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Here is a theorem that is often called the Lindeberg—Lévy central limit theorem. The proof I present
here is an e-generalisation of the proof found in [Inlow| (2010).

Theorem 1. Let Xq,...,X, be independent random wvariables with mean zero and variance EXJ2 =
0']2- < oo forj=1,...,n. Define B = Z?Zl 0]2- and Z, = Z?Zl X,;. We are going to show that
Zn d

1 — — N(0,1
(1) 54N,
provided the Lindeberg condition, that for every e > 0,

1 n
(2) Ly,(e) ::?ZXfI{\Xj|Zan}—>O, as n — oo,

n =1
is in force.

Normally, this result is proved using characteristic functions. In this note, we’ll prove this theorem
using moment generating functions, but without assuming that the moment generating functions of the
X;’s exist. Recall that by assuming that the mgf exists, we are in effect assuming that the moments of
all orders exist. That, we do not want to assume.

Proof. For every € > 0, we can write
Define &, ; by

g”hj = EXJI{‘X]| < EBTL} = —EX]I{|X]| > an}
where we use that E X; = 0. Taking plus-minus &, ;,

Xj = (X H{|X;| <eBn} —&nj) + (XGIH{IX;| > eBn} +&nj) = Vo + Wayj,

by which we define V;,; and W,
notation,

4j» and note that these have EV,, ; = 0 and EV,, ; = 0. With this

Zn 1 — 1 —
F:E;VmJ‘FE;Wn,j-

n

We are now going to show that 2?21 Vn,j/Bn converges in distribution to a standard normal, and
that Z;lzl W, ;/Br converges in probability to zero. Then follows from the Slutsky—Cramér rules,
according to which V;, —4 V and W,, =, w implies V,, + W,, =4V + w.
Note that V,, j/B, is a bounded random variable,
Vi /Bl = |1 XGI{|1X;| < eBp} = &njl/Bn = |X;I{|X;| < eBn} = EX;I{|X;| < eB,}|/Bn
< X;I{|X;| <eBy}|/By + |EX;I{|X;| < eByn}|/Bn = 2e.
If Y is a random variable bounded by K < oo, then its moment generating function clearly exists,
because M, (t) = EetY < EelYl < el < o0, So, since |Vo,j/Bn| < 2¢ its moment generating function
exists, and is given by
1 1
Mn(t) =1+ SE (Vouj/Bn)? +ra(t) = 1+ 7P on i/ Bi + ()
where JTQLJ = VarV, ; and

3
s (0) = SE{(Vas/Ba)® exp(0Vi i/ Ba)},



for some b between t and zero. Note that,
sz- =Var X; = VarV, ; + Var W, ; > 0721’]

Moreover, let [t| < 1 so that |b] < 1, then using the bound on V,, ;/B,, we found above,

[, ()] < E{|VnJ/B |(Vivj/Bn)? exp(|Va,j/ Bul)}
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Since the V;,1/Bn, ..., Vnn/By are independent, the mgf of Z;;l Vij/Bn is My (t) = H?Zl M, ;(t), so
that

(3) My (t) = [T + 03 ;/Ba + 10 (@)} = T[{1 + 205}

=1 i=1

where 2, ; = 02 /B +75,(t). From Lemma A.1 on page 1290 in Nils’ 1990 Beta paper article, we need
that (i) ijl Zw — z; (ii) that maxj<j, |2, ;| — 0; and (iii) that limsup,, _, . Z;;l |2n,;] is bounded.
For (i) we are going to show that

(4) Zzn,j—z ’]+Z7‘n] —14+0=1,

j=1 j=1
as n — oo. Looking back at the definitions of V,, ; and W, ;,
on;, =BV, =E(X; —W,;)?=0; — 2EXjWn,j +EW;;
=0 —2EX;I{|X;| > eB,} + EW}

thus

n 0_2 ) 1 n
n,j 2
|Z 5 1| <2L,(e) + B—%ZEWM
Jj=1 Jj=1
Recalling that &, ; = —E X, I{|X,| > ¢B,} and using Jensen’s inequality

EW},; =BEX7I{|X;| > eB,} + &, ; <2EX7I{|X,| > eB,}.

from which we see that
B2 ZE n,j < 2L ( )

so this term goes to zero by the Lmdeberg condition, and we conclude that " =1 o2 /32 — 1. In
addition,

e2€ E 0— 2e
Zuj=1%; _ €€
<
(5) ZT”’J = B2 — 3

which, since € > 0 was arbitrary, can be made arbitrarily small. This takes care of the Z?:l Zng — %

part of the lemma needed for convergence in . Clearly, max;<, 1, ;(t) — 0 because ¢ > 0 is arbitrary.
This establishes .
For the second condition of the lemma, we need that
(6) max;<n 0']2
B

But for any € > 0

— 0, asn — oo.

0; =EX; <’Bl + EXCI{|X;| > eB,} <&°B + B, Ly(e).

Divide through by B2 and take the maximum on both sides, and @ follows because € > 0 is arbitrary.
That the third condition of the lemma is satisfied follows from and @ In conclusion, the moment
generating function of Z?Zl Vn,j/Bn tends to that of a standard normal, that is

M,(t) = e /2 asn— oo.
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It remains to show that Z?Zl Wn’j/Bn converges in probability to zero. Since the Wy, 1,..., W, ,, are
independent, this can be done by an application of Chebyshev’s inequality: For any a > 0,

n 1 n 2 n 2
Pr(|Y W,;/Bnl > a) < =53 > VarW,; < —5 Y EXII{|X;| > eB,} = aLn(e).
noj=1 n =1

j=1

where the second to last inequality is Jensen’s, and the right hand side tends to zero because the Lindeberg
condition holds. (|

For completeness, here is the lemma from Nils’ Beta process article that was used in the proof.

Lemma 2. Let z, ; be a sequence of real number so that (i) Z;’:l Zn,; — 2; (i) maxj<, |2,,;] = 0; and
(iii) lim sup,, Z?:l |zn,j] < M < o0, i.e., that the series is absolutely convergent. Then

(14 2zp,5) = exp(2).
1

n
Jj=

Proof. We have that

S D) k=2 —22/24 23— 244+ -
k=1
=24 22{~1/24+2/3 - 22 /4 + -}z + 22K (2),
where K (z) = —1/2+ 2/3 — 22/4 + ---. Note that whenever |z| < 1/2,
|K(2)] <1/2+1/64+1/164---=1/2(1+1/34+1/4+---)=1/2.

Since max;j<y |z, ;| — 0, all the |z, ;| < 1/2 for n large enough. Now, for n big enough for |K(z, ;)| < 1/2
for all 7,

log(1+ 2)

n n

> 22 51K (20 )] < max |z 5] Y 24,
i<n

=1 = =1

where the right hand side tends to zero by assumption (ii) and (iii). Thus 2?21 log(1+ 2p,;) = z and

the result follows because exp(z) is a continuous function. (]
APPLICATIONS
Example 1. (INDEPENDENT ZERO-ONES) Let Xi,..., X, be independent Bernoulli with success prob-

abilities py,...,pn. Let B, = {31, pi(1 — p;)}/?, then Z, given by
(X — s
Zz:l( p ) _d> N(

n

Zn = 0,1).

The X7 — p1,..., X, — pn are mean zero with variance p;(1 — p;). It suffices to check the Lindeberg
condition. Here we can simply use that
E(X; — pi)2I{|Xi — pil > eBn} = pi(1 = pi)°I{|1 — ps| > eB,} + (1 — p)p; I{|ps| > eBy}
< pi(1—p;) (I{|1 = pi| = eBn} + I{|pi| = €B,})
< pi(1—pi))I{1 > eB,}.
Then for any € > 0,

1 n
B2 > B (Xi —pi)*I{|Xi — pi| > eBn} < I{1 > By},
i=1
which tends to zero provided B,, — oco. If B,, — oo, then B2 — oo, and
B; = sz'(l —pi) = Z{pz —pi} = oo,
i=1 i=1

which may only happen if "  p; — co. In effect, since both > ., p; and > i (1 — p;) are bigger
than B2

n?
standard normal if > " | p; < oo, note that by the Borel-Cantelli lemma Y ", p; < oo implies that
P(X; = linfinitely often) = 0. Consequently, there exists an ng such that for all n > ng, X,, = 0. This

3

we’ll have that they both tend to infinity. To see that we cannot have Z, converging to a



entails that for all n > ng we'll have Z, = 31 (Xi — pi)/Bn + 3_;_,,,4+1(=Pi)/Bn, in which case Z,
obviously does not converge to a standard normal. The same conclusion can be drawn assuming that
> (1 —p;) < oo, showing that a necessary condition for Z, —4 N(0,1) is that the p; are bounded
away from zero and one.

Note that the Lindeberg condition implies that B,, — oo. Assume that B,, T Bpax < 00, and think of
€ = €'/ Bmax for some &’ > 0 if necessary (i.e. if the X;’s are bounded rv’s), then

L,(e) > e2n Pr(|X;| > eB,) > e2n Pr(|X;| > eBmax),
which diverges when n — oo.
Example 2. (SIMPLE LINEAR REGRESSION) Consider the simple linear regression model
Yi=0z;+¢, i=1,....n

where z1,...,xz, are fixed and known covariates and the (3,...,(, are independent random variables
with mean zero and finite second moments E(? = 02. We are interested in conditions for convergence
in distribution of 8,, — 3, properly normalised, where (3,, is the least squares estimator

B _ i1 Y
n — ~—n__o
Z?:l x’LQ
Define the random variables
gzzl‘zcz, fori:l,...,n,

and we can write
i=1 i=1

The &1, ...,&, are independent, mean zero, with variance

_ 2.2
Var§ = xjo”,

Define B2 by

n n
2 2 2
B, = E Var,;, =0 E xy,
i=1

i=1
and recall that 62 = max;<, 2?/{>_1_, 7} with &, — 0 by assumption. Check the Lindeberg condition.
For any € > 0,

1 — 1 —
B3 2 BE {60l 2 eBu} = 25 > @B GI{|G| > B /|il}
n =1 n =1

1

< g 2 WBCHIG] 2 eo/d} = (oE GG 2 o/dn),

because the (i, ..., (, are i.i.d. the expectation part goes outside the sum. As §,, — 0, the right hand side
tends to zero, and the Lindeberg condition is satisfied. From the central limit theorem we had proved in
lecture 14. November, this means that

n

O 2(Ba = B) = - Y& S N(0,0%).

This means that for n large enough,

2

A ag
=B ~a N0, =—=3)s
ﬁn B d ( ) Zi:1 ng)
which we recognise as the exact distribution of 3, — 8 when the (i, ..., (, are independent N(0,02).
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Exercise 1. Generalise the example above to the regression model Y; = By+81x;+(;, where (3, ..., (, are
iid. with E¢; = 0 and Var(? = 02 < co. Do this by defining &, ; = ¢;(z; — %), where T, =n~' 31" | z;,
and so on. You'll then discover why the Linderberg-Lévy theorem is typically stated in terms of triangular

arrays
§11
21 &2

&1 &32 &33

See, for example, [Ferguson| (1996)) for such a statement of the theorem.

1. LIAPUNOV, SKEWNESS, AND MORE

The skewness E Z3 of a standard normal random variable is zero. The Lindeberg-Lévy theorem is
often stated in terms of the Liapunov condition: For some § > 0,

1

(7) =375 ZE 1 Xi|*T° =0,
Bx

i=1

when n — oo. Let € > 0, then
E|X;)?*° > E|X;|*Y°I{|X;| > eB,} > °B’E | X,|?I{|X;| > ¢B,},

so that

1
ZEX21{|X | >eB,} < = BM ZE | X%+,

=1
and the Liapunov condition is seen to imply the Lindeberg condition. Since E X7 < E|X;|?, this also

shows that of the skewness of the sequence X7, ..., X, tends to 0, the Lindeberg condition is satisfied.

Example 3. Here is an interesting skewness-related example from [Li et al.[(2014)). Suppose X1,..., X,
are i.i.d. mean zero random variables with variance o2, skewness v = E(X;/0)® and kurtosis k =

E (X;/0)*. Recall that the kurtosis is always bigger than one (use Jensen’s inequality), and that for the
normal distribution the kurtosis is 3. The estimator

ZZ,

is unbiased, and
V(32 — 02) SN0,k — 1)),
provided the kurtosis is finite. Let
i X7
S X7

be an estimator of the regression of the X? on X, that is

B = Cov(X?, X;)/Var(X;) = EX}/EX? = o7.

By =

Clearly, B,L —p B = 07, and if the skewness is zero, then 3 = 0. Consider the estimator

skewn = ZX2 Bn ZX Z 12 _Ban)

i=1

This estimator is consistent for o2. Note that

1 n = 1 n - e ~ 1 n ~

ng ov(X?Z, B Xi) n; ov(X? — B X, + BnXi, B Xi) +n; ar 3
since Bn is the least squares solution. Moreover,
1< ~ 1< ~ ~
= VarB,X; = %%+ = {E(B. - B)*X? +E (B, — B)BX?
=D Va3 Bo+n;{ (B — B)°X7 +E (B, — B)BX]},

=1
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which converges to 3%202% = 0?42, [xx Some care is needed to show this. Include it xx]. The variance of
0 cow.n 1S therefore,

. 1< ~ ~
6 ewm = = > {Var X} + Var 8, X; — 2Cov(X7, B, X;) }
=1
04(/-1—1) 1 & ~ 04(/-1—1—72)

as n — 0o, and
\/ﬁ(agkew,n - 02) i N{Ov 0’4('% -1- 72)}

This shows that if the X;’s are skewed, then c?fkewm improves on &2 in terms of asymptotic efficiency.

Exercise 2. The example above needs the dominated convergence theorem for the situation where we
only have convergence in probability. Prove that if Z, 2 7, and |Z] <Y for some Y with EY < oo,
the EZ, - EZ.
2. MIXING, MIDDLE GROUND, ETC.
Suppose X1, Xa, ... is a sequence of mean zero random variables with variance E X? = ¢, and
Cov (X, X;) = 02p|j_l|,

for some correlation coefficient p € (—1,1). To gain insight, suppose that the mgf of these X;’s exists,
and that they satisfy the Liapunov condition for 6 = 1. With

Z, =n"1? zn:X
i=1

we then have that .
1 ¢ ,
Mg (t) =1+ 51t2E Z2 4+ P {Z3 exp(bZ,)},

for some b between zero and t. The Liapunov condition ensures that the last term on the right vanishes,

and 2 2 .2 1
-1 1—pn—
nEZ%:szrUp(n ) _op( 7 )
1—p (1-p)
From which we see that )
Z, iN(o,a“'lﬂ),

as n — oo. This result holds under weaker conditions than those employed here, by way of characteristic
functions or the techniques used to prove Theorem [I] The Liapunov condition with § = 1 is probably
also stronger than needed.

Example 4. (MIDDLE GROUND ASYMPTOTICS) Suppose that 0 = t, 0 < tp1 < -+ < ty,, = T, are
equidistantly spaced observation times at which we see i.i.d. Xy, ,,..., Xy, , with mean zero, variance
o2, and covariance

Cov(Xy, ,, X4, ,) = o2 pltns—tnil,
where p = p(a) = exp(—a) for some positive parameter a. Set A, = 7,,/n and assume that ¢, ; = jA,,.
Let now,

n
Z, = Z X;.
i=0
Under the same assumptions as above, which can be weakened, we see that

B2 o (n g 1)+ PO p@) (1= pla) e

T p@s  {I p@)A)?
Suppose that for some fixed 7 >0 and 0 < a < 1,

Tn = noT,
6



where we, for concreteness, take a = 1/2. Then A,, = 7/n'/?

A" n+1 AnP(G)A" - ﬁp(a)2An{1 — P(a)"A"}
n 1=p(a)?» n {1 = p(a)pn)2
The first term tends to zero, and the second term to 02/(1. Since /n = 7/A,, the third term is
A3 p(a)* {1 — p(a)V"7}
2o @A

, and consequently

EZ. =0*{A,

which vanishes. In conclusion,
Zy = (Bn/n)? 3" X; 5 N(0,0%/a).
i=0
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