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Here is a theorem that is often called the Lindeberg–Lévy central limit theorem. The proof I present

here is an ε-generalisation of the proof found in Inlow (2010).

Theorem 1. Let X1, . . . , Xn be independent random variables with mean zero and variance EX2
j =

σ2
j <∞ for j = 1, . . . , n. Define B2

n =
∑n
j=1 σ

2
j and Zn =

∑n
j=1Xj. We are going to show that

(1)
Zn
Bn

d→ N(0, 1),

provided the Lindeberg condition, that for every ε > 0,

(2) Ln(ε) :=
1

B2
n

n∑
j=1

X2
j I{|Xj | ≥ εBn} → 0, as n →∞,

is in force.

Normally, this result is proved using characteristic functions. In this note, we’ll prove this theorem

using moment generating functions, but without assuming that the moment generating functions of the

Xj ’s exist. Recall that by assuming that the mgf exists, we are in effect assuming that the moments of

all orders exist. That, we do not want to assume.

Proof. For every ε > 0, we can write

Xj = XjI{|Xj | < εBn}+XjI{|Xj | ≥ εBn}.

Define ξn,j by

ξn,j = EXjI{|Xj | < εBn} = −EXjI{|Xj | ≥ εBn}.
where we use that EXj = 0. Taking plus-minus ξn,j ,

Xj = (XjI{|Xj | < εBn} − ξn,j) + (XjI{|Xj | ≥ εBn}+ ξn,j) =: Vn,j +Wn,j ,

by which we define Vn,j and Wn,j , and note that these have EVn,j = 0 and EVn,j = 0. With this

notation,

Zn
Bn

=
1

Bn

n∑
j=1

Vn,j +
1

Bn

n∑
j=1

Wn,j .

We are now going to show that
∑n
j=1 Vn,j/Bn converges in distribution to a standard normal, and

that
∑n
j=1Wn,j/Bn converges in probability to zero. Then (2) follows from the Slutsky–Cramér rules,

according to which Vn →d V and Wn →p w implies Vn +Wn →d V + w.

Note that Vn,j/Bn is a bounded random variable,

|Vn,j/Bn| = |XjI{|Xj | < εBn} − ξn,j |/Bn =
∣∣XjI{|Xj | < εBn} − EXjI{|Xj | < εBn}

∣∣/Bn
≤ XjI{|Xj | < εBn}

∣∣/Bn +
∣∣EXjI{|Xj | < εBn}

∣∣/Bn = 2ε.

If Y is a random variable bounded by K < ∞, then its moment generating function clearly exists,

because Mn(t) = E etY ≤ E e|tY | ≤ e|t|K <∞. So, since |Vn,j/Bn| ≤ 2ε its moment generating function

exists, and is given by

Mn,j(t) = 1 +
1

2
E (Vn,j/Bn)2 + rn,j(t) = 1 +

1

2
Eσ2

n,j/B
2
n + rn,j(t)

where σ2
n,j = VarVn,j and

rn,j(t) =
t3

6
E {(Vn,j/Bn)3 exp(bVn,j/Bn)},
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for some b between t and zero. Note that,

σ2
j = VarXj = VarVn,j + VarWn,j ≥ σ2

n,j .

Moreover, let |t| ≤ 1 so that |b| < 1, then using the bound on Vn,j/Bn we found above,

|rn,j(t)| ≤
1

6
E {|Vn,j/Bn|(Vn,j/Bn)2 exp(|Vn,j/Bn|)}

≤ εe2ε

3

1

B2
n

E V 2
n,j ≤

εe2ε

3

σ2
j

B2
n

.

Since the Vn,1/Bn, . . . , Vn,n/Bn are independent, the mgf of
∑n
j=1 Vn,j/Bn is Mn(t) =

∏n
j=1Mn,j(t), so

that

Mn(t) =

n∏
i=1

{1 + σ2
n,j/Bn + rn,j(t)} =

n∏
i=1

{1 + zn,j}(3)

where zn,j = σ2
n,j/Bn+ rn,j(t). From Lemma A.1 on page 1290 in Nils’ 1990 Beta paper article, we need

that (i)
∑n
j=1 zn,j → z; (ii) that maxj≤n |zn,j | → 0; and (iii) that lim supn→∞

∑n
j=1 |zn,j | is bounded.

For (i) we are going to show that

(4)

n∑
j=1

zn,j =

n∑
j=1

σ2
n,j

B2
n

+

n∑
j=1

rn,j(t)→ 1 + 0 = 1,

as n→∞. Looking back at the definitions of Vn,j and Wn,j ,

σ2
n,j = EV 2

n,j = E (Xj −Wn,j)
2 = σ2

j − 2EXjWn,j + EW 2
n,j

= σ2
j − 2EX2

j I{|Xj | ≥ εBn}+ EW 2
n,j ,

thus ∣∣ n∑
j=1

σ2
n,j

B2
n

− 1
∣∣ ≤ 2Ln(ε) +

1

B2
n

n∑
j=1

EW 2
n,j

Recalling that ξn,j = −EXjI{|Xj | ≥ εBn} and using Jensen’s inequality

EW 2
n,j = EX2

j I{|Xj | ≥ εBn}+ ξ2
n,j ≤ 2EX2

j I{|Xj | ≥ εBn}.

from which we see that
1

B2
n

n∑
j=1

EW 2
n,j ≤ 2Ln(ε),

so this term goes to zero by the Lindeberg condition, and we conclude that
∑n
j=1 σ

2
n,j/B

2
n → 1. In

addition,

|
n∑
j=1

rn,j(t)| ≤
εe2ε

3

∑n
j=1 σ

2
j

B2
n

≤ εe2ε

3
,(5)

which, since ε > 0 was arbitrary, can be made arbitrarily small. This takes care of the
∑n
j=1 zn,j → z

part of the lemma needed for convergence in (3). Clearly, maxj≤n rn,j(t)→ 0 because ε > 0 is arbitrary.

This establishes (4).

For the second condition of the lemma, we need that

(6)
maxj≤n σ

2
j

B2
n

→ 0, as n→∞.

But for any ε > 0

σ2
j = EX2

j ≤ ε2B2
n + EX2

j I{|Xj | ≥ εBn} ≤ ε2B2
n +B2

nLn(ε).

Divide through by B2
n and take the maximum on both sides, and (6) follows because ε > 0 is arbitrary.

That the third condition of the lemma is satisfied follows from (5) and (6). In conclusion, the moment

generating function of
∑n
j=1 Vn,j/Bn tends to that of a standard normal, that is

Mn(t)→ e−t
2/2, as n→∞.
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It remains to show that
∑n
j=1Wn,j/Bn converges in probability to zero. Since the Wn,1, . . . ,Wn,n are

independent, this can be done by an application of Chebyshev’s inequality: For any a > 0,

Pr(|
n∑
j=1

Wn,j/Bn| ≥ a) ≤ 1

a2B2
n

n∑
j=1

VarWn,j ≤
2

a2B2
n

n∑
j=1

EX2
j I{|Xj | ≥ εBn} =

2

a
Ln(ε).

where the second to last inequality is Jensen’s, and the right hand side tends to zero because the Lindeberg

condition holds. �

For completeness, here is the lemma from Nils’ Beta process article that was used in the proof.

Lemma 2. Let zn,j be a sequence of real number so that (i)
∑n
j=1 zn,j → z; (ii) maxj≤n |zn,j | → 0; and

(iii) lim supn
∑n
j=1 |zn,j | ≤M <∞, i.e., that the series is absolutely convergent. Then

n∏
j=1

(1 + zn,j)→ exp(z).

Proof. We have that

log(1 + z) =

∞∑
k=1

(−1)k+1zk/k = z − z2/2 + z3/3− z4/4 + · · ·

= z + z2{−1/2 + z/3− z2/4 + · · · }z + z2K(z),

where K(z) = −1/2 + z/3− z2/4 + · · · . Note that whenever |z| ≤ 1/2,

|K(z)| ≤ 1/2 + 1/6 + 1/16 + · · · = 1/2(1 + 1/3 + 1/4 + · · · ) = 1/2.

Since maxj≤n |zn,j | → 0, all the |zn,j | ≤ 1/2 for n large enough. Now, for n big enough for |K(zn,j)| ≤ 1/2

for all j,
n∑
j=1

z2
n,j |K(zn,j)| ≤ max

j≤n
|zn,j |

n∑
j=1

|zn,j |,

where the right hand side tends to zero by assumption (ii) and (iii). Thus
∑n
j=1 log(1 + zn,j) → z and

the result follows because exp(z) is a continuous function. �

Applications

Example 1. (Independent zero-ones) Let X1, . . . , Xn be independent Bernoulli with success prob-

abilities p1, . . . , pn. Let Bn = {
∑n
i=1 pi(1− pi)}1/2, then Zn given by

Zn =

∑n
i=1(Xi − pi)

Bn

d→ N(0, 1).

The X1 − p1, . . . , Xn − pn are mean zero with variance pi(1 − pi). It suffices to check the Lindeberg

condition. Here we can simply use that

E (Xi − pi)2I{|Xi − pi| ≥ εBn} = pi(1− pi)2I{|1− pi| ≥ εBn}+ (1− pi)p2
i I{|pi| ≥ εBn}

≤ pi(1− pi)
(
I{|1− pi| ≥ εBn}+ I{|pi| ≥ εBn}

)
≤ pi(1− pi)I{1 ≥ εBn}.

Then for any ε > 0,

1

B2
n

n∑
i=1

E (Xi − pi)2I{|Xi − pi| ≥ εBn} ≤ I{1 ≥ εBn},

which tends to zero provided Bn →∞. If Bn →∞, then B2
n →∞, and

B2
n =

n∑
i=1

pi(1− pi) =

n∑
i=1

{pi − p2
i } → ∞,

which may only happen if
∑n
i=1 pi → ∞. In effect, since both

∑n
i=1 pi and

∑n
i=1(1 − pi) are bigger

than B2
n, we’ll have that they both tend to infinity. To see that we cannot have Zn converging to a

standard normal if
∑n
i=1 pi < ∞, note that by the Borel–Cantelli lemma

∑n
i=1 pi < ∞ implies that

P (Xi = 1 infinitely often) = 0. Consequently, there exists an n0 such that for all n ≥ n0, Xn = 0. This
3



entails that for all n ≥ n0 we’ll have Zn =
∑n0

i=1(Xi − pi)/Bn +
∑n
i=n0+1(−pi)/Bn, in which case Zn

obviously does not converge to a standard normal. The same conclusion can be drawn assuming that∑n
i=1(1 − pi) < ∞, showing that a necessary condition for Zn →d N(0, 1) is that the pi are bounded

away from zero and one.

Note that the Lindeberg condition implies that Bn →∞. Assume that Bn ↑ Bmax <∞, and think of

ε = ε′/Bmax for some ε′ > 0 if necessary (i.e. if the Xi’s are bounded rv’s), then

Ln(ε) ≥ ε2nPr(|Xi| ≥ εBn) ≥ ε2nPr(|Xi| ≥ εBmax),

which diverges when n→∞.

Example 2. (Simple linear regression) Consider the simple linear regression model

Yi = βxi + ζi, i = 1, . . . , n

where x1, . . . , xn are fixed and known covariates and the ζ1, . . . , ζn are independent random variables

with mean zero and finite second moments E ζ2
i = σ2. We are interested in conditions for convergence

in distribution of β̂n − β, properly normalised, where β̂n is the least squares estimator

β̂n =

∑n
i=1 xiYi∑n
i=1 x

2
i

.

Define the random variables

ξi = xiζi, for i = 1, . . . , n,

and we can write

{
n∑
i=1

x2
i }(β̂n − β) =

n∑
i=1

ξn,i.

The ξ1, . . . , ξn are independent, mean zero, with variance

Var ξi = x2
iσ

2,

Define B2
n by

B2
n =

n∑
i=1

Var ξn,i = σ2
n∑
i=1

x2
i ,

and recall that δ2
n = maxi≤n x

2
i /{
∑n
i=1 x

2
i } with δn → 0 by assumption. Check the Lindeberg condition.

For any ε > 0,

1

B2
n

n∑
i=1

E ξ2
n,iI{|ξn,i| ≥ εBn} =

1

B2
n

n∑
i=1

x2
iE ζiI{|ζi| ≥ εBn/|xi|}

≤ 1

B2
n

n∑
i=1

x2
iE ζ

2
i I{|ζi| ≥ εσ/δn} = (1/σ2)E ζ2

1I{|ζ1| ≥ εσ/δn},

because the ζ1, . . . , ζn are i.i.d. the expectation part goes outside the sum. As δn → 0, the right hand side

tends to zero, and the Lindeberg condition is satisfied. From the central limit theorem we had proved in

lecture 14. November, this means that

(

n∑
i=1

x2
i )

1/2(β̂n − β) =
σ

Bn

n∑
i=1

ξi
d→ N(0, σ2).

This means that for n large enough,

β̂n − β ≈d N(0,
σ2∑n
i=1 x

2
i

),

which we recognise as the exact distribution of β̂n − β when the ζ1, . . . , ζn are independent N(0, σ2).
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Exercise 1. Generalise the example above to the regression model Yi = β0+β1xi+ζi, where ζ1, . . . , ζn are

i.i.d. with E ζi = 0 and Var ζ2
i = σ2 <∞. Do this by defining ξn,i = ζi(xi−x̄n), where x̄n = n−1

∑n
i=1 xi,

and so on. You’ll then discover why the Linderberg–Lévy theorem is typically stated in terms of triangular

arrays

ξ1,1
ξ2,1 ξ2,2
ξ3,1 ξ3,2 ξ3,3

...
. . .

See, for example, Ferguson (1996) for such a statement of the theorem.

1. Liapunov, skewness, and more

The skewness EZ3 of a standard normal random variable is zero. The Lindeberg–Lévy theorem is

often stated in terms of the Liapunov condition: For some δ > 0,

(7)
1

B2+δ
n

n∑
i=1

E |Xi|2+δ → 0,

when n→∞. Let ε > 0, then

E |Xi|2+δ ≥ E |Xi|2+δI{|Xi| ≥ εBn} ≥ εδBδnE |Xi|2I{|Xi| ≥ εBn},

so that
1

B2
n

n∑
i=1

EX2
i I{|Xi| ≥ εBn} ≤

1

εδ
1

B2+δ
n

n∑
i=1

E |Xi|2+δ,

and the Liapunov condition is seen to imply the Lindeberg condition. Since EX3
i ≤ E |Xi|3, this also

shows that of the skewness of the sequence X1, . . . , Xn tends to 0, the Lindeberg condition is satisfied.

Example 3. Here is an interesting skewness-related example from Li et al. (2014). Suppose X1, . . . , Xn

are i.i.d. mean zero random variables with variance σ2, skewness γ = E (Xi/σ)3 and kurtosis κ =

E (Xi/σ)4. Recall that the kurtosis is always bigger than one (use Jensen’s inequality), and that for the

normal distribution the kurtosis is 3. The estimator

σ̂2
n =

1

n

n∑
i=1

X2
i ,

is unbiased, and
√
n(σ̂2

n − σ2)
d→ N(0, σ4(κ− 1)),

provided the kurtosis is finite. Let

β̂n =

∑n
i=1X

3
i∑n

i=1X
2
i

,

be an estimator of the regression of the X2
i on Xi, that is

β = Cov(X2
i , Xi)/Var(Xi) = EX3

i /EX
2
i = σγ.

Clearly, β̂n →p β = σγ, and if the skewness is zero, then β = 0. Consider the estimator

σ̂2
skew,n =

1

n

n∑
i=1

X2
i − β̂n

1

n

n∑
i=1

Xi =
1

n

n∑
i=1

(X2
i − β̂nXi).

This estimator is consistent for σ2. Note that

1

n

n∑
i=1

Cov(X2
i , β̂nXi) =

1

n

n∑
i=1

Cov(X2
i − β̂nXi + β̂nXi, β̂nXi) = 0 +

1

n

n∑
i=1

Var β̂nXi,

since β̂n is the least squares solution. Moreover,

1

n

n∑
i=1

Var β̂nXi = β2σ2 +
1

n

n∑
i=1

{E (β̂n − β)2X2
i + E (β̂n − β)βX2

i },
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which converges to β2σ2 = σ4γ2. [xx Some care is needed to show this. Include it xx]. The variance of

σ̂2
skew,n is therefore,

σ̂2
skew,n =

1

n2

n∑
i=1

{
VarX2

i + Var β̂nXi − 2Cov(X2
i , β̂nXi)

}
=
σ4(κ− 1)

n
− 1

n2

n∑
i=1

Var β̂nXi →
σ4(κ− 1− γ2)

n
,

as n→∞, and
√
n(σ̂2

skew,n − σ2)
d→ N{0, σ4(κ− 1− γ2)}.

This shows that if the Xi’s are skewed, then σ̂2
skew,n improves on σ̂2

n in terms of asymptotic efficiency.

Exercise 2. The example above needs the dominated convergence theorem for the situation where we

only have convergence in probability. Prove that if Zn
p→ Z, and |Z| ≤ Y for some Y with EY < ∞,

the EZn → EZ.

2. Mixing, middle ground, etc.

Suppose X1, X2, . . . is a sequence of mean zero random variables with variance EX2
i = σ2, and

Cov (Xj , Xl) = σ2ρ|j−l|,

for some correlation coefficient ρ ∈ (−1, 1). To gain insight, suppose that the mgf of these Xi’s exists,

and that they satisfy the Liapunov condition (7) for δ = 1. With

Zn = n−1/2
n∑
i=1

Xi,

we then have that

MZn
(t) = 1 +

1

2
t2EZ2

n +
t3

6
E {Z3

n exp(bZn)},

for some b between zero and t. The Liapunov condition ensures that the last term on the right vanishes,

and

nEZ2
n = nσ2 +

σ2ρ(n− 1)

1− ρ
− σ2ρ2(1− ρn−1)

(1− ρ)2
.

From which we see that

Zn
d→ N

(
0, σ2 1 + ρ

1− ρ
)
,

as n→∞. This result holds under weaker conditions than those employed here, by way of characteristic

functions or the techniques used to prove Theorem 1. The Liapunov condition with δ = 1 is probably

also stronger than needed.

Example 4. (Middle ground asymptotics) Suppose that 0 = tn,0 < tn,1 < · · · < tn,n = τn are

equidistantly spaced observation times at which we see i.i.d. Xtn,0 , . . . , Xtn,n with mean zero, variance

σ2, and covariance

Cov(Xtn,i , Xtn,j ) = σ2ρ|tn,j−tn,i|,

where ρ = ρ(a) = exp(−a) for some positive parameter a. Set ∆n = τn/n and assume that tn,j = j∆n.

Let now,

Zn =

n∑
i=0

Xi.

Under the same assumptions as above, which can be weakened, we see that

EZ2
n = σ2

{
(n+ 1) +

nρ(a)∆n

1− ρ(a)∆n
− ρ(a)2∆n{1− ρ(a)n∆n}

{1− ρ(a)∆n}2
}
.

Suppose that for some fixed τ > 0 and 0 < α < 1,

τn = nατ,
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where we, for concreteness, take α = 1/2. Then ∆n = τ/n1/2, and consequently

∆n

n
EZ2

n = σ2
{

∆n
n+ 1

n
+

∆nρ(a)∆n

1− ρ(a)∆n
− ∆n

n

ρ(a)2∆n{1− ρ(a)n∆n}
{1− ρ(a)∆n}2

}
.

The first term tends to zero, and the second term to σ2/a. Since
√
n = τ/∆n, the third term is

∆3
n

τ2

ρ(a)2∆n{1− ρ(a)
√
nτ}

{1− ρ(a)∆n}2
,

which vanishes. In conclusion,

Zn = (∆n/n)1/2
n∑
i=0

Xi
d→ N(0, σ2/a).
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The American Statistician, 64:228–230.

Li, Y., Mykland, P. A., Renault, E., Zhang, L., and Zheng, X. (2014). Realized volatility when sampling

times are possibly endogenous. Econometric Theory, 30:580–605.

7


	
	Applications
	1. Liapunov, skewness, and more
	2. Mixing, middle ground, etc.
	References

