An MGF proof of the central limit theorem STK4011 Autumn 2019

Emil Aas Stoltenberg Department of Mathematics, University of Oslo November 21, 2019

Here is a theorem that is often called the Lindeberg–Lévy central limit theorem. The proof I present here is an ε -generalisation of the proof found in Inlow (2010).

Theorem 1. Let X_1, \ldots, X_n be independent random variables with mean zero and variance $\mathbb{E} X_j^2 = \sigma_j^2 < \infty$ for $j = 1, \ldots, n$. Define $B_n^2 = \sum_{j=1}^n \sigma_j^2$ and $Z_n = \sum_{j=1}^n X_j$. We are going to show that

(1)
$$\frac{Z_n}{B_n} \xrightarrow{d} \mathcal{N}(0,1),$$

provided the Lindeberg condition, that for every $\varepsilon > 0$,

(2)
$$L_n(\varepsilon) \coloneqq \frac{1}{B_n^2} \sum_{j=1}^n X_j^2 I\{|X_j| \ge \varepsilon B_n\} \to 0, \quad \text{as } n \to \infty.$$

is in force.

Normally, this result is proved using characteristic functions. In this note, we'll prove this theorem using moment generating functions, but without assuming that the moment generating functions of the X_j 's exist. Recall that by assuming that the mgf exists, we are in effect assuming that the moments of all orders exist. That, we do not want to assume.

Proof. For every $\varepsilon > 0$, we can write

$$X_j = X_j I\{|X_j| < \varepsilon B_n\} + X_j I\{|X_j| \ge \varepsilon B_n\}.$$

Define $\xi_{n,j}$ by

$$\xi_{n,j} = \operatorname{E} X_j I\{|X_j| < \varepsilon B_n\} = -\operatorname{E} X_j I\{|X_j| \ge \varepsilon B_n\}.$$

where we use that $E X_j = 0$. Taking plus-minus $\xi_{n,j}$,

$$X_j = (X_j I\{|X_j| < \varepsilon B_n\} - \xi_{n,j}) + (X_j I\{|X_j| \ge \varepsilon B_n\} + \xi_{n,j}) =: V_{n,j} + W_{n,j},$$

by which we define $V_{n,j}$ and $W_{n,j}$, and note that these have $E V_{n,j} = 0$ and $E V_{n,j} = 0$. With this notation,

$$\frac{Z_n}{B_n} = \frac{1}{B_n} \sum_{j=1}^n V_{n,j} + \frac{1}{B_n} \sum_{j=1}^n W_{n,j}.$$

We are now going to show that $\sum_{j=1}^{n} V_{n,j}/B_n$ converges in distribution to a standard normal, and that $\sum_{j=1}^{n} W_{n,j}/B_n$ converges in probability to zero. Then (2) follows from the Slutsky–Cramér rules, according to which $V_n \to_d V$ and $W_n \to_p w$ implies $V_n + W_n \to_d V + w$.

Note that $V_{n,j}/B_n$ is a bounded random variable,

$$|V_{n,j}/B_n| = |X_jI\{|X_j| < \varepsilon B_n\} - \xi_{n,j}|/B_n = |X_jI\{|X_j| < \varepsilon B_n\} - \mathbb{E}X_jI\{|X_j| < \varepsilon B_n\}|/B_n$$

$$\leq X_jI\{|X_j| < \varepsilon B_n\}|/B_n + |\mathbb{E}X_jI\{|X_j| < \varepsilon B_n\}|/B_n = 2\varepsilon.$$

If Y is a random variable bounded by $K < \infty$, then its moment generating function clearly exists, because $M_n(t) = \mathbf{E} e^{tY} \leq \mathbf{E} e^{|tY|} \leq e^{|t|K} < \infty$. So, since $|V_{n,j}/B_n| \leq 2\varepsilon$ its moment generating function exists, and is given by

$$M_{n,j}(t) = 1 + \frac{1}{2} \mathbb{E} \left(V_{n,j} / B_n \right)^2 + r_{n,j}(t) = 1 + \frac{1}{2} \mathbb{E} \sigma_{n,j}^2 / B_n^2 + r_{n,j}(t)$$

where $\sigma_{n,j}^2 = \operatorname{Var} V_{n,j}$ and

$$r_{n,j}(t) = \frac{t^3}{6} \mathbb{E} \left\{ (V_{n,j}/B_n)^3 \exp(bV_{n,j}/B_n) \right\},\$$

for some b between t and zero. Note that,

$$\sigma_j^2 = \operatorname{Var} X_j = \operatorname{Var} V_{n,j} + \operatorname{Var} W_{n,j} \ge \sigma_{n,j}^2$$

Moreover, let $|t| \leq 1$ so that |b| < 1, then using the bound on $V_{n,j}/B_n$ we found above,

$$\begin{aligned} |r_{n,j}(t)| &\leq \frac{1}{6} \mathbb{E} \left\{ |V_{n,j}/B_n| (V_{n,j}/B_n)^2 \exp(|V_{n,j}/B_n|) \right\} \\ &\leq \frac{\varepsilon e^{2\varepsilon}}{3} \frac{1}{B_n^2} E V_{n,j}^2 \leq \frac{\varepsilon e^{2\varepsilon}}{3} \frac{\sigma_j^2}{B_n^2}. \end{aligned}$$

Since the $V_{n,1}/B_n, \ldots, V_{n,n}/B_n$ are independent, the mgf of $\sum_{j=1}^n V_{n,j}/B_n$ is $M_n(t) = \prod_{j=1}^n M_{n,j}(t)$, so that

(3)
$$M_n(t) = \prod_{i=1}^n \{1 + \sigma_{n,j}^2 / B_n + r_{n,j}(t)\} = \prod_{i=1}^n \{1 + z_{n,j}\}$$

where $z_{n,j} = \sigma_{n,j}^2 / B_n + r_{n,j}(t)$. From Lemma A.1 on page 1290 in Nils' 1990 Beta paper article, we need that (i) $\sum_{j=1}^n z_{n,j} \to z$; (ii) that $\max_{j \le n} |z_{n,j}| \to 0$; and (iii) that $\limsup_{n \to \infty} \sum_{j=1}^n |z_{n,j}|$ is bounded. For (i) we are going to show that

(4)
$$\sum_{j=1}^{n} z_{n,j} = \sum_{j=1}^{n} \frac{\sigma_{n,j}^2}{B_n^2} + \sum_{j=1}^{n} r_{n,j}(t) \to 1 + 0 = 1$$

as $n \to \infty$. Looking back at the definitions of $V_{n,j}$ and $W_{n,j}$,

$$\sigma_{n,j}^{2} = \mathbb{E} V_{n,j}^{2} = \mathbb{E} (X_{j} - W_{n,j})^{2} = \sigma_{j}^{2} - 2\mathbb{E} X_{j} W_{n,j} + \mathbb{E} W_{n,j}^{2}$$
$$= \sigma_{j}^{2} - 2\mathbb{E} X_{j}^{2} I\{|X_{j}| \ge \varepsilon B_{n}\} + \mathbb{E} W_{n,j}^{2},$$

thus

$$\left|\sum_{j=1}^{n} \frac{\sigma_{n,j}^{2}}{B_{n}^{2}} - 1\right| \le 2L_{n}(\varepsilon) + \frac{1}{B_{n}^{2}} \sum_{j=1}^{n} \mathbb{E} W_{n,j}^{2}$$

Recalling that $\xi_{n,j} = -E X_j I\{|X_j| \ge \varepsilon B_n\}$ and using Jensen's inequality

$$\mathbb{E} W_{n,j}^2 = \mathbb{E} X_j^2 I\{|X_j| \ge \varepsilon B_n\} + \xi_{n,j}^2 \le 2\mathbb{E} X_j^2 I\{|X_j| \ge \varepsilon B_n\}$$

from which we see that

$$\frac{1}{B_n^2} \sum_{j=1}^n \mathbb{E} W_{n,j}^2 \le 2L_n(\varepsilon),$$

so this term goes to zero by the Lindeberg condition, and we conclude that $\sum_{j=1}^{n} \sigma_{n,j}^2 / B_n^2 \to 1$. In addition,

(5)
$$\left|\sum_{j=1}^{n} r_{n,j}(t)\right| \le \frac{\varepsilon e^{2\varepsilon}}{3} \frac{\sum_{j=1}^{n} \sigma_j^2}{B_n^2} \le \frac{\varepsilon e^{2\varepsilon}}{3}$$

which, since $\varepsilon > 0$ was arbitrary, can be made arbitrarily small. This takes care of the $\sum_{j=1}^{n} z_{n,j} \to z$ part of the lemma needed for convergence in (3). Clearly, $\max_{j \leq n} r_{n,j}(t) \to 0$ because $\varepsilon > 0$ is arbitrary. This establishes (4).

For the second condition of the lemma, we need that

(6)
$$\frac{\max_{j \le n} \sigma_j^2}{B_n^2} \to 0, \quad \text{as } n \to \infty.$$

But for any $\varepsilon > 0$

$$\sigma_j^2 = \operatorname{E} X_j^2 \le \varepsilon^2 B_n^2 + \operatorname{E} X_j^2 I\{|X_j| \ge \varepsilon B_n\} \le \varepsilon^2 B_n^2 + B_n^2 L_n(\varepsilon).$$

Divide through by B_n^2 and take the maximum on both sides, and (6) follows because $\varepsilon > 0$ is arbitrary.

That the third condition of the lemma is satisfied follows from (5) and (6). In conclusion, the moment generating function of $\sum_{j=1}^{n} V_{n,j}/B_n$ tends to that of a standard normal, that is

$$M_n(t) \to e^{-t^2/2}, \quad \text{as } n \to \infty.$$

It remains to show that $\sum_{j=1}^{n} W_{n,j}/B_n$ converges in probability to zero. Since the $W_{n,1}, \ldots, W_{n,n}$ are independent, this can be done by an application of Chebyshev's inequality: For any a > 0,

$$\Pr(|\sum_{j=1}^{n} W_{n,j}/B_n| \ge a) \le \frac{1}{a^2 B_n^2} \sum_{j=1}^{n} \operatorname{Var} W_{n,j} \le \frac{2}{a^2 B_n^2} \sum_{j=1}^{n} \operatorname{E} X_j^2 I\{|X_j| \ge \varepsilon B_n\} = \frac{2}{a} L_n(\varepsilon).$$

where the second to last inequality is Jensen's, and the right hand side tends to zero because the Lindeberg condition holds. $\hfill \Box$

For completeness, here is the lemma from Nils' Beta process article that was used in the proof.

Lemma 2. Let $z_{n,j}$ be a sequence of real number so that (i) $\sum_{j=1}^{n} z_{n,j} \to z$; (ii) $\max_{j \le n} |z_{n,j}| \to 0$; and (iii) $\limsup_{n \ge j=1}^{n} |z_{n,j}| \le M < \infty$, *i.e.*, that the series is absolutely convergent. Then

$$\prod_{j=1}^{n} (1+z_{n,j}) \to \exp(z).$$

Proof. We have that

$$\log(1+z) = \sum_{k=1}^{\infty} (-1)^{k+1} z^k / k = z - z^2 / 2 + z^3 / 3 - z^4 / 4 + \cdots$$
$$= z + z^2 \{ -1/2 + z/3 - z^2 / 4 + \cdots \} z + z^2 K(z),$$

where $K(z) = -1/2 + z/3 - z^2/4 + \cdots$. Note that whenever $|z| \le 1/2$,

$$|K(z)| \le 1/2 + 1/6 + 1/16 + \dots = 1/2(1 + 1/3 + 1/4 + \dots) = 1/2.$$

Since $\max_{j \le n} |z_{n,j}| \to 0$, all the $|z_{n,j}| \le 1/2$ for n large enough. Now, for n big enough for $|K(z_{n,j})| \le 1/2$ for all j,

$$\sum_{j=1}^{n} z_{n,j}^2 |K(z_{n,j})| \le \max_{j \le n} |z_{n,j}| \sum_{j=1}^{n} |z_{n,j}|,$$

where the right hand side tends to zero by assumption (ii) and (iii). Thus $\sum_{j=1}^{n} \log(1 + z_{n,j}) \to z$ and the result follows because $\exp(z)$ is a continuous function.

Applications

Example 1. (INDEPENDENT ZERO-ONES) Let X_1, \ldots, X_n be independent Bernoulli with success probabilities p_1, \ldots, p_n . Let $B_n = \{\sum_{i=1}^n p_i(1-p_i)\}^{1/2}$, then Z_n given by

$$Z_n = \frac{\sum_{i=1}^n (X_i - p_i)}{B_n} \xrightarrow{d} \mathcal{N}(0, 1)$$

The $X_1 - p_1, \ldots, X_n - p_n$ are mean zero with variance $p_i(1 - p_i)$. It suffices to check the Lindeberg condition. Here we can simply use that

$$\begin{split} \mathbf{E} \, (X_i - p_i)^2 I\{|X_i - p_i| \geq \varepsilon B_n\} &= p_i (1 - p_i)^2 I\{|1 - p_i| \geq \varepsilon B_n\} + (1 - p_i) p_i^2 I\{|p_i| \geq \varepsilon B_n\} \\ &\leq p_i (1 - p_i) \big(I\{|1 - p_i| \geq \varepsilon B_n\} + I\{|p_i| \geq \varepsilon B_n\} \big) \\ &\leq p_i (1 - p_i) I\{1 \geq \varepsilon B_n\}. \end{split}$$

Then for any $\varepsilon > 0$,

$$\frac{1}{B_n^2} \sum_{i=1}^n \mathbb{E} \left(X_i - p_i \right)^2 I\{ |X_i - p_i| \ge \varepsilon B_n \} \le I\{1 \ge \varepsilon B_n\},\$$

which tends to zero provided $B_n \to \infty$. If $B_n \to \infty$, then $B_n^2 \to \infty$, and

$$B_n^2 = \sum_{i=1}^n p_i (1 - p_i) = \sum_{i=1}^n \{p_i - p_i^2\} \to \infty$$

which may only happen if $\sum_{i=1}^{n} p_i \to \infty$. In effect, since both $\sum_{i=1}^{n} p_i$ and $\sum_{i=1}^{n} (1-p_i)$ are bigger than B_n^2 , we'll have that they both tend to infinity. To see that we cannot have Z_n converging to a standard normal if $\sum_{i=1}^{n} p_i < \infty$, note that by the Borel–Cantelli lemma $\sum_{i=1}^{n} p_i < \infty$ implies that $P(X_i = 1 \text{ infinitely often}) = 0$. Consequently, there exists an n_0 such that for all $n \ge n_0$, $X_n = 0$. This

entails that for all $n \ge n_0$ we'll have $Z_n = \sum_{i=1}^{n_0} (X_i - p_i)/B_n + \sum_{i=n_0+1}^n (-p_i)/B_n$, in which case Z_n obviously does not converge to a standard normal. The same conclusion can be drawn assuming that $\sum_{i=1}^n (1-p_i) < \infty$, showing that a necessary condition for $Z_n \to_d N(0,1)$ is that the p_i are bounded away from zero and one.

Note that the Lindeberg condition implies that $B_n \to \infty$. Assume that $B_n \uparrow B_{\max} < \infty$, and think of $\varepsilon = \varepsilon' / B_{\max}$ for some $\varepsilon' > 0$ if necessary (i.e. if the X_i 's are bounded rv's), then

$$L_n(\varepsilon) \ge \varepsilon^2 n \Pr(|X_i| \ge \varepsilon B_n) \ge \varepsilon^2 n \Pr(|X_i| \ge \varepsilon B_{\max}),$$

which diverges when $n \to \infty$.

Example 2. (SIMPLE LINEAR REGRESSION) Consider the simple linear regression model

$$Y_i = \beta x_i + \zeta_i, \quad i = 1, \dots, n$$

where x_1, \ldots, x_n are fixed and known covariates and the ζ_1, \ldots, ζ_n are independent random variables with mean zero and finite second moments $E \zeta_i^2 = \sigma^2$. We are interested in conditions for convergence in distribution of $\hat{\beta}_n - \beta$, properly normalised, where $\hat{\beta}_n$ is the least squares estimator

$$\widehat{\beta}_n = \frac{\sum_{i=1}^n x_i Y_i}{\sum_{i=1}^n x_i^2}.$$

Define the random variables

$$\xi_i = x_i \zeta_i, \quad \text{for } i = 1, \dots, n,$$

and we can write

$$\{\sum_{i=1}^{n} x_i^2\}(\hat{\beta}_n - \beta) = \sum_{i=1}^{n} \xi_{n,i}.$$

The ξ_1, \ldots, ξ_n are independent, mean zero, with variance

$$\operatorname{Var}\xi_i = x_i^2 \sigma^2$$

Define B_n^2 by

$$B_n^2 = \sum_{i=1}^n \operatorname{Var} \xi_{n,i} = \sigma^2 \sum_{i=1}^n x_i^2,$$

and recall that $\delta_n^2 = \max_{i \le n} x_i^2 / \{\sum_{i=1}^n x_i^2\}$ with $\delta_n \to 0$ by assumption. Check the Lindeberg condition. For any $\varepsilon > 0$,

$$\begin{aligned} \frac{1}{B_n^2} \sum_{i=1}^n \mathbf{E}\,\xi_{n,i}^2 I\{|\xi_{n,i}| \ge \varepsilon B_n\} &= \frac{1}{B_n^2} \sum_{i=1}^n x_i^2 \mathbf{E}\,\zeta_i I\{|\zeta_i| \ge \varepsilon B_n/|x_i|\} \\ &\le \frac{1}{B_n^2} \sum_{i=1}^n x_i^2 \mathbf{E}\,\zeta_i^2 I\{|\zeta_i| \ge \varepsilon \sigma/\delta_n\} = (1/\sigma^2) \mathbf{E}\,\zeta_1^2 I\{|\zeta_1| \ge \varepsilon \sigma/\delta_n\}, \end{aligned}$$

because the ζ_1, \ldots, ζ_n are i.i.d. the expectation part goes outside the sum. As $\delta_n \to 0$, the right hand side tends to zero, and the Lindeberg condition is satisfied. From the central limit theorem we had proved in lecture 14. November, this means that

$$(\sum_{i=1}^n x_i^2)^{1/2} (\hat{\beta}_n - \beta) = \frac{\sigma}{B_n} \sum_{i=1}^n \xi_i \xrightarrow{d} \mathcal{N}(0, \sigma^2).$$

This means that for n large enough,

$$\hat{\beta}_n - \beta \approx_d \mathcal{N}(0, \frac{\sigma^2}{\sum_{i=1}^n x_i^2}),$$

which we recognise as the exact distribution of $\hat{\beta}_n - \beta$ when the ζ_1, \ldots, ζ_n are independent $N(0, \sigma^2)$.

Exercise 1. Generalise the example above to the regression model $Y_i = \beta_0 + \beta_1 x_i + \zeta_i$, where ζ_1, \ldots, ζ_n are i.i.d. with $E \zeta_i = 0$ and $\operatorname{Var} \zeta_i^2 = \sigma^2 < \infty$. Do this by defining $\xi_{n,i} = \zeta_i (x_i - \bar{x}_n)$, where $\bar{x}_n = n^{-1} \sum_{i=1}^n x_i$, and so on. You'll then discover why the Linderberg–Lévy theorem is typically stated in terms of triangular arrays

See, for example, Ferguson (1996) for such a statement of the theorem.

1. LIAPUNOV, SKEWNESS, AND MORE

The skewness $E Z^3$ of a standard normal random variable is zero. The Lindeberg–Lévy theorem is often stated in terms of the Liapunov condition: For some $\delta > 0$,

(7)
$$\frac{1}{B_n^{2+\delta}} \sum_{i=1}^n \mathbf{E} |X_i|^{2+\delta} \to 0,$$

when $n \to \infty$. Let $\varepsilon > 0$, then

$$\mathbf{E} |X_i|^{2+\delta} \ge \mathbf{E} |X_i|^{2+\delta} I\{|X_i| \ge \varepsilon B_n\} \ge \varepsilon^{\delta} B_n^{\delta} \mathbf{E} |X_i|^2 I\{|X_i| \ge \varepsilon B_n\}$$

so that

$$\frac{1}{B_n^2} \sum_{i=1}^n \operatorname{E} X_i^2 I\{|X_i| \ge \varepsilon B_n\} \le \frac{1}{\varepsilon^{\delta}} \frac{1}{B_n^{2+\delta}} \sum_{i=1}^n \operatorname{E} |X_i|^{2+\delta}$$

and the Liapunov condition is seen to imply the Lindeberg condition. Since $E X_i^3 \leq E |X_i|^3$, this also shows that of the skewness of the sequence X_1, \ldots, X_n tends to 0, the Lindeberg condition is satisfied.

Example 3. Here is an interesting skewness-related example from Li et al. (2014). Suppose X_1, \ldots, X_n are i.i.d. mean zero random variables with variance σ^2 , skewness $\gamma = E(X_i/\sigma)^3$ and kurtosis $\kappa = E(X_i/\sigma)^4$. Recall that the kurtosis is always bigger than one (use Jensen's inequality), and that for the normal distribution the kurtosis is 3. The estimator

$$\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n X_i^2,$$

is unbiased, and

$$\sqrt{n}(\widehat{\sigma}_n^2 - \sigma^2) \xrightarrow{d} \mathcal{N}(0, \sigma^4(\kappa - 1))$$

provided the kurtosis is finite. Let

$$\widehat{\beta}_n = \frac{\sum_{i=1}^n X_i^3}{\sum_{i=1}^n X_i^2},$$

be an estimator of the regression of the X_i^2 on X_i , that is

$$\beta = \operatorname{Cov}(X_i^2, X_i) / \operatorname{Var}(X_i) = \operatorname{E} X_i^3 / \operatorname{E} X_i^2 = \sigma \gamma.$$

Clearly, $\hat{\beta}_n \to_p \beta = \sigma \gamma$, and if the skewness is zero, then $\beta = 0$. Consider the estimator

$$\widehat{\sigma}_{\text{skew},n}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \widehat{\beta}_n \frac{1}{n} \sum_{i=1}^n X_i = \frac{1}{n} \sum_{i=1}^n (X_i^2 - \widehat{\beta}_n X_i).$$

This estimator is consistent for σ^2 . Note that

$$\frac{1}{n}\sum_{i=1}^{n}\operatorname{Cov}(X_{i}^{2},\widehat{\beta}_{n}X_{i}) = \frac{1}{n}\sum_{i=1}^{n}\operatorname{Cov}(X_{i}^{2}-\widehat{\beta}_{n}X_{i}+\widehat{\beta}_{n}X_{i},\widehat{\beta}_{n}X_{i}) = 0 + \frac{1}{n}\sum_{i=1}^{n}\operatorname{Var}\widehat{\beta}_{n}X_{i},$$

since $\widehat{\beta}_n$ is the least squares solution. Moreover,

$$\frac{1}{n}\sum_{i=1}^{n}\operatorname{Var}\widehat{\beta}_{n}X_{i} = \beta^{2}\sigma^{2} + \frac{1}{n}\sum_{i=1}^{n} \{\operatorname{E}(\widehat{\beta}_{n} - \beta)^{2}X_{i}^{2} + \operatorname{E}(\widehat{\beta}_{n} - \beta)\beta X_{i}^{2}\},$$
₅

which converges to $\beta^2 \sigma^2 = \sigma^4 \gamma^2$. [xx Some care is needed to show this. Include it xx]. The variance of $\hat{\sigma}^2_{\text{skew},n}$ is therefore,

$$\widehat{\sigma}_{\text{skew},n}^2 = \frac{1}{n^2} \sum_{i=1}^n \left\{ \text{Var} \, X_i^2 + \text{Var} \, \widehat{\beta}_n X_i - 2 \text{Cov}(X_i^2, \widehat{\beta}_n X_i) \right\}$$
$$= \frac{\sigma^4(\kappa - 1)}{n} - \frac{1}{n^2} \sum_{i=1}^n \text{Var} \, \widehat{\beta}_n X_i \to \frac{\sigma^4(\kappa - 1 - \gamma^2)}{n},$$

as $n \to \infty$, and

$$\sqrt{n}(\widehat{\sigma}_{\mathrm{skew},n}^2 - \sigma^2) \xrightarrow{d} \mathrm{N}\{0, \sigma^4(\kappa - 1 - \gamma^2)\}.$$

This shows that if the X_i 's are skewed, then $\hat{\sigma}^2_{\text{skew},n}$ improves on $\hat{\sigma}^2_n$ in terms of asymptotic efficiency.

Exercise 2. The example above needs the dominated convergence theorem for the situation where we only have convergence in probability. Prove that if $Z_n \xrightarrow{p} Z$, and $|Z| \leq Y$ for some Y with $EY < \infty$, the $EZ_n \to EZ$.

2. MIXING, MIDDLE GROUND, ETC.

Suppose X_1, X_2, \ldots is a sequence of mean zero random variables with variance $\mathbb{E} X_i^2 = \sigma^2$, and

$$\operatorname{Cov}\left(X_{j}, X_{l}\right) = \sigma^{2} \rho^{|j-l|},$$

for some correlation coefficient $\rho \in (-1, 1)$. To gain insight, suppose that the mgf of these X_i 's exists, and that they satisfy the Liapunov condition (7) for $\delta = 1$. With

$$Z_n = n^{-1/2} \sum_{i=1}^n X_i,$$

we then have that

$$M_{Z_n}(t) = 1 + \frac{1}{2}t^2 \mathbb{E} Z_n^2 + \frac{t^3}{6} \mathbb{E} \{Z_n^3 \exp(bZ_n)\},\$$

for some b between zero and t. The Liapunov condition ensures that the last term on the right vanishes, and

$$n \operatorname{E} Z_n^2 = n\sigma^2 + \frac{\sigma^2 \rho(n-1)}{1-\rho} - \frac{\sigma^2 \rho^2 (1-\rho^{n-1})}{(1-\rho)^2}.$$

From which we see that

$$Z_n \xrightarrow{d} \mathcal{N}\left(0, \sigma^2 \frac{1+\rho}{1-\rho}\right)$$

as $n \to \infty$. This result holds under weaker conditions than those employed here, by way of characteristic functions or the techniques used to prove Theorem 1. The Liapunov condition with $\delta = 1$ is probably also stronger than needed.

Example 4. (MIDDLE GROUND ASYMPTOTICS) Suppose that $0 = t_{n,0} < t_{n,1} < \cdots < t_{n,n} = \tau_n$ are equidistantly spaced observation times at which we see i.i.d. $X_{t_{n,0}}, \ldots, X_{t_{n,n}}$ with mean zero, variance σ^2 , and covariance

$$\operatorname{Cov}(X_{t_{n,i}}, X_{t_{n,i}}) = \sigma^2 \rho^{|t_{n,j} - t_{n,i}|},$$

where $\rho = \rho(a) = \exp(-a)$ for some positive parameter a. Set $\Delta_n = \tau_n/n$ and assume that $t_{n,j} = j\Delta_n$. Let now,

$$Z_n = \sum_{i=0}^n X_i.$$

Under the same assumptions as above, which can be weakened, we see that

$$\mathbf{E} Z_n^2 = \sigma^2 \big\{ (n+1) + \frac{n\rho(a)^{\Delta_n}}{1 - \rho(a)^{\Delta_n}} - \frac{\rho(a)^{2\Delta_n} \{1 - \rho(a)^{n\Delta_n}\}}{\{1 - \rho(a)^{\Delta_n}\}^2} \big\}.$$

Suppose that for some fixed $\tau > 0$ and $0 < \alpha < 1$,

$$\tau_n = n^{\alpha} \tau,$$

where we, for concreteness, take $\alpha = 1/2$. Then $\Delta_n = \tau/n^{1/2}$, and consequently

$$\frac{\Delta_n}{n} \to Z_n^2 = \sigma^2 \Big\{ \Delta_n \frac{n+1}{n} + \frac{\Delta_n \rho(a)^{\Delta_n}}{1 - \rho(a)^{\Delta_n}} - \frac{\Delta_n}{n} \frac{\rho(a)^{2\Delta_n} \{1 - \rho(a)^{n\Delta_n}\}}{\{1 - \rho(a)^{\Delta_n}\}^2} \Big\}$$

The first term tends to zero, and the second term to σ^2/a . Since $\sqrt{n} = \tau/\Delta_n$, the third term is

$$\frac{\Delta_n^3}{\tau^2} \frac{\rho(a)^{2\Delta_n} \{1 - \rho(a)^{\sqrt{n}\tau}\}}{\{1 - \rho(a)^{\Delta_n}\}^2},$$

which vanishes. In conclusion,

$$Z_n = (\Delta_n/n)^{1/2} \sum_{i=0}^n X_i \stackrel{d}{\to} \mathcal{N}(0, \sigma^2/a).$$

References

Ferguson, T. S. (1996). A course in large sample theory. Chapman & Hall/CRC.

- Hjort, N. L. (1990). Nonparametric Bayes estimators based on Beta processes in models for life history data. The Annals of Statistics, 18:1259–1294.
- Inlow, M. (2010). A moment generating function proof of the Lindeberg–Lévy central limit theorem. The American Statistician, 64:228–230.
- Li, Y., Mykland, P. A., Renault, E., Zhang, L., and Zheng, X. (2014). Realized volatility when sampling times are possibly endogenous. *Econometric Theory*, 30:580–605.