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Problem 1.

(a) We have

E[Y (s)] =β0 + β1x(s)

Cov[Y (s), Y (v)] =Cδ(||s− v||)
E[Z(s)] =β0 + β1x(s)

Cov[Z(s), Z(v)] =Cδ(||s− v||) + σ2
εI(s = v)

The processes are Gaussian since they are a linear combination of
Gaussian processes.

The nugget effect is equal to σ2
ε for the Z-process while it is zero for

the Y -process.

(b) In this case the nugget effect becomes σ2
1 + σ2

ε for the Z-process while
it becomes σ2

1 for the Y -process.

Since we only observe the Z’s, we will not be able to distinguish between
σ2
1 and σ2

ε .

(Continued on page 2.)
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(c) Define Z = (Z(s1), ..., Z(sn))T . Then the simultaneous distribution for
(Z, Y (s0)) is multivariate Gaussian and therefore also the conditional
distribution for Y (s0) given Z is Gaussian with

E[Y (s0)|Z] =β0 + β1x(s0) + cTY Σ−1(Z − β01− β1X)

E[Z(s0)|Z] =β0 + β1x(s0) + cTZΣ−1(Z − β01− β1X)

Var[Y (s0)|Z] =Cδ(0)− cTY Σ−1cY

Var[Z(s0)|Z] =Cδ(0)− cTZΣ−1cZ + σ2
ε

where X = (x(s1), ..., x(sn))T , cY is the vector of covariances between
Y (s0) and the observations, cZ is the vector of covariances between
Z(s0) and the observations and Σ is the covariance matrix for the
observations. Note that cY is indetical to cZ with exception to the
case where s0 matches one of the observations.

They are optimal in the sense of minimising expected quadratic loss.

(d) Without the restriction, s0 could be one of the observation points in
which case Z(s0) is observed and then the prediction error is exactly
zero.

With the restriction, note first that then cZ = cY .

For n = 1 we have that (using h = ||s0 − s1||)

Var[Z(s0)|Z] =Cδ(0) + σ2
ε − Cδ(h)2/(Cδ(0) + σ2

ε)

For correlation functions we have that: Cδ(0) ≥ Cδ(h) for all h so using
this expression in the equation above we find that.

Var[Z(s0)|Z] ≥Cδ(0) + σ2
ε −

Cδ(0)
2

Cδ(0)+σ2
ε

=σ2
ε +

Cδ(0)σ2
ε

Cδ(0) + σ2
ε

Further, this limit can be obtained arbitrarily close by shrinking h to
zero.

(e) We have that

E[Y (s)] =β0 + β1E[x(s)] = β0

Cov[Y (s), Y (v)] =β2
1Cx(||s− v||) + Cδ(||s− v||)

E[Z(s)] =β0

Cov[Z(s), Z(v)] =β2
1Cx(||s− v||) + Cδ(||s− v||) + σ2

εI(s = v)

One can now utilise that {y(s), z(s)} still are multivariate Gaussian
and use ordinary rules about conditional distributions within MVN’s
to find optimal predictions and corresponding uncertainties.

(Continued on page 3.)
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(f) Define X to be the observed covariates. Since everything is Gaussian,
we have that (Z,X, Y (s0)) is multivariate Gaussian. Further,
[X, Y (s0)|Z] is also multivariate Gaussian. From this distribution we
obtain the prediction error for Y (s0)|Z. Further, by using the ordinary
equations for conditional distributions, we can from this distribution
derive [Y (s0)|Z,X]. The variance in this distribution will always be
smaller than the variance in the distribution for [Y (s0)|Z] showing that
there is a gain in including the x-observations.

The same argument holds if we want to predict Z(s0).

Problem 2.

(a) Define Cν to be the covariance function for {νt(s)}. We have that

Cκ(t, s, t,v) =Cov[κ(t, s), κ(t,v)]

=Cov[κ(t− 1, s) + νt(s), κ(t− 1,v) + νt(v)]

=Cκ(t− 1, s, t− 1,v) + Cν(s,v)

=Cκ(t− 2, s, t− 2,v) + 2Cν(s,v)

· · ·
=Cκ(0, s, 0,v) + tCν(s,v)

=(t+ 1)Cν(s,v)

which changes with time, showing that it is not stationary.

Further,

Cκ(t, s, t+ k,v) =Cov[κ(t, s), κ(t,v)]

=Cov[κ(t, s), κ(t+ k − 1,v) + νt+k(v)]

=Cκ(t, s, t+ k − 1,v)

· · ·
=Cκ(t, s, t,v)

=(t+ 1)Cν(s,v)

which is clearly separable.

(b) We have that

CY (t, r, s,v) ≡Cov[Y (t, s), Y (r,v)]

=Cov[δ(s) + γ(t) + κ(t, s), δ(v) + γ(r) + κ(r,v)]

=Cov[δ(s), δ(v)] + Cov[γ(t), γ(r)] + Cov[κ(t, s), κ(r,v)]

=Cδ(s,v) + Cγ(t, r) + Cκ(t, s, r,v)

(Continued on page 4.)
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Separability requires CY (t, r, s,v) = C̃s(s,v)C̃t(t, r) for some appro-

priate functions C̃s(s,v), C̃t(t, r). This will not be the case for the
additive structure.

It will inherit the non-stationary property of the κ-process (and even
more so since the γ-process is not stationary either).

(c) We see that the most important component in the model is the
spatio-temporal part κt(s) which contain both spatial and temporal
dependence. In fact it seems like almost all the variance is explained
through this part, the others being very small.

(d) EOF are simply principal components, that is linear combinations that
shows most variability where here variability means over time. Since
these then are directly related to the process and how it changes, it
makes sense to include them as ”covariates” but with time-dependent
coefficients. It is reasonable that the α’s corresponding to the first EOF
var most since the EOF’s are ordered according to their variability.
Further, using EOF’s, makes it easier to do prediction.

(e) The parameters have actually not changed much, indicating that we
are not able to explain very much through the EOF’s. It is however
reasonable that all the variances decreases since more of the variability
now is moved to the expectation structure.

The likelihood value is increasing considerably. Even when taking into
account the difference in number of parameters (30 αt,k’s) the difference
is large. The gain in AIC will be

2 ∗ (6840.2− 4581.7)− 2 ∗ 30 = 4455.9

The new model is therefore preferable.

END


