in sections 5 and 6 by writing down first a

simple version of a theorem with a simple proof, and then a harder version with a harder proof. In

this way we hope that our article has some pedagogic merits while at the same time also offering

something to the specialists.

Instead of treating minimisation as a search for a root of a derivative, we work directly with

the argmin (a minimising value) of a random function and are able to approximate it with the

argmin of a simpler random function. In this way we manage to avoid special arguments that are

often used to prove consistency separately. Convexity essentially buys us both consistency and

asymptotic normality with the same rublь, and sometimes with cheaper regularity conditions.

The two convexity lemmas that will be used are as follows.
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Lemma 1: From pointwise to uniform. Suppose An(s) is a sequence of convex random

functions defined on an open convex set S in IRp, which converges in probability to some A(s), for

each s. Then sups∈K |An(s)−A(s)| goes to zero in probability, for each compact subset K of S.
Proof: This is proved in Andersen and Gill (1982, appendix), crediting T. Brown, via ‘diag-

onal subsequencing’ and an appeal to a corresponding non-stochastic result (see Rockafellar, 1970,

Theorem 10.8). For a direct proof, see Pollard (1991, section 6).

A convex function is continuous and attains it minimum on compact sets, but it can be flat at

its bottom and have several minima. For simplicity we speak about ‘the argmin’ when referring to

any of the possible minimisers. The argmin can be selected in a measurable way, as explained in

Niemiro (1992, p. 1531), for example.

Lemma 2: Nearness of argmins. Suppose An(s) is convex as in Lemma 1 and is approxi-

mated by Bn(s). Let αn be the argmin of An, and assume that Bn has a unique argmin βn. Then

there is a probabilistic bound on how far αn can be from βn: for each δ > 0,

Pr{|αn − βn| ≥ δ} ≤ Pr{∆n(δ) ≥ 1
2hn(δ)}, (1.1)

where

∆n(δ) = sup
|s−βn|≤δ

|An(s)−Bn(s)| and hn(δ) = inf
|s−βn|=δ

Bn(s)−Bn(βn). (1.2)

Proof: The lemma as stated has nothing to do with convergence or indeed with the ‘n’

subscript at all, of course, but is stated in a form useful for later purposes. To prove it, let s be an

arbitrary point outside the ball around βn with radius δ, say s = βn + lu for a unit vector u, where

l > δ. Convexity of An implies

(1− δ/l)An(βn) + (δ/l)An(s) ≥ An(βn + δu).

Writing for convenience An(s) = Bn(s) + rn(s), we deduce

(δ/l) {An(s)−An(βn)} ≥ An(βn + δu)−An(βn)

= Bn(βn + δu) + rn(βn + δu)−Bn(βn)− rn(βn)

≥ hn(δ)− 2∆n(δ).

If ∆n(δ) <
1
2hn(δ), then An(s) > An(βn) for all s outside the δ-ball, which means that the minimiser

αn must be inside. This proves (1.1).

It is worth pointing out that any norm on IRp can be used here, and that no assumptions need

to be placed on the Bn function beside the existence of the minimiser βn.

The two lemmas will deliver more than mere consistency when applied to suitably rescaled

and recentred versions of convex processes.

We record a couple of useful implications of Lemma 2. If An − Bn goes to zero uniformly

on bounded sets in probability and βn is stochastically bounded, then ∆n(δ) →p 0 by a simple

argument. It follows that αn − βn →p 0 provided only that 1/hn(δ) is stochastically bounded for

each fixed δ. This last requirement says that Bn shouldn’t flatten out around its minimum as n

increases.

Basic Corollary. Suppose An(s) is convex and can be represented as 1
2s

′V s+U ′
ns+Cn +

rn(s), where V is symmetric and positive definite, Un is stochastically bounded, Cn is arbitrary,

and rn(s) goes to zero in probability for each s. Then αn, the argmin of An, is only op(1) away

from βn = −V −1Un, the argmin of 1
2s

′V s+ U ′
ns+ Cn. If also Un →d U then αn →d −V −1U .
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Proof: The function An(s) − U ′
ns − Cn is convex and goes to 1

2s
′V s in probability for each

s. By the first lemma the convergence is uniform on bounded sets. Let ∆n(δ) be the supremum of

|rn(s)| over {|s− βn| ≤ δ}. Then, by Lemma 2,

αn = −V −1Un + εn, where Pr{|εn| ≥ δ} ≤ Pr{∆n(δ) ≥ 1
2kδ

2} → 0. (1.3)

Here k is the smallest eigenvalue of V , and ∆n(δ) →p 0, by the arguments used above.

A useful slight extension of this is when An(s) =
1
2s

′Vns + U ′
ns + Cn + rn(s) is convex, with

a nonnegative definite symmetric Vn matrix that converges in probability to a positive definite V .

Writing Vn = V + ηn the remainder ηn can be absorbed into rn(s) and the result above holds.

2. General results for convex minimisation estimators. This section presents three

basic theorems about the asymptotic behaviour of estimators that are defined by minimisation of

some convex criterion function. The first is for the independent identically distributed (i.i.d.) case.

The second is stated for independent observations with different distributions, and is suitable for

proving consistency and asymptotic normality in regression models, for example, under model

conditions. The third theorem also applies to regression model estimators, but is suited to give

asymptotic results also outside model conditions. Applications and illustrations are provided in

sections 3, 4 and 5.

2A. A theorem for the i.i.d. case. Let Y1, Y2, . . . be i.i.d. from some distribution F . A certain

p-dimensional parameter θ0 = θ(F ) is of interest. Assume that one of the ways of characterising

this parameter is to say that it minimises Eg(Y, t) =
∫
g(y, t) dF (y), where the g(y, t) function

is convex in t. Examples include quantiles, the mean, M-estimation and maximum likelihood

estimation parameters and so on; see sections 3 and 4. In the expectation expression above, and

later on, Y denotes a generic observation from the true underlying F .

Some weak expansion of g(y, t) around the value θ0 of t is needed, but we avoid explicitly

requiring pointwise derivatives to exist. With this in mind, write

g(y, θ0 + t)− g(y, θ0) = D(y)′t+R(y, t) (2.1)

for a D(y) with mean zero under F . If ER(Y, t)2 is of order o(|t|2) as t → 0, as we will usually

require, then D(y) is nothing but the derivative in quadratic mean of the function g(y, θ0 + t) at

t = 0.

Theorem 2.1. Suppose that g(y, t) is convex in t as above, and that (2.1) holds with

E{g(Y, θ0 + t)− g(Y, θ0)} = ER(Y, t) = 1
2 t

′Jt+ o(|t|2) as t → 0 (2.2)

for a positive definite matrix J . Suppose also that VarR(Y, t) = o(|t|2), and that D(Y ) has a finite

covariance matrix K =
∫
D(y)D(y)′ dF (y). Then the estimator θ̂n which minimises

∑
i≤n g(Yi, t)

is
√
n-consistent for θ0, and

√
n(θ̂n − θ0) = −J−1n−1/2

∑

i≤n

D(Yi) + op(1). (2.3)

In particular
√
n(θ̂n − θ0) →d −J−1Np{0,K} = Np{0, J−1KJ−1}.
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Proof: Consider the convex function An(s) =
∑

i≤n{g(Yi, θ0 + s/
√
n) − g(Yi, θ0)}. It is

minimised by
√
n(θ̂n − θ0). Note first that nER(Y, s/

√
n) = 1

2s
′Js + rn,0(s) where rn,0(s) =

no(|s|2/n) → 0 for fixed s. Accordingly, using (2.1),

An(s) =
∑

i≤n

{
D(Yi)

′s/
√
n+R(Yi, s/

√
n)− ER(Yi, s/

√
n)
}
+ nER(Y, s/

√
n)

= U ′
ns+

1
2s

′Js+ rn,0(s) + rn(s),

in which

Un = n−1/2
∑

i≤n

D(Yi) and rn(s) =
∑

i≤n

{R(Yi, s/
√
n)− ER(Yi, s/

√
n)}.

Now rn(s) tends to zero in probability for each s, since its mean is zero and its variance is∑
i≤n VarR(Yi, s/

√
n) = no(1/n). This, together with the Basic Corollary of section 1, proves

(2.3) and the limit distribution result, since Un goes to a Np{0,K} by the central limit theo-

rem. Note that both consistency and asymptotic normality followed from the same approximation

argument.

Note that VarR(Y, t) = ER(Y, t)2 + O(t4), so we might as well work with second moments

rather than variances. Notice also that the differentiability assumption (2.2) is applied to the

process obtained by averaging out over the distribution F , a smoothing that can eliminate trouble-

some pointwise behaviour of R(y, t). Huber (1967) recognised this advantage of smoothing before

differentiating.

2B. A theorem for independent observations with different distributions. Assume that the true

density of Yi is of the form fi(yi) = fi(yi, θ0, ηi), where θ0 is a certain p-dimensional parameter of

interest. Suppose that an estimator θ̂n for θ0 is proposed which minimises
∑

i≤n gi(Yi, θ), where

the gi(yi, θ) functions are convex in θ. A simple example is linear regression, where Yi = θ′0xi + εi
and θ̂n minimises

∑
i≤n(Yi − θ′xi)

2.

Suppose that gi(yi, θ0 + t) − gi(yi, θ0) = Di(yi)
′t + Ri(yi, t), where EDi(Yi) = 0. With the

previous development in mind, write

ERi(Yi, t) =
1
2 t

′Ait+ vi,0(t) and VarRi(Yi, t) = vi(t), (2.4)

and let Bi be the variance matrix for Di(Yi). The sums Jn =
∑

i≤n Ai and Kn =
∑

i≤n Bi are

featured below. The first useful result, properly generalising Theorem 2.1, is the following, which

is proved by copying the arguments of 2A mutatis mutandis.

Theorem 2.2. Assume that
∑

i≤n vi,0(s/
√
n) → 0 and

∑
i≤n vi(s/

√
n) → 0 for each s, and

that Jn/n and Kn/n converge to J and K, where J is positive definite. Then
√
n(θ̂n − θ0) is only

op(1) away from −J−1n−1/2
∑

i≤n Di(Yi). If in particular the Lindeberg requirements are fulfilled

for the Di(Yi) sequence, then
√
n(θ̂n − θ0) →d Np{0, J−1KJ−1}.

Another result which sometimes is stronger is as follows. Assume that
∑

i≤n vi,0(J
−1/2
n s) → 0

and
∑

i≤n vi(J
−1/2
n s) → 0 for each s, and that J−1

n Kn is bounded. Then

J1/2
n (θ̂n − θ0) = −J−1/2

n K1/2
n Un + op(1), (2.5)

where Un = K
−1/2
n

∑
i≤n Di(Yi). If in particular there are matrices J and K such that J−1

n Kn goes

to J−1K, and the Lindeberg conditions are fulfilled, securing Un →d Np{0, Ip}, then J
1/2
n (θ̂n −
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θ0) →d Np{0, J−1/2KJ−1/2}. This result is proved by studying the convex function
∑

i≤n{gi(Yi,

θ0 + J
−1/2
n s) − gi(Yi, θ0)}. In some situations of interest Jn = Kn, further simplifying (2.5). See

section 5 for an illustration of this.

2C. A theorem for regression type estimators outside model conditions. The results of 2B

are sometimes not sufficient. Theorem 2.3 below will work for asymptotic behaviour of regression

methods outside model conditions, as made clear in section 3D, for example.

Assume that some covariate vector xi = (xi,1, . . . , xi,p)
′ is associated with observation Yi. For

simplicity we formulate a result in terms of densities, rather than general distribution functions.

Suppose that the true density for Yi given xi is f(yi |xi) but that some regression model postulates

f(yi, β |xi), for a suitable p-dimensional parameter vector β. We consider an estimator β̂n defined

to minimise
∑

i≤n gi(Yi, β |xi), where gi(yi, β |xi) is convex in β for each (yi, xi). In the following

we shall assume that the empirical distribution of x1, . . . , xn, whether actually random or under the

experimenter’s control, converges to a well-defined distribution H in x-space. This conceptual limit

is to be thought of as the ‘covariate distribution’. Assume that n−1
∑

i≤n gi(Yi, β |Xi) converges

in probability to a function with a unique minimiser β0.

Under these circumstances it is not generally possible to get a representation like the one that

led to (2.4), because of heterogeneity as well as potential modelling bias, as the applications in

section 3D and section 5C will illustrate. It becomes necessary to include a xi-dependent bias

term. Suppose that it is possible to write

gi(yi, β0 + t |xi)− gi(yi, β0 |xi) = {δ(xi) +Di(yi |xi)}′t+Ri(yi, t |xi), (2.6)

where EDi(Yi |xi) = 0 and VARDi(Yi |xi) = Bi(xi). Write furthermore

ERi(Yi, t |xi) =
1
2 t

′Ai(xi)t+ vi,0(t |xi) and VarRi(Yi, t |xi) = vi(t |xi). (2.7)

This time three matrix sums are needed, Jn =
∑

i≤n Ai(xi), Kn =
∑

i≤n Bi(xi), and Ln =∑
i≤n δ(xi)δ(xi)

′.

Theorem 2.3. Assume that the x1, x2, . . . sequence is such that

∑

i≤n

vi,0(s/
√
n |xi) → 0 and

∑

i≤n

vi(s/
√
n |xi) →p 0 for each s, (2.8)

that the Jn/n sequence is bounded away from zero, and that the Kn/n and Ln/n sequences are

bounded. Then

√
n(β̂n − β0) = −(Jn/n)

−1
{
n−1/2

∑

i≤n

δ(xi) + n−1/2
∑

i≤n

Di(Yi |xi)
}
+ εn, (2.9)

where εn = εn(x1, . . . , xn) →p 0.

The proof is quite similar to previous proofs in this section, taking as its starting point the

convex function
∑

i≤n{gi(Yi, β0 + s/
√
n |xi)− gi(Yi, β0 |xi)}. We omit the details.

The (2.9) representation has two statistically interesting implications. (i) In the conditional

framework with a given xi sequence, suppose that Jn/n → J and Kn/n → K and that the

Lindeberg condition holds for
∑

i≤n n
−1/2Di(Yi |xi). Then

√
n(β̂n − β0) |x1, . . . , xn = Np

{
−(Jn/n)

−1n−1/2
∑

i≤n

δ(xi), J
−1KJ−1

}
+ ε′n, (2.10)
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where ε′n →p 0. So β̂n is approximately normal with variance matrix J−1KJ−1/n, but actually

biased with a bias depending on x1, . . . , xn. The bias is typically zero under exact regression model

conditions, see 3D below. (ii) Secondly, if the xi’s can be treated as being independent and coming

from their own ‘design distribution’H(dx) in x-space, then δ(xi) has mean zero and variance matrix

L, say. In this unconditional framework

√
n(β̂n − β0) = J−1Np{0,K + L}+ op(1) →d Np{0, J−1(K + L)J−1}. (2.11)

3. Applications and illustrations.

3A. The median. Let Y1, Y2, . . . be i.i.d. from a density f , let µ be the population median, and

let Mn be the sample median from the first n observations. We shall prove the well known fact

that Mn is consistent for µ and that

√
n(Mn − µ) →d N{0, 1/4f(µ)2}, (3.1)

provided only that f is positive and continuous at µ.

This fits into the framework of 2A with the convex function g(y, t) = |y − t|. The (2.1)

expansion reads

|y − (µ+ t)| − |y − µ| = D(y)t+R(y, t),

where D(y) = −I{y > µ}+ I{y ≤ µ}, and

R(y, t) =

{
2(t− (y − µ)) I{µ ≤ y ≤ µ+ t} if t > 0,
2((y − µ)− t) I{µ+ t ≤ y ≤ µ} if t < 0,

while R(y, 0) = 0, which makes it easy to verify

ER(Y, t) = f(µ)t2 + o(t2) and ER(Y, t)2 = 4
3f(µ)|t|3 + o(|t|3).

Actually we only need a distribution function with a positive derivative at µ. Of course we

don’t get the explicit |t|3 bound then. Notice that D(Y ) and R(Y, t) are bounded functions even if

|Y −t| itself can have infinite expected value, since we work with the difference |Y −(µ+t)|−|Y −µ|.
Since the variance of D(Y ) is equal to 1, assertion (3.1) follows from Theorem 2.1. See 4A below

for an extension of this result.

3B. Simultaneous asymptotic normality of order statistics. Let f be positive and continuous

in its support region, and consider the function

gp(y, t) = p{(y − t)+ − y+}+ (1− p){(t− y)+ − (−y)+}.

It is convex in t and its expected value is minimal for t = F−1(p) = µp, the p-th quantile of the

underlying distribution, and

E{gp(Y, t)− gp(Y, µp)} = 1
2f(µp)(t− µp)

2 + o((t− µp)
2)

can be shown. The (2.1) expansion works with

D(y) = (1− p)I{y ≤ µp} − pI{y > µp} = I{y ≤ µp} − p
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and ER(Y, t)2 = O(|t|3) can be checked. Let Qn,p be the minimiser of
∑

i≤n gp(Yi, t), which is

sometimes non-unique, but which in any case is at most Op(n
−1) away from the [np]’th order

statistic Y([np]). The general theorem of 2A implies

Zn(p) =
√
n(Qn,p − µp) = −f(µp)

−1
√
n{Fn(µp)− p}+ εn(p), (3.2)

where Fn is the empirical distribution function and εn(p) → 0 in probability for each p. This

links the quantile process Zn to the empirical process, and proves finite-dimensional convergence

in distribution of the quantile process to a Gaußian process Z(.) with mean zero and covariance

structure

cov{Z(p1), Z(p2)} =
p1(1− p2)

f(µp1
)f(µp2

)
for p1 ≤ p2. (3.3)

The traditional proofs of this finite-dimensional convergence result are rather messier than the

above. There is in reality also process convergence here, of course, which is linked to the fact that

supδ≤s≤1−δ |εn(p)| goes to zero in probability for each δ. Proving this is not within easy reach of

our method, however. See also the comment ending 3D below.

3C. Estimation in Lα mode. Let more generally Mn,α minimise
∑

i≤n |Yi − t|α, where α ≥ 1,

and let ξα be the population parameter that minimises E|Y − t|α. For α = 3
2 we would expect an

estimator with properties somehow between those for the median and the mean, for example. We

can prove
√
n(Mn,α − ξα) →d N{0, τ2} where τ2 =

E|Y − ξα|2(α−1)

{(α− 1)E|Y − ξα|α−2}2 , (3.4)

assuming E|Y |2(α−1) to be finite. The proof proceeds by mimicking that for the simpler case α = 1.

One needs to use

D(y) = −α(y − ξα)
α−1I{y > ξα}+ α(ξα − y)α−1I{y < ξα},

and it is somewhat more cumbersome but feasible to bound ER(Y, t)2. And finally needed is the

analytical fact that E{|Y − (ξα + t)|α − |Y − ξα|α} = 1
2Kf t

2 + o(t2), in which Kf = α(α− 1)E|Y −
ξα|α−2.

It is interesting to note here that (α − 1)E|Y − ξα|α−2 tends to 2f(F−1( 12 )) as α tends to

1, explaining the connection from the moment-type expression for the variance τ2 of (3.4) to the

rather different-looking expression for the median case.

It is also worth pointing out that the (3.4) result can be reached via influence functions and

function space methods as well. The influence function can be found to be

I(F, y) =

{
αK−1

F |y − ξα(F )|α−1 if y > ξα(F ),
−αK−1

F |y − ξα(F )|α−1 if y < ξα(F ),

after which the usual argument is that since
√
n(Mn,α − ξα) = n−1/2

∑
i≤n I(F, Yi) + εn, for suit-

able remainder term εn, one must have limiting normality with τ2 =
∫
I(F, y)2 dF (y), agreeing

with (3.4). But proving that εn here goes to zero in probability is not trivial, since the ξα func-

tional is rather non-smooth. The argument can be saved via establishing Lipschitz differentiability,

as in Example 1 of Huber (1967). Our method manages to avoid these somewhat sophisticated

arguments.

3D. Agnostic least squares and least absolute deviation regression. Statistical regression is

about estimating the unknown centre value of Y for given x, i.e. the curve or surface centre(Y |x),
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based on p + 1-tuplets (xi, Yi), where ‘centre’ could be the mean or the median. Ordinary linear

regression uses a linear approximation β′x =
∑p

j=1 βjxj for this centre function, which is often a

very reasonable method even if the true underlying centre function is somewhat non-linear. The

least squares regression estimator is β̂′
nx where β̂n minimises

∑
i≤n(Yi − β′xi)

2, and the least

absolute deviation estimator is β̃′
nx where β̃n minimises

∑
i≤n |Yi − β′xi|.

Statistical properties of these estimators are usually investigated only under the admittedly

unlikely assumption that the true surface is linear and that the variances are constant over the full

region, i.e.

Yi = β′
0xi + σεi (3.5)

where the εi’s are i.i.d. standardised residuals centred around zero. An in some sense more honest

approach would be to merely postulate that

Yi = m(xi) + σ(xi)εi, (3.6)

for some smooth functions m(x) and σ(x), and view the regression surface estimator as an attempt

to produce a good linear approximation to the evasive m(x). Our plan now is to derive properties

under robust and agnostic (3.6) conditions using Theorem 2.3 of 2C, while assuming that the

empirical distribution of xi’s converges to an appropriate ‘covariate distribution’ H. Under ideal

(3.5) conditions they specialise to results obtainable using the simpler Theorem 2.2 of 2B.

Consider least squares regression first, assuming the εi’s to have mean zero and variance one.

This fits into the 2C framework with gi(Yi, β |xi) =
1
2 (Yi−β′xi)

2. The method aims at getting the

best linear approximation β′
0x to m(x), in the sense of minimising the limit of n−1

∑
i≤n(m(xi)−

β′xi)
2. In fact this means β0 = (EXX ′)−1EXY . We find

gi(Yi, β0 + t |xi)− gi(Yi, β0 |xi) = −(Yi − β′
0xi)x

′
it+

1
2 (t

′xi)
2

= −
(
δ(xi) +Di(Yi |xi)

)′
t+ 1

2 t
′xix

′
it,

in which

δ(xi) = (m(xi)− β′
0xi)xi and Di(Yi |xi) = (Yi −m(xi))xi.

In the notation of (2.7) one has Ai(xi) = xix
′
i and both remainder terms are simply equal to zero.

Consider

Jn =
∑

i≤n

xix
′
i, Kn =

∑

i≤n

σ(xi)
2xix

′
i, Ln =

∑

i≤n

{m(xi)− β′
0xi}2xix

′
i. (3.7)

Two results can be given, corresponding to (2.10) and (2.11). First, suppose the xi sequence is

such that Jn/n → a positive definite J , Kn/n → K, that the Ln/n sequence is bounded, and that

maxi≤n σ(xi)
2|xi|2/

∑
i≤n σ(xi)

2|xi|2 → 0. Then
√
n(β̂n − β0) is asymptotically normal with mean

J−1n−1/2
∑

i≤n(m(xi)−β′
0xi)xi and variance matrix J−1KJ−1. Secondly, under the unconditional

viewpoint where the xi’s are seen as i.i.d. with finite variance matrix L = E(m(X) − β′
0X)2XX ′

for δ(xi), then √
n(β̂n − β0) →d Np{0, J−1(K + L)J−1}. (3.8)

Note that K + L can be estimated consistently with n−1
∑

i≤n(Yi − β̂′
nxi)

2xix
′
i.

These results can also be derived more or less directly, i.e. without the convex machinery of

section 2, see Exercise 45 in Hjort (1988b). In the least absolute deviation case to be reported on

next a direct approach is much more difficult, however, but it can be efficiently handled using the

methods of section 2.
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For the LAD regression case, take the εi’s of (3.6) to have distribution F with median zero and

variance one. We will assume that F has a density f which further possesses a continuous derivative

f ′. In this case gi(Yi, β |xi) = |Yi − β′xi|, and the method aims at getting the best approximation

β′
0x to m(x) in the sense of minimising the long term value of n−1

∑
i≤n E|m(xi)− β′xi + σ(xi)εi|.

We skip the various details that have to be worked through to reach a result here. They resemble

those above and arguments used in 3A. To give the result, let Di(Yi |xi) = 1 if Yi ≤ β′
0xi and −1

if Yi > β′
0xi, with conditional mean h(xi) = 2Pr{m(xi) + σ(xi)εi ≤ β′

0xi} − 1, and consider the

three matrices

Jn =
∑

i≤n

2fi(β
′
0xi −m(xi))xix

′
i, Kn =

∑

i≤n

{1− h(xi)
2}xix

′
i, Ln =

∑

i≤n

h(xi)
2 xix

′
i,

where fi(z) = f(z/σ(xi))/σ(xi) is the density of the scaled residual σ(xi)εi. In particularKn+Ln =∑
i≤n xix

′
i. As for the least squares case these efforts lead to a representation

√
n(β̃n − β0) = −(Jn/n)

−1
[
n−1/2

∑

i≤n

h(xi)xi + n−1/2
∑

i≤n

{Di(Yi |xi)− h(xi)}xi

]
+ εn. (3.9)

This has one implication for given xi-sequences and another implication for the ‘overall variabil-

ity’. Under some mild assumptions Jn/n → J and (Kn + Ln)/n → K + L, and
√
n(β̃n − β0) →d

Np{0, J−1(K + L)J−1}. The K + L matrix is estimated consistently using
∑

i≤n xix
′
i/n whereas

a more complicated consistent estimate, involving smoothing and density estimation, can be con-

structed for J .

The special case of med(Y |x) = m(x) = β′
0x has Jn =

∑
i≤n 2fi(0)xix

′
i/σ(xi), and the perfect

but perhaps unrealistic case of both a linear median and a constant variance has J−1
n (Kn+Ln)J

−1
n =

{4f(0)2}−1(
∑

i≤n xix
′
i)

−1σ2. This is the case considered in Pollard (1990).

Our method can also be applied to the quantile regression situation, where one aims to estimate

m(x0) + σ(x0)F
−1(p), for example, to construct a prediction interval for a future Y at a given

covariate value x0. This time one minimises
∑

i≤n gp(Yi, β
′xi) with the gp function of 3B. This

gives a suitable generalisation of results reached by Bassett and Koenker (1982).

4. Maximum likelihood and Bayes estimation.

4A. Log-concave densities. Suppose Y1, Y2, . . . are i.i.d. from some continuous density f , and

that a parametric model of the form f(y, θ) = f(y, θ1, . . . , θp) is employed, where the parameter

space is some open and convex region. We stipulate that log f(y, θ) be concave in θ in this region

and shall be able to reprove familiar results on maximum likelihood (ML) and Bayes estimation,

using the convexity based results of section 2, but with milder smoothness assumptions than those

traditionally employed.

Note that the log-likelihood
∑

i≤n log f(Yi, θ) when divided by n tends to E log f(Y, θ) =∫
f(y) log f(y, θ) dy, for each θ. Assume that this function has a unique global maximum at θ0,

which is the ‘agnostic parameter value’ that gives best approximation according to the Kullback–

Leibler distance
∫
f(y) log{f(y)/f(y, θ)} dy from truth to approximating density. From section 2A

the following result is quite immediate.

Theorem 4.1. Suppose log f(y, θ0 + t) − log f(y, θ0) = D(y)′t + R(y, t) is concave in t, for

a D(.) function with mean zero and finite covariance matrix K under f , and that the remainder

term satisfies

E{log f(Y, θ0 + t)− log f(Y, θ0)} = ER(Y, t) = − 1
2 t

′Jt+ o(|t|2) (4.1)
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as well as VarR(Yi, t) = o(|t|2), where J is symmetric and positive definite. Then the maximum

likelihood estimator θ̂n is
√
n-consistent for θ0 and

√
n(θ̂n − θ0) = J−1n−1/2

∑

i≤n

D(Yi) + op(1) →d J−1N{0,K} = Np{0, J−1KJ−1}.

In ordinary smooth cases one can Taylor expand and use D(y) = ∂ log f(y, θ0)/∂θ and find a

remainder R(y, t) with mean − 1
2 t

′Jt+O(|t|3) and squared mean of order O(|t|4), involving

J = −Ef
∂2 log f(Yi, θ0)

∂θ∂θ
and K = VARf

∂ log f(Yi, θ0)

∂θ
. (4.2)

Notice that when the model happens to be perfect, as in textbooks for optimistic statisticians, then

K = J , and we get the more familiar Np{0, J−1} result.

Example. In addition to the median Mn in the situation of 3A, look at the mean absolute

deviation statistic τ̂n = n−1
∑

i≤n |Yi −Mn|. We will show simultaneous convergence of
√
n(Mn −

µ, τ̂n − τ), where τ = E|Yi − µ|, and for this assume finite variance of the Yi’s.

This can be accomplished by considering the parametric model f(y, µ, τ) = (2τ)−1 exp{−|y −
µ|/τ} for data. This model may be quite inadequate to describe the behaviour of the data sequence,

but the ML estimates are nevertheless Mn and τ̂n as above. The traditional theorems on ML

behaviour require more smoothness than is present here, and indeed often require that the true f

belongs to the model, but Theorem 4.1 can be used. This is because log f(y, µ, τ) is concave in

(µ, 1/τ). Verifying conditions involves details similar to those in 3A, and we omit them here. The

result is (√
n(Mn − µ)√
n(τ̂n − τ)

)
→d N2

{( 0
0

)
,

(
1/{4f(µ)2}, cov

cov, VarYi − τ2

)}
.

where the covariance is EI{Yi ≤ µ}|Yi − µ| − 1
2τ . Note that there is asymptotic independence if f

is symmetric around µ.

4B. Bayes and maximum likelihood estimators are asymptotically equivalent. It is well known

that Bayes and ML estimation are asymptotically equivalent procedures in regular situations. In

other words, if θ∗n is the Bayes estimator under some prior π(θ), then
√
n(θ∗n − θ0) has the same

limit distribution as
√
n(θ̂n − θ0). The standard proofs of this fact involve many technicalities,

and furthermore are typically restricted to calculations under the assumption that the underlying

f(y, θ0) model is exactly correct, see e.g. Lehmann (1983, chapter 6.7). Below follows a reasonably

quick proof of this fact, and it is reassuring that the result is valid also outside model circumstances.

Let π(θ) be a prior density, assumed continuous at θ0 and satisfying the growth constraint

π(θ) ≤ C1 exp(C2|θ|) for all θ,

where C1 and C2 are positive constants. The posterior density is proportional to Ln(θ)π(θ), where

Ln(θ) =
∏

i≤n f(Yi, θ) is the likelihood. The Bayes estimator θ∗n (under quadratic loss) is the

posterior mean. Note that improper priors are accepted too.

We shall make use of the following dominated convergence fact, which is a special case of

Lemma A3 in the appendix. Suppose {Gn(s, ω)} is a sequence of random functions (assumed

jointly measurable) such that Gn(s, ω) → G(s) in probability, for each s. Suppose H(s) is an

integrable function for which the set {ω: |Gn(s, ω)| ≤ H(s) for all s} has probability tending to

one. Then
∫
Gn(s, ω) ds →

∫
G(s) ds in probability. (Apply Lemma A3 with Xn equal to Gn

restricted to the set where Gn ≤ H.)
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Theorem 4.2. Under the conditions of Theorem 4.1, the MLE estimator θ̂n and the posterior

mean θ∗n are asymptotically equivalent, in the sense that
√
n(θ∗n − θ̂n) →p 0.

Proof: Define the random convex function An(s) by

exp(−An(s)) = Ln(θ̂n + s/
√
n)/Ln(θ̂n).

By definition of the ML estimator, An achieves its minimum value of zero at s = 0. By the change

of variables θ = θ̂n + s/
√
n we find

θ∗n =

∫
θLn(θ)π(θ) dθ∫
Ln(θ)π(θ) dθ

= θ̂n +
1√
n

∫
s exp(−An(s))π(θ̂n + s/

√
n) exp(−C2|θ̂n|) ds∫

exp(−An(s))π(θ̂n + s/
√
n) exp(−C2|θ̂n|) ds

.

The random function An converges in probability uniformly on compact sets to 1
2s

′Js. Define

γn = inf |t|=1 An(t). It converges in probability to γ0 = inf |t|=1
1
2 t

′Jt > 0. Argue as in Lemma 2

to show that An(s) ≥ γn|s| for |s| > 1. The domination condition needed for the fact noted above

holds in both numerator and denominator with

H(s) =

{
2C1 if |s| ≤ 1,
C1|s| exp(− 1

2γ0|s|) if |s| > 1.

The ratio of integrals converges in probability to

∫
s exp(− 1

2s
′Js)π(θ0) exp(−C2|θ0|) ds∫

exp(− 1
2s

′Js)π(θ0) exp(−C2|θ0|) ds
= 0.

The result follows.

5. Logistic regression. Suppose that p + 1-tuplets (xi, Yi) are observed, where xi =

(xi,1, . . . , xi,p)
′ is a covariate vector ‘explaining’ the binomial outcome Yi. The logistic regression

model postulates that the Yi’s are independent with

Pr{Yi = 1 |xi} = q(xi, β) =
exp(β′xi)

1 + exp(β′xi)
for some β = β0, (5.1)

and the ML estimator β̂n = (β̂n,1, . . . , β̂n,p)
′ maximises the log-likelihood function

∑

i≤n

[
Yi log q(xi, β) + (1− Yi) log{1− q(xi, β)}

]
=

∑

i≤n

[
Yiβ

′xi − log{1 + exp(β′xi)}
]
.

Of course the asymptotic normality of this estimator is well known and widely used, but precise

sufficient conditions are not easy to find in the literature.

We will soon arrive at such, employing results of 2B, which are applicable since the summands

above are concave in β. As a preparatory exercise we mark down the following little expansion,

which holds for all u and u+ h, in terms of π(u) = exp(u)/{1 + exp(u)}:

log
1 + exp(u+ h)

1 + exp(u)
= π(u)h+ 1

2π(u){1− π(u)}h2 + 1
6π(u){1− π(u)}γ(u, h)h3, (5.2)

where |γ(u, h)| ≤ exp(|h|). This is proved from the exact third order Taylor expansion expression,

with third term equal to 1
6π(u

′){1− π(u′)}{1− 2π(u′)}h3, for appropriate u′ between u and u+ h.
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Some analysis reveals that π(u′){1− π(u′)} ≤ exp(|h|)π(u){1− π(u)}, regardless of u and h. This

is in fact quite similar to what results from using Lemma A2 in the appendix, but the bound on

the remainder obtained here suits the problem better.

5A. Under model conditions. In the spirit of our two aims, laid out in the Introduction, we will

first give a simpler result with a ‘pedagogical proof’, and then sharpen the tools to reach a second

result with minimal regularity conditions. Under model conditions (5.1), write for convenience

qi = q(xi, β0), and let Jn =
∑

i≤n qi(1− qi)xix
′
i be the information matrix.

Theorem 5.1. Assume that µn = maxi≤n |xi|/
√
n → 0 and that Jn/n → J . Then, under

model conditions (5.1),
√
n(β̂n − β0) →d Np{0, J−1}.

Proof: We will use Theorem 2.2 with gi(yi, β) = log fi(yi, β) = yiβ
′xi − log{1 + exp(β′xi)}.

The expansion noted above yields

log
fi(yi, β0 + t)

fi(yi, β0)
= yit

′xi −
[
log{1 + exp(β′

0xi + t′xi)} − log{1 + exp(β′
0xi)}

]

= (yi − qi)x
′
it− 1

2qi(1− qi)(t
′xi)

2 − 1
6qi(1− qi)γi(t)(t

′xi)
3

= Di(yi)
′t−Ri(yi, t).

Here Di(yi) = (yi−qi)xi and Ri(yi, t) =
1
2 t

′qi(1−qi)xix
′
it+vi,0(t), where |γi(t)| ≤ exp(|t′xi|) in the

expression for vi,0(t). Note that Jn = Kn, in the notation of Theorem 2.2, and that Ri(Yi, t) has

zero variance, so what we have to prove is (i) that
∑

i≤n vi,0(s/
√
n) → 0, (ii) that the Lindeberg

conditions are satisfied for
∑

i≤n n
−1/2(Yi − qi)xi. But

∣∣∣
∑

i≤n

vi,0(s/
√
n)
∣∣∣ ≤

∑

i≤n

1
6qi(1− qi) exp(|s′xi/

√
n|) |s′xi/

√
n|3

≤
∑

i≤n

1
6qi(1− qi) exp(|s|µn) (s

′xix
′
is/n) |s|µn

= 1
6 |s|µn exp(|s|µn) s

′(Jn/n)s,

which goes to zero. And the Lindeberg condition is that for each s and δ

∑

i≤n

En−1(Yi − qi)
2(s′xi)

2 I{|(Yi − qi)s
′xi/

√
n| ≥ δ} → 0,

and this sum is bounded by s′(Jn/n)s I{|s|µn ≥ δ}. This ends the proof.

If the xi’s are i.i.d. from some covariate distribution H, then µn → 0 a.s. exactly when the

components of xi have finite second moment. This also secures convergence of Jn/n to J =∫
q(x, β0){1− q(x, β0)}xx′H(dx).

Our second and sharper theorem is proved next, by squeezing more out of the bound of the

vi,0(t) remainder and more out of the Lindeberg condition.

Theorem 5.2. Assume that the λn = maxi≤n |J−1/2
n xi| sequence is bounded, and that

Nn(δ) =
∑

i≤n

qi(1− qi)x
′
iJ

−1
n xi I{|J−1/2

n xi| ≥ δ} → 0 for each positive δ. (5.3)

Then, under model conditions (5.1), J
1/2
n (β̂n − β0) →d Np{0, Ip}.
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Proof: We consider the random convex function
∑

i≤n{log fi(Yi, β0+J
−1/2
n s)−log fi(Yi, β0)},

which upon using the expansion again can be rearranged as U ′
ns − 1

2s
′s − rn(s), where Un =

J
−1/2
n

∑
i≤n(Yi− qi)xi and rn(s) =

∑
i≤n

1
6qi(1− qi)γi(s

′J
−1/2
n xi)(s

′J
−1/2
n xi)

3. We are to prove (i)

that rn(s) → 0, and (ii) that Un →d Np{0, Ip}.
At this stage we call on appendix A1 where it is shown that (5.3) is a sufficient and actually also

a necessary condition (ii) to hold. And |rn(s)| is bounded by
∑

i≤n
1
6qi(1 − qi) exp(|s′J−1/2

n xi|)|s′
J
−1/2
n xi|3. We split this sum into |J−1/2

n xi| < δ summands and |J−1/2
n xi| ≥ δ summands. The

first sum is bounded by 1
6 |s|3δ exp(|s|δ), and the second is bounded by 1

6 |s|3λn exp(|s|λn)Nn(δ).

Letting n → ∞ and δ → 0 afterwards shows that indeed rn(s) → 0.

It is worth noting that the Nn(δ) → 0 condition in the theorem serves two purposes: forcing

an analytic remainder term towards zero, and securing uniform neglibility of individual terms in

the large-sample distribution of J
−1/2
n

∑
i≤n Di(Yi), i.e. a normal limit. Note also that λn → 0

suffices for the conclusion to hold, since Nn(δ) ≤ pλn/δ.

5B. Outside model conditions. Let us next depart from the strict model assumption (5.1), which

in most cases merely is intended to provide a reasonable approximation to some more complicated

reality, and stipulate only that Pr{Y = 1 |x} = q(x) for some true, underlying q(x) function.

Fitting the logistic regression equation makes sense still, and turns out to aim at achieving the best

approximation q(x, β) to the true q(x), in a sense made precise as follows. Let

∆x[q(x), q(x, β)] = q(x) log
q(x)

q(x, β)
+ {1− q(x)} log 1− q(x)

1− q(x, β)

be the Kullback–Leibler distance from true binomial (1, q(x)) to modelled binomial (1, q(x, β)), and

let ∆[q(.), q(., β)] =
∫
∆x[q(x), q(x, β)]H(dx) be the weighted distance between the true probability

curve to the modelled probability curve, in which H again is the ‘covariate distribution’ for x’s,

as discussed in 2C. The following can now be proved using methods of 2C: ML estimation is√
n-consistent for the value β0 that minimises the weighted Kullback–Leibler distance ∆, and√
n(β̂n − β0) →d Nd{0, J−1KJ−1}, provided the two matrices

J = EXX ′q(X, β0){1− q(X, β0)} =

∫
xx′ q(x, β0){1− q(x, β0)}H(dx),

K = EXX ′{Y − q(X, β0)}2 =

∫
xx′

[
q(x){1− q(x)}+ {q(x)− q(x, β0)}2

]
H(dx)

are finite. This result was also obtained in Hjort (1988a), where various implications for statistical

inference and for oil searching also are discussed.

6. Cox regression. In this section new proofs are presented for the consistency and asymp-

totic normality of the usual estimators in Cox’s famous semiparametric regression model for survival

analysis data. The parametric Cox regression model is somewhat simpler, and is treated in 7A be-

low. The regularity requirements we need turn out in both cases to be weaker than those earlier

presented in the literature.

The most complete results and proofs in the literature for the basic large-sample properties

of the estimators in this model are perhaps those of Andersen and Gill (1982) and Hjort (1992).

Andersen and Gill obtain results under the conditions of the model, and with regularity conditions

quite weaker than earlier i.i.d. type assumptions, whereas Hjort explores the large-sample behaviour

also outside the conditions of the model. For a history of the Cox model and the various approaches

to reach asymptotics results, see Andersen, Borgan, Gill and Keiding (1992, chapter VII).
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Our present intention is to provide yet another proof, which in several ways is simpler and

requires less involvement with the martingale techniques than the one of Andersen and Gill. As in

the previous section we choose to present two theorems, reflecting our two aims explained in section

1. The first holds when the covariates are bounded, in which case the proof is quite transparent,

and extra regularity conditions can be kept quite minimal. The second version is more sophisticated

in that it tolerates unbounded covariates and weakens regularity conditions further.

The usual Cox regression model for possibly censored lifetimes with covariate information is

as follows: The individuals have independent lifetimes T 0
1 , . . . , T

0
n , and the i-th has hazard rate

λi(s) = λ(s) exp(β′zi(s)) = λ(s) exp(β1zi,1(s) + · · ·βpzi,p(s)), (6.1)

depending on that person’s covariate vector zi(s), and involving some unspecified basis hazard

rate λ(s). As indicated the covariates are allowed to depend on time s, and they can be random

processes, as long as they are previsible; zi(s) should only depend on information available at time

s− (for a full discussion of previsibility, or predictability, see Andersen et al. (1992, p. 65–66)). There

is a possibly interfering censoring time Ci leaving just Ti = min{T 0
i , Ci} and δi = I{T 0

i ≤ Ci} to the

statistician. Consider the at risk indicator function Yi(s) = I{Ti ≥ s}, which is left continuous and

hence previsible, and the counting process Ni with mass δi at Ti, i.e. dNi(s) = I{Ti ∈ [s, s+ds], δi =

1}. The log partial likelihood can then be written

Gn(β) =
∑

i≤n

∫ L

0

{
β′zi(s)− logRn(s, β)

}
dNi(s), (6.2)

featuring the empirical relative risk function Rn(s, β) =
∑

i≤n Yi(s) exp(β
′zi(s)); see for example

Andersen et al. (1992, chapter VII). It is assumed that data are collected on the finite time interval

[0, L] only. The Cox estimator is the value β̂n that maximises the partial likelihood.

Lemma A2 of the appendix allows us an expansion for logRn(s, β0+x), using wi = Yi(s) exp(β
′
0

zi(s)) and ai = zi(s)
′x. The result is

logRn(s, β0 + x)− logRn(s, β0) = z̄n(s)
′x+ 1

2x
′Vn(s)x+ vn(x, s), (6.3)

where

z̄n(s) =
∑

i≤n

pn,i(s)zi(s) and Vn(s) =
∑

i≤n

pn,i(s)(zi(s)− z̄n(s))(zi(s)− z̄n(s))
′, (6.4)

and pn,i(s) = Yi(s) exp(β
′
0zi(s))/Rn(s, β0). A bound for the remainder term in (6.3) is |vn(x, s)| ≤

4
3 maxi≤n |(zi(s) − z̄n(s))

′x|3. Observe that z̄n(s) and Vn(s) can be interpreted as the mean value

and the variance matrix for zi(s), where this covariate vector is randomly selected among those at

risk at time s with probabilities proportional to the relative risks exp(β′
0zi(s)).

All this leaves us suitably prepared for a theorem.

Theorem 6.1. Assume that the hazard rate for the i’th individual follows the Cox model

(6.1) with a true parameter β0 and a continuous positive basis hazard λ(s), and that the covariate

processes zi(s) are previsible and uniformly bounded. Assume that

Jn(s) = n−1
∑

i≤n

Yi(s) exp(β
′
0zi(s)) (zi(s)− z̄n(s))(zi(s)− z̄n(s))

′ →p J(s) (6.5)
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for almost all s in [0, L] and that J =
∫ L

0
J(s)λ(s) ds is positive definite. Then β̂n is

√
n-consistent

for β0 and
√
n(β̂n − β0) →d Np{0, J−1}.

Proof: As a simple consequence of earlier efforts we have

G∗
n(x) = Gn(β0 + x/

√
n)−Gn(β0)

=
∑

i≤n

∫ L

0

[
n−1/2(zi(s)− z̄n(s))

′x− 1
2n

−1x′Vn(s)x− vn(x/
√
n, s)

]
dNi(s)

= U ′
nx− 1

2x
′J∗

nx− rn(x),

(6.6)

where we write

Un = n−1/2
∑

i≤n

∫ L

0

(zi(s)− z̄n(s)) dNi(s) and J∗
n = n−1

∫ L

0

Vn(s) dN̄n(s), (6.7)

using N̄n(.) =
∑

i≤n Ni(.) to denote the aggregated counting process for the data. The designated

remainder term is rn(x) =
∫ L

0
vn(x/

√
n, s) dN̄n(s), which goes to zero, since it is bounded by∫ L

0
4
3 (2K)3|x|3/n3/2 dN̄n(s), which is O(n−1/2). TheK here is the absolute bound on the covariates.

That the (6.6) function is concave in x is clear from the convexity of logRn(s, β) in β. By the basic

method of section 1 it only remains to show (i) that J∗
n →p J and (ii) that Un →d Np{0, J}.

At this stage we need some of the easier bits of the martingale representation and conver-

gence theory for counting processes, but manage to avoid needing some of the more sophisti-

cated inequalities and technicalities that have invariably been present in earlier rigorous proofs,

like in Andersen and Gill (1982). The counting process Ni has compensator process Ai(t) =∫ t

0
Yi(s) exp(β

′
0zi(s)) dΛ(s), writing dΛ(s) = λ(s) ds. This means that Mi(t) = Ni(t) − Ai(t) is

a zero mean martingale, with increments dMi(s) = dNi(s) − Yi(s) exp(β
′
0zi(s)) dΛ(s). One can

show that Mi(t)
2 − Ai(t) as well as Mi(t)Mj(t) are martingales too, when i 6= j, which in mar-

tingale theory parlance means that Mi has variance process 〈Mi,Mi〉(t) = Ai(t) and that they

are orthogonal, i.e. 〈Mi,Mj〉 = 0. See Andersen et al. (1992, chapter II), for example. Inserting

dNi(s) = dMi(s) + dAi(s) in (6.7) leads to

J∗
n =

∫ L

0

Jn(s) dΛ(s) + n−1
∑

i≤n

∫ L

0

Vn(s) dMi(s) (6.8)

and

Un = n−1/2
∑

i≤n

∫ L

0

(zi(s)− z̄n(s)) dMi(s), (6.9)

in that two other terms cancel.

We are now in a position to prove (i) and (ii). Note that the first term of (6.8) goes to J in

probability by boundedness of the integrand and Lemma A3 in the appendix. The second term is

Op(n
−1/2), which can be seen using boundedness of covariates in conjunction with the result

E
{∫ L

0

∑

i≤n

Hi(s) dMi(s)
}2

= E
∑

i≤n

∫ L

0

Hi(s)
2 d〈Mi,Mi〉(s),

valid for previsible random functions Hi. This proves (i). To prove convergence in distribution of

Un we essentially use the version of Rebolledo’s martingale central limit theorem given in Andersen

and Gill (1982, appendix I). Its variance process converges properly,

〈Un, Un〉(L) = n−1
∑

i≤n

∫ L

0

(zi(s)− z̄n(s))(zi(s)− z̄n(s))
′ d〈Mi,Mi〉(s) =

∫ L

0

Jn(s) dΛ(s) →p J,
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and the necessary Lindeberg type condition is also satisfied:

n−1
∑

i≤n

∫ L

0

|zi(s)− z̄n(s)|2 I{n−1/2|zi(s)− z̄n(s)| ≥ ε}Yi(s) exp(β
′
0zi(s)) dΛ(s) →p 0 (6.10)

since the indicator function ends up being zero for all large n.

Next we present a stronger theorem with weaker conditions imposed. The proof is basically

the same as for the previous result, but more is squeezed out of bounds for remainder terms and

out of conditions for the martingale convergence to hold.

Theorem 6.2. Assume that the hazard rate for the i’th individual follows the Cox model

(6.1) with a true parameter β0 and a continuous positive basis hazard λ(s). Assume that Jn(s)

goes to some J(s) in probability for almost all s, as in (6.5), and that
∫ L

0
Jn(s)λ(s) ds →p J =∫ L

0
J(s)λ(s) ds, a positive definite matrix. Suppose finally that

µn(s) = n−1/2 max
i≤n

|zi(s)− z̄n(s)| →p 0 for almost each s (6.11)

and that maxs≤L µn(s) is stochastically bounded. Then again
√
n(β̂n − β0) →d Np{0, J−1}.

Proof: (6.6) and (6.7) still hold, and we plan to demonstrate (i) rn(x) →p 0, (ii) J∗
n →p J ,

and (iii) Un →d Np{0, J}.
(i) is proved by using the tighter bound for vn(x, s) of (6.3) available by employing Lemma

A2, namely 2
3g(maxi≤n |(zi(s)− z̄n(s))

′x|)x′Vn(s)x, for g(u) = u exp(2u+ 4u2). This leads to

|rn(x)| ≤
∫ L

0

2
3g(µn(s)|x|)x′Vn(s)x dN̄n(s)/n.

Split this into two terms, using dN̄n(s) = Rn(s, β0) dΛ(s)+
∑

i≤n dMi(s). The first of the resulting

terms goes to zero in probability by assumptions on Jn(s) and dominated convergence (appendix

A3), and the other term is of smaller stochastic order. Secondly (ii) follows as in the previous

proof, since the second term of (6.8) vanishes in probability, by variations of the same arguments.

Finally two ingredients are needed to secure (iii). The first is 〈Un, Un〉(L) →p J , which holds

by assumptions as in the previous proof. The second is a more elaborate demonstration of the

Lindeberg type condition (6.10), now accomplished by bounding it with

∫ L

0

Tr(Jn(s)) I{µn(s) ≥ ε} dΛ(s),

which goes to zero in probability by dominated convergence (the integrand goes pointwise to zero

in probability and is dominated by Tr(Jn(s)), see appendix A3 again).

And all this combined with the Basic Corollary triumphantly implies that the argmax of the

(6.6) function, which is
√
n(β̂n − β0), is only op(1) away from the argmax of U ′

nx − 1
2x

′Jx, which

is J−1Un. This proves consistency and asymptotic normality.

Remarks. (i) Usually one would have Vn(s) →p V (s) and n−1Rn(s, β0) →p R(s, β0), say, so

that Jn(s) = Vn(s)Rn(s, β0)/n →p J(s) = V (s)R(s, β0); in particular J =
∫ L

0
V (s)R(s, β0) dΛ(s)

in such cases, and this is the expression typically encountered for the inverse covariance matrix. (ii)

The Andersen and Gill regularity requirements include rather strong uniform convergence state-

ments, in both time s and β near β0. In the development above this would mean requiring

sup
s∈[0,L]

sup
β∈U(β0)

∣∣∣n−1
∑

i≤n

Yi(s)zi(s)zi(s)
′ exp(β′zi(s))− J(s, β)

∣∣∣ →p 0,
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for example, for a suitable neighbourhood U(β0) and a suitable limit function J(s, β). This con-

trasts sharply with our condition (6.5), which is only about β0, and is pointwise in s. Andersen and

Gill also include various other asymptotic stability conditions, about uniform continuity and differ-

entiability in β of their limit functions, that are not needed here. Similarly, their conditions almost

require maxs≤L µn(s) →p 0 where we come away with pointwise convergence. (iii) It is interesting

to see that the key requirement (6.11) serves two different purposes: forcing an analytical remainder

term towards zero as well as securing uniform negligibility of individual terms, i.e. limiting normal-

ity. (iv) The methods used here can be applied to solve the large-sample behaviour problem also

outside model conditions, say when the true hazard rate is λ(s) r(zi,1(s), . . . , zi,p(s)) for individual

i. See Hjort (1992) for results. There are also various alternative estimation techniques that can be

employed in the Cox model, see for examples Hjort (1991) for local likelihood smoothing and Hjort

(1992) for weighted log partial likelihood estimation. Again techniques from the present paper can

be applied. (v) Finally Jeffreys type arguments can be given in favour of using the vague prior

π(β) = 1, see Hjort (1986), where it is also shown that the (improper) pseudo-Bayes estimator

β∗
n =

∫
β exp(Gn(β)) dβ/

∫
exp(Gn(β)) dβ is asymptotically equivalent to the Cox estimator β̂n.

The arguments of 4B can be used to provide a quicker and simpler proof of this.

7. Further applications.

7A. Exponential hazard rate regression. The traditional Cox model (6.1) is semiparametric,

since the basis hazard rate λ(.) there is left unspecified. The parametric version

λi(s) = λ0(s) exp(β
′zi(s)) = λ0(s) exp(β1zi,1(s) + · · ·+ βpzi,p(s)), (7.1)

where λ0(.) is fully specified (equal to 1, for example), is also important in survival data analysis. Let

us briefly show that the arguments above efficiently lead to a precise theorem about the maximum

likelihood estimator in this model as well.

With notation and assumptions otherwise being as in section 6 the log-likelihood can be written

logLn(β) =
∑

i≤n

∫ L

0

{
β′zi(s) dNi(s)− Yi(s) exp(β

′zi(s)) ds
}
,

see for example Andersen et al. (1992, chapter VI), and let β̂n be the ML estimator maximising

this expression. Assume that data follow (7.1) for a certain β0. Using martingales dMi(s) =

dNi(s)− Yi(s) exp(β
′
0zi(s)) dΛ0(s), writing dΛ0(s) = λ0(s) ds, we find

Gn(x) = logLn(β0 + x)− logLn(β0)

=
∑

i≤n

∫ L

0

[
x′zi(s)

{
dMi(s) + Yi(s) exp(β

′
0zi(s)) dΛ0(s)

}

− Yi(s) exp(β
′
0zi(s)) {exp(x′zi(s))− 1} ds

]

=
(∑

i≤n

∫ L

0

zi(s) dMi(s)
)′

x−
∑

i≤n

∫ L

0

Yi(s) exp(β
′
0zi(s))

{
exp(x′zi(s))− 1− x′zi(s)

}
dΛ0(s).

Now use | exp(u)− 1− u− 1
2u

2| ≤ 1
6 |u|3 exp(|u|), and introduce

Jn =
∑

i≤n

∫ L

0

Yi(s) exp(β
′
0zi(s)) zi(s)zi(s)

′ dΛ0(s) and Un = J−1/2
n

∑

i≤n

∫ L

0

zi(s) dMi(s) (7.2)
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to find Gn(J
−1/2
n x) = U ′

nx− 1
2 |x|2 − rn(x), with a remainder bound

|rn(x)| ≤ 1
6

∑

i≤n

∫ L

0

Yi(s) exp(β
′
0zi(s) + |x′J−1/2

n zi(s)|) 16 |x′J−1/2
n zi(s)|3 ds. (7.3)

To formulate a theorem with quite weak conditions, let Jn(s) =
∑

i≤n Yi(s) exp(β
′
0zi(s)) zi(s)zi(s)

′,

so that the ‘observed information matrix’ is Jn =
∫ L

0
Jn(s) dΛ0(s).

Theorem 7.1. Let λ0(s) be positive and continuous on [0, L]. Suppose there is a cn sequence

converging to infinity such that Jn(s)/cn for almost all s goes in probability to some J(s), and that

Jn/cn →p J =
∫ L

0
J(s) dΛ0(s), where this limit matrix is positive definite. Assume furthermore

that for almost all s,

Nn(s, δ) =
∑

i≤n

zi(s)
′J−1

n zi(s)Yi(s) exp(β
′
0zi(s)) I{|J−1/2

n zi(s)| ≥ δ} →p 0 (7.4)

for each δ > 0, and that µn(s) = maxi≤n |J−1/2
n zi(s)| is stochastically bounded, uniformly in s.

Then J
1/2
n (β̂n − β0) →d Np{0, Ip}.

Some brief remarks are in order before turning to the proof. (i) Here zi(s)
′J−1

n zi(s) can

be replaced by zi(s)
′J−1zi(s)/cn, and |J−1/2

n zi(s)| with |J−1/2zi(s)|/c1/2n . (ii) In many practical

situations the cn will be equal to n. (iii) The elements of Jn may in some cases conceivably go to

infinity with different rates, and then the ‘asymptotic stability’ requirement should be the existence

of matrices Cn going to infinity such that C−1
n Jn(s) → J(s) et cetera. The theorem still holds.

(iv) In many cases one would have µn(s) →p 0 for almost all s, and this implies condition (7.4),

since in fact Dn(s, δ) ≤ pI{µn(s) ≥ δ}. (v) If the zi(s) covariate processes are uniformly bounded,

then (iv) applies and hence the conclusion. (vi) Our conditions are much weaker than those used

elsewhere to secure large sample normality, see for example Borgan (1984, section 6). (vii) Finally

we note that the proof below becomes easier under circumstances (iv) or (v).

Proof: The log-likelihood is concave by Lemma A.2 and hence so is the Gn(J
−1/2
n x) function.

We are to prove (i) rn(x) → 0 in probability for each x, and (ii) that Un → Np{0, Ip} in distribution.

To prove (i) let rn(x, s) be the integrand in the bound occurring in (7.3), so that |rn(x)| ≤
1
6

∫ L

0
rn(x, s) dΛ0(s). It will suffice to show that rn(x, s) → 0 in probability for almost all s and

to bound it properly. Splitting into |J−1/2
n zi(s)| < δ terms and |J−1/2

n zi(s)| ≥ δ terms we find

rn(x, s) ≤ |x|3δ exp(|x|δ) + |x|3µn(s) exp(|x|µn(s))Nn(s, δ), after which the claim follows by our

precautions and by the dominated convergence lemma of the appendix.

Next (ii) can be replaced by U∗
n →d Np{0, Ip}, where U∗

n =
∑

i≤n

∫ L

0
c
−1/2
n J−1/2zi(s) dMi(s),

and we show this employing the Rebolledo theorem version given in Andersen and Gill (1982,

appendix I). Its variance process converges properly,

〈U∗
n, U

∗
n〉(L) =

∑

i≤n

∫ L

0

c−1
n J−1/2zi(s)zi(s)

′J−1/2 Yi(s) exp(β
′
0zi(s)) dΛ0(s)

= J−1/2(Jn/cn)J
−1/2 →p Ip,

and the Lindebergian condition is also satisfied:

∑

i≤n

∫ L

0

c−1
n |J−1/2zi(s)|2 I{c−1/2

n |J−1/2
n zi(s)| ≥ δ}Yi(s) exp(β

′
0zi(s)) dΛ0(s) →p 0.
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This holds since the integrand is asymptotically the same as Nn(s, δ) of (7.4), and is bounded by

the constant p, so that the dominated convergence lemma applies.

7B. Poisson regression. Suppose Y1, . . . , Yn are independent counts with

Yi ∼ Poisson(meani), with meani = exp(β′zi), (7.5)

depending on a certain p-dimensional covariate vector zi, for a certain true parameter value β0. It

is convenient now to write exp(u) = 1+u+ 1
2u

2+ 1
6ρ(u), where a bound for the remainder function

is |ρ(u)| ≤ |u|3 exp(|u|). The log-likelihood logLn(β) =
∑

i≤n{Yiβ
′zi − exp(β′zi)} is concave, and

after development very similar to that of section 7A one finds

logLn(β0 + x)− logLn(β0) =
(∑

i≤n

(Yi − µi)zi

)′

x− 1
2x

′Jnx− 1
6vn(x),

in which Jn =
∑

i≤n µiziz
′
i and vn(x) =

∑
i≤n µiρ(x

′zi). In these expressions µi = exp(β′
0zi) is the

true mean for Yi under the model.

Before passing to a theorem we solve a relevant exercise in asymptotics of linear combinations

of independent Poisson variables. If Yn,i is Poisson with mean µn,i, then
∑

i≤n(Yn,i − µn,i)xn,i,

normed such that its variance
∑

i≤n µn,ix
2
n,i = 1, goes to a standard normal if and only if∑

i≤n µn,iρ(txn,i) → 0 for each t, which is equivalent to
∑

i≤n µn,iρ(|xn,i|) → 0. This is seen

after considering moment or cumulant generating functions.

Theorem 7.2. Let β̂n be the ML estimator based on the first n Poisson counts, assumed

to follow (7.5) for a certain β0, with means µi = exp(β′
0zi). Then J

1/2
n (β̂n − β0) →d Np{0, Ip}

if and only if
∑

i≤n µiρ(|J−1/2
n zi|) → 0. A simple sufficient condition for this to hold is that

λn = maxi≤n |J−1/2
n zi| is bounded and that

∑
i≤n µi|J−1/2

n zi|3 → 0; or, equivalently, that λn is

bounded and that

Nn(δ) =
∑

i≤n

µiz
′
iJ

−1
n zi I{|J−1/2

n zi| ≥ δ} → 0 for each δ.

Proof: The function logLn(β0 + J
−1/2
n x) − logLn(β0) is concave in x and can be written

U ′
nx− 1

2 |x|2 − rn(x), where Un = J
−1/2
n

∑
i≤n(Yi − µi)zi and where rn(x) =

∑
i≤n µiρ(x

′J
−1/2
n zi).

This is quite similar to the situation in 7A, and the maximiser J
1/2
n (β̂n − β0) goes to a standard

p-dimensional normal if and only if (i) rn(x) → 0 and (ii) Un →d Np{0, Ip}. But using the result

above in tandem with the Cramér–Wold theorem one sees that
∑

i≤n µiρ(|J−1/2
n zi|) → 0 is necessary

and sufficient for (ii), and indeed also necessary and sufficient for (i). The other statements of the

theorem follow from |ρ(u)| ≤ |u|3 exp(|u|).
We note that λn → 0 is clearly sufficient for the result to hold.

7C. Generalised linear models. Consider a situation with independent Yi’s from densities of

the form f(yi | θi) = exp{(yiθi − b(θi))/a(φ) + c(yi, φ)}, and where θi is parametrised as a linear

x′
iβ. This is a generalised linear model with canonical link, see McCullagh and Nelder (1989). The

likelihood in β is log-concave, and theorems about the large-sample behaviour of the ML estimator,

under very weak regularity conditions, can be written down and proved by the methods exemplified

in sections 5 and 7A.
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7D. Pseudo-likelihood estimation in Markov chains. Suppose X0, X1, . . . forms a Markov chain

on the state space {1, . . . , k}. Instead of focusing on transition probabilities, consider direct mod-

elling of Xi given its neighbours, say X∂i = x∂i. A very flexible and convenient class of models is

described by

fβ(xi |x∂i) = const. exp{αi(xi) + β′Hi(xi, x∂i)} =
exp{αi(xi) + β′Hi(xi, x∂i)}∑k
j=1 exp{αi(j) + β′Hi(j, x∂i)}

, (7.6)

where αi(1), . . . , αi(k) are specified or unknown parameters, and β′Hi(xi, x∂i) =
∑p

u=1 βuHi,u(xi,

x∂i) for certain component functions Hi,u that depend both on the xi at time position i and of

its neighbouring values x∂i. For a second order Markov chain, for example, one would typically

have Hi equal to a common H function for 2 ≤ i ≤ n − 2 and some special functions at the

borders. Maximum pseudo-likelihood estimation maximises PLn(β) =
∏n

i=0 fβ(xi |x∂i) w.r.t. the

parameters. See Hjort and Omre (1993, section 3.2), for example, for comments on this model

building machinery in dimensions 1 and 2, and for some comments on the difference between

maximum PL and maximum likelihood.

We may incorporate the αi(x)’s in the vector Hi(x, x∂i) of Hi,u-functions, for notational conve-

nience. From Lemma A2 log PLn(β) is concave in β. Consider hi(x∂i) =
∑k

j=1 Hi(j, x∂i) fβ0
(j |x∂i)

and

Vi(x∂i) =
k∑

j=1

(
Hi(j, x∂i)− hi(x∂i)

)(
Hi(j, x∂i)− hi(x∂i)

)′
fβ0

(j |x∂i),

which can be interpreted as respectively E{Hi(Xi, x∂i) |x∂i} and VAR {Hi(Xi, x∂i) |x∂i}. After

some work exploiting Lemma A2 one finds that

log PLn(β0 + s/
√
n)− log PLn(β0) = U ′

ns− 1
2s

′(Jn/n)s− rn(s), (7.7)

where

Un = n−1/2
n∑

i=0

{Hi(Xi, X∂i)− hi(X∂i)} and Jn =

n∑

i=0

Vi(X∂i),

and where in fact rn(s) = O(n−1/2). The usual arguments now give
√
n(β̂n − β0) →d N{0, J−1}

under mild assumptions, provided the assumed model (7.6) is correct. Here J turns out to be both

the limit of Jn/n as well as the covariance matrix in the limiting distribution for Un. There is also

an appropriate sandwich generalisation with covariance matrix of type J−1KJ−1 outside model

conditions. Doing the details here properly calls for a central limit theorem and a weak law of large

numbers for Markov chains, and such can be found in Billingsley (1961), for example.

These Markov random field models are more important in the 2- and 3-dimensional cases,

where one enters the world of statistical image analysis. The method above can be used to prove

consistency of the maximum PL estimator.

Appendix. Here we give three lemmas that were used at various stages above. They should

also have some independent interest.

A1. Necessary and sufficient conditions for asymptotic normality of linear combinations of

binomials. The following result with further consequences was used in section 5.

Lemma A1. Consider independent Bernoulli variables Yn,i ∼ Bin{1, qn,i}, and real numbers

zn,i standardised to have
∑

i≤n z
2
n,iqn,i(1 − qn,i) = 1. Then

∑
i≤n zn,i(Yn,i − qn,i) →d N{0, 1} if

and only if

Nn(δ) =
∑

i≤n

z2n,iqn,i(1− qn,i) I{|zn,i| ≥ δ} → 0 for each positive δ. (A.1)

Asymptotics for minimisers 20 May 1993



Proof: The Lindeberg condition is that

Ln(δ) =
∑

i≤n

Ez2n,i(Yn,i − qn,i)
2 I{|zn,i(Yn,i − qn,i)| ≥ δ}

=
∑

i≤n

z2n,iqn,i(1− qn,i)
[
qn,iI{|qn,izn,i| ≥ δ}+ (1− qn,i)I{|(1− qn,i)zn,i| ≥ δ}

]

should tend to zero for each positive δ. It is not difficult to establish 1
2Nn(2δ) ≤ Ln(δ) ≤ Nn(δ),

so (A.1) is in fact equivalent to the Lindeberg requirement. In particular (A.1) implies a N{0, 1}
limit.

Necessity is harder. Assume a N{0, 1} limit in distribution. We first symmetrise in the

following fashion: Let Ỹn,i = Yn,i−Y ′
n,i where Y

′
n,1, Y

′
n,2, . . . are independent copies of Yn,1, Yn,2, . . .,

and let

Zn =
∑

i≤n

zn,i(Yn,i − qn,i), Z ′
n =

∑

i≤n

zn,i(Y
′
n,i − qn,i), and Z̃n = Zn − Z ′

n.

By assumption Z̃n →d N{0, 2}. We first show that

mn = max
i≤n

min{|zn,i|, qn,i, 1− qn,i} → 0.

Otherwise there would be some ε > 0 such that say |zn,1| ≥ ε and ε ≤ qn,1 ≤ 1− ε. Break Z̃n into

a sum of Vn = zn,1Ỹn,1 and Wn, two independent and symmetric variables. Uniform tightness of

Z̃n and symmetry imply uniform tightness of both Vn and Wn. Along some subsequence we would

have Vn →d V and Wn →d W , independent with V + W distributed as N{0, 2}. By Cramér’s

theorem about convolution factors of N{0, 2} we would have V normal. But V is not degenerate,

and cannot be normal after all, since Vn takes only three values. This proves mn → 0.

But this implies the usual infinitesimal array property

max
i≤n

Pr{|zn,iỸn,i| ≥ δ} → 0 for each δ.

For if |zn,i| < δ then the probability is zero, and if |zn,i| ≥ δ then the probability is 2qn,i(1−qn,i) ≤
2mn when n is large enough for mn < δ to hold. Next look at page 92 of Petrov (1975). From

limiting normality follows
∑

i≤n

Var
[
zn,iỸn,iI{|zn,iỸn,i| < δ}

]
→ 2.

If |zn,i| ≥ δ the indicator here picks out Ỹn,i = 0, and there is no contribution to the sum, whereas

if |zn,i| < δ the summand is 2z2n,iqn,i(1− qn,i). Hence
∑

i≤n z
2
n,iqn,i(1− qn,i) I{|zn,i| < δ} → 1, and

Nn(δ) → 0 follows from the assumed
∑

i≤n z
2
n,iqn,i(1− qn,i) = 1.

The surprising thing here is that we do not need to explicitly assume maxi≤n E{zn,i(Yn,i −
qn,i)}2 → 0, as with Feller’s partial converse to the Lindeberg theorem; it follows from asymptotic

normality and the special properties of the Yn,i sequence.

Lemma A1 can next be used to address the vector case, via the Cramér–Wold theorem. We

phrase the result as follows, to suit the development of section 5. If x1, x2, . . . is a sequence of

p-vectors, and Y1, Y2, . . . are Bernoulli with q1, q2, . . ., then

J−1/2
n

∑

i≤n

(Yi − qi)xi →d Np{0, Ip}, where Jn =
∑

i≤n

qi(1− qi)xix
′
i, (A.2)
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if and only if

Nn(δ) =
∑

i≤n

x′
iJ

−1
n xi qi(1− qi) I{|J−1/2

n xi| ≥ δ} → 0 for each δ > 0. (A.3)

This is proved by noting first that (A.2) is equivalent to

N0
n(s, δ) =

∑

i≤n

s′x′
iJ

−1
n xis qi(1− qi) I{|s′J−1/2

n xi| ≥ δ} → 0

for all s with length 1 and all positive δ. But N0
n(s, δ) ≤ Nn(δ) ≤ p2 maxj≤p N

0
n(ej , δ/

√
p), where

ej is the jth unit vector.

A simple sufficient condition for (A.1) to hold is that λ0
n = maxi≤n |zn,i| → 0, since the left

hand side of (A.1) is bounded by λ0
n/δ. Similarly condition (A.3) is implied by the simpler condition

λn = maxi≤n |J−1/2
n xi| → 0, since Nn(δ) ≤ λnp/δ.

A2. Expansion lemma. The following result was used in section 6 and in 7A.

Lemma A2. (i) Suppose K(t) = logR(t), where R(t) =
∑

i≤n wi exp(ait) for certain nonneg-

ative weights wi, not all equal to zero, and arbitrary constants ai. Let vi(t) = wi exp(ait)/R(t) be

the tilted and normalised weights, summing to one. Then K(t) is convex with derivatives

K ′(t) =
∑

i≤n

vi(t)ai = ā(t),

K ′′(t) =
∑

i≤n

vi(t)(ai − ā(t))2,

K ′′′(t) =
∑

i≤n

vi(t)(ai − ā(t))3.

(ii) The expansion

log
{∑

i≤n

wie
ait

}
− log

{∑

i≤n

wi

}
= ā(0)t+ 1

2

∑

i≤n

vi(0)(ai − ā(0))2t2 + v(t)

holds, featuring untilted weights vi(0) = wi/
∑

i≤n wi, with the following valid bounds on the

remainder:

|v(t)| ≤ 4
3µ

3
n|t|3, |v(t)| ≤ 2

3g(µn|t|)
∑

i≤n

vi(0)(ai − ā(0))2|t|2. (A.4)

Here µn = maxi≤n |ai − ā(0)| and g is the function g(u) = u exp(2u+ 4u2).

Proof: The formulae for the derivatives are proved by direct differentiation and inspection,

and convexity follows of course from the nonnegative second derivative. To prove (ii), consider the

exact third order Taylor expansion K(t)−K(0) = K ′(0)t+ 1
2K

′′(0)t2+ 1
6K

′′′(s)t3 for some suitable

s between 0 and t. The problem is to bound the remainder term in terms of µn.

The first bound is easy. It follows upon observing that |ā(s)− ā(0)| = |∑i≤n vi(s)(ai− ā(0))| ≤
µn and its triangle inequality consequence |ai − ā(s)| ≤ 2µn, since this yields |K ′′′(s)| ≤ (2µn)

3.

While this bound often suffices we shall have occasion to need the sharper second bound too. The

point is to exploit the fact that s is bounded by |t| when bounding |K ′′′(s)|. Start out writing

vi(s) = vi(0)(1 + εi), where some analysis shows that exp(−2µn|t|) ≤ 1 + εi ≤ exp(2µn|t|). Then

|ā(s)− ā(0)| = |
∑

i≤n

vi(0)(1 + εi)(ai − ā(0))|

= |
∑

i≤n

vi(0)εi(ai − ā(0))| ≤ K ′′(0)1/2
{∑

i≤n

vi(0)ε
2
i

}1/2

.
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A further bound on the right hand side is K ′′(0)1/2δn = K ′′(0)1/2 maxi≤n |εi|. This gives

|K ′′′(s)| ≤ 2µn

∑

i≤n

vi(s)|ai − ā(s)|2

≤ 4µn

∑

i≤n

vi(0)(1 + εi){|ai − ā(0)|2 + |ā(0)− ā(s)|2}

≤ 4µn(1 + δn)(1 + δ2n)K
′′(0).

But some checking reveals 1 + δn ≤ exp(2µn|t|) and 1 + δ2n ≤ exp(4µ2
n|t|2). This shows |K ′′′(s)| ≤

4|t|−1g(µn|t|)K ′′(0) with the g-function given above.

A3. Dominated convergence theorem for convergence in probability. This result was used

several times in section 6, and a close relative was used in 4B.

Lemma A3. Let 0 ≤ Xn(s, ω) ≤ Yn(s, ω) be jointly (s, ω)-measurable random functions on

the interval [0, L]. Suppose λ is a measure such that Yn(s) →p Y (s) and Xn(s) →p X(s) for

λ almost all s and that
∫
Yn(s) dλ(s) →p

∫
Y (s) dλ(s), a limit finite almost everywhere. Then∫

Xn(s) dλ(s) →p

∫
X(s) dλ(s) too.

Proof: It is enough to check almost sure convergence for a subsubsequence of each subse-

quence. By convergence in probability (for ω, with s fixed) and then dominated convergence, we

have

πn(ǫ) := (IP ⊗ λ){(ω, s): |Xn(ω, s)−X(ω, s)| > ε} → 0.

A similar result holds for {Yn}. Replace ε by a sequence {εn} decreasing to zero, then extract a

subsubsequence along which the sequence of integrals is convergent. For some set N with (IP ⊗
λ)N = 0 we get convergence for all (ω, s) ∈ N c of both the Xn and the Yn subsubsequences. For

almost all ω, therefore, λ{s: (ω, s) ∈ N} = 0. Finally argue using the Fatou Lemma for Yn ± Xn

along the subsubsequences to get the result.

This is nice in that it circumvents the need to establish uniformity of the convergence in

probability; this is typically more difficult to ascertain than pointwise convergence in probability.

The lemma was used several times in sections 6 and 7A, partly in the form of the following useful

corollary: If in particular Zn(s) →p 0 for almost all s, then
∫ L

0
Yn(s) I{|Zn(s)| ≥ δ} ds →p 0. It

can also be used to simplify the Lindeberg type condition in the form of Rebolledo’s martingale

convergence theorem given in Andersen and Gill (1982, appendix).
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