
STK 9150/4150. Solution sketch.  

1a) 14,15,16,24,26,34,35,36. A clique is a set of nodes in the lattice, that consist either of a single site 

or of a set of nodes that are all neighbors. 

 

1b) if the subset c is not a clique then 𝐺𝑐(𝒚𝑐) ≡  0. 

If this ia s CAR model then all G's corresponding to a subset larger than 2 is zero, all G's 

corresponding to a subset of size 2 are constant, and all G's corresponding to a subset of size 1 are 

linear.  

1c) Yes it is symmetric since the neighbourhood relations are symmetric.  

All the eigenvalues of Q must be positive. 
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The figure indicate edge effects. In this case it is a relatively small effect the variance increase from 

about 1 to 1.4  very fast.  In general it is hard to balance the coefficients theoreticall, bu it is possible 

to define the model on a larger grid such that the effect is reduced in the region where we are 

interested in the results.  

2a) Model 1 is the one with the best AIC and is preffered, but note that the range is very large 

compared to the region for which the data are collected.  

Model 2 show that the second coefficient is significant thus there is evidence for a trend 

corresponding to the covariate x1.   

The second covariate is not significant neither in model Model 3 nor Model 4 and does not bring 

anything new into the discussion. It is interesting to compare the range estimates in the models with 

and without covariate x1. The range decreases dramatically which indicates that there is a long range 

correlation hidden in covariate x1. Thus it is possible to argue that Model 2 should be used, but in 

either case it is problematic to use the models far away from the observed locations. 

2b) Empirical Bayes estimate or a plugin estimator.  The Empirical Bayes estimator  is fast to compute 

and often give a satisfactory result. It does however not fully account for the uncertainties in the 

model. The Bayesian approach accounts for all uncertainties included in the prior distribution thus 

gives a more realistic estimate of the uncertainty. This approach is however more computational 

complex and you are required to define the prior distributions for all parameters. These can often be 

hard to assess. To do the Bayesian computations you can use INLA or MCMC. 

2c)  𝐸(𝒀2|1) = 𝝁2 + 𝚺21𝚺11
−1(𝒃 − 𝝁1) by linearity of expectation 



 

Cov(𝒀𝟐|𝟏) = 

     Cov(𝒀2) + Cov(𝚺21𝚺11
−1(𝒃 − 𝒀1)) + Cov(𝚺21𝚺11

−1(𝒃 − 𝒀1), 𝒀2) + Cov(𝐘2, 𝚺21𝚺11
−1(𝒃 − 𝒀1)) 

= 𝚺22 + 𝚺21𝚺11
−1Cov(𝒀1)𝚺11

−1𝚺12 − 𝚺21𝚺11
−1Cov(𝒀1, 𝒀2) − Cov(𝒀2, 𝒀1)𝚺11

−1𝚺12 

= 𝚺22 + 𝚺21𝚺11
−1𝚺11𝚺11

−1𝚺12 − 𝚺21𝚺11
−1𝚺12 − 𝚺21𝚺11

−1𝚺12 

=   𝚺22 − 𝚺21𝚺11
−1𝚺12 

Note that this matches the expressions for conditional distribution of Y2 given Y1. 

Thus by simulation from the distribution of Y and solve the equation inserting b=y1 you will obtain a 

correctly conditioned sample.  

 

3a)  𝝁𝒀 = 𝝁 + 𝑴𝝁𝒀, 𝑪𝒀 = 𝑴𝑪𝒀𝑴𝑻 + 𝑪𝜹. Note that 𝑪𝒀 − 𝑴𝑪𝒀𝑴𝑻 must be positive definite.  

Yes. In general this is not true, but the Gaussian distribution is defined by two first moments so this is 

sufficient.  

3b) 𝑃(𝒀) = 𝑃(𝒀1) ∏ 𝑃(𝒀𝑡|𝒀𝑡−1)𝑇
𝑡=2 .  

The only terms which involve 𝒀𝑡 in the equation is 𝑃(𝒀𝑡|𝒀𝑡−1) and 𝑃(𝒀𝑡+1|𝒀𝒕).  Thus the 

distribution of 𝑃(𝒀𝑡|𝒀𝑠 𝑠 ≠ 𝑡) ∝ 𝑃(𝒀) ∝ 𝑃(𝒀𝒕|𝒀𝑡−1)𝑃(𝒀𝑡+1|𝒀𝑡). Thus the conditional distribution 

only depend on 𝒀𝑡−1 and 𝒀𝑡+1 in addition 𝑡𝑜 𝒀𝑡  . Thus 𝑃(𝒀𝑡|𝒀𝑠 𝑠 ≠ 𝑡) =  𝑃(𝒀𝑡|𝒀𝑡−1 ,𝒀𝑡+1 ,) 

log(𝑃(𝒀𝑡|𝒀𝑡−1 ,𝒀𝑡+1 ,))=const   +log(𝑃(𝒀𝑡|𝒀𝑡−1)) +log(𝑃(𝒀𝑡+1|𝒀𝑡) 

=  𝑐𝑜𝑛𝑠𝑡2 − 0.5 ∗ ( (𝒀𝑡 − 𝑴𝒀𝑡−1)𝑇 𝑪𝛿
−1(𝒀𝑡 − 𝑴𝒀𝑡−1) + (𝒀𝑡+1 − 𝑴𝒀𝑡)𝑇 𝑪𝛿

−1(𝒀𝑡+1 − 𝑴𝒀𝑡))   

=  𝑐𝑜𝑛𝑠𝑡3 − 0.5 ∗ (𝒀𝑡
𝑇 ( 𝑪𝛿

−1 + 𝑴𝑇 𝑪𝛿
−1𝑴)𝒀𝑡 − 2𝒀𝑡

𝑇( 𝑪𝛿
−1𝑴𝒀𝑡−1 + 𝑴𝑇 𝑪𝛿

−1𝒀𝑡+1 )) 

=  𝑐𝑜𝑛𝑠𝑡4 − 0.5 ∗ (𝒀𝑡
𝑇 𝑸𝒀𝑡 − 2𝒀𝑡

𝑇𝑸𝝁) 

 

𝑸 = ( 𝑪𝜹
−𝟏 + 𝑴𝑇 𝑪𝛿

−1𝑴) 

𝝁 = 𝑸−𝟏( 𝑪𝛿
−1𝑴𝒀𝑡−1 + 𝑴𝑇 𝑪𝛿

−1𝒀𝑡+1) 

3c) 

𝐸 ([
𝑌𝑡−1 

𝑌𝑡  
]) = [

𝜇𝑌 
𝜇𝑌

] 

Cov([
𝑌𝑡−1 
 𝑌𝑡  

]) = [
𝐶𝑌 𝐶𝑌𝑀𝑇

𝑀𝐶𝑌 𝐶𝑌
] 

𝐸([𝑌𝑡−1|𝑌𝑡]) = 𝜇𝑌 + 𝐶𝑌𝑀𝑇𝐶𝑌
−1(𝑌𝑡 − 𝜇𝑌) 

Cov(𝑌𝑡−1|𝑌𝑡  ) = 𝐶𝑌 − 𝐶𝑌𝑀𝑇𝐶𝑌
−1𝑀𝐶𝑌 

 



�̃� = 𝜇𝑌 − 𝐶𝑌𝑀𝑇𝐶𝑌
−1𝜇𝑌  

�̃� = 𝐶𝑌𝑀𝑇𝐶𝑌
−1 

𝐶�̃� = 𝐶𝑌 − 𝐶𝑌𝑀𝑇𝐶𝑌
−1𝑀𝐶𝑌 

 

If there was correlation between  𝛿�̃�  and 𝑌𝑡 then the variance of 𝑌𝑡−1 would not preserve stationarity. 

If 𝛿�̃�  should correlate with 𝑌𝑡+𝑖,  and not with  𝑌𝑡+𝑖−1, then 

𝑌𝑡+𝑖 and 𝛿𝑡+𝑖 by construction need to be correlated, (which they are not by the argument above).  

thus 𝛿�̃�    is not correlated. 

 

3d) The Kalman filter is directional and condition to all data in the past including the current time.  

The Kalman smoother condition to data for past present and future of a given time, i.e. 

Kalman filter : 𝑌𝑡|𝑍1:𝑡  Kalman smoother:  𝑌𝑡|𝑍1:𝑇 .  

Forward: (t,u): (1,-), (1,1)(2,1),(2,2)(3,2)(3,3)….(T,T-1),(T,T) 

Backward (t,u): (T,-) (T,T)(T-1,T)(T-1,T-1),…(2,3)(2,2)(1,2)(1,1) 

 

3e) only for STK 9150 When ∏ 𝑀𝑇
𝑡=1 = 𝑀𝑇  (not transpose but the power of T)   is small.  That is 

when the time series is long. Since M always shrink the Covariance, this is will be the case eventually 

with the exception of 𝐶𝛿  is degenerate.  By construction the forward sequence series 𝑌𝑡+1 |𝑍𝑡+1:𝑇 is  

independent of  𝑌𝑡−1 |𝑍1:𝑡−1   

  𝑌𝑡   =  𝐴𝑌𝑡−1   + 𝐵𝑌𝑡+1 + 𝛿  

 A, B and covariance of delta denoted C  is given by c. 

The distribution of the components given the data to the right and left are:  

𝑌𝑡−1 |𝑍1:𝑡−1 ∼ 𝑁(𝑌𝑡−1|𝑡−1 , 𝑃𝑡−1|𝑡−1  ) 

𝑌𝑡+1 |𝑍𝑡+1:𝑇 ∼ 𝑁(�̃�𝑡+1|𝑡+1 , �̃�𝑡+1|𝑡+1  ) 

Thus:  

𝜇𝑡|−𝑡 ≝ 𝐸{𝑌𝑡|𝑍𝑠, 𝑠 ≠ 𝑡 } = 𝐴 𝑌𝑡−1|𝑡−1 + 𝐵�̃�𝑡+1|𝑡+1  

𝐶𝑡|−𝑡 ≝ Cov{𝑌𝑡|𝑍𝑠, 𝑠 ≠ 𝑡 } = 𝐴 𝑃𝑡−1|𝑡−1 𝐴
𝑇 + 𝐵�̃�𝑡+1|𝑡+1 𝐵

𝑇 + 𝐶 

𝐸{𝑌𝑡|𝑍𝑠, ∀𝑠} = 𝜇𝑡|−𝑡 + 𝐶𝑡|−𝑡𝐻𝑡
𝑇(𝐻𝑡𝐶𝑡|−𝑡𝐻𝑡

𝑇)
−1

 (𝑧𝑡 − 𝐻𝑡𝜇𝑡|−𝑡) 

Cov{𝑌𝑡|𝑍𝑠, ∀ 𝑠 } =  𝐶𝑡|−𝑡 − 𝐶𝑡|−𝑡𝐻𝑡
𝑇(𝐻𝑡𝐶𝑡|−𝑡𝐻𝑡

𝑇)
−1

𝐻𝑡𝐶𝑡|−𝑡 


