Appendix A
Matrix Algebra

A.1 Introduction

This appendix gives (i) a summary of basic definitions and results in
matrix algebra with comments and (ii) details of those results and proofs
which are used in this book but normally not treated in undergraduate
Mathematics courses. It is designed as a convenient source of reference to
be used in the rest of the book. A geometrical interpretation of some of
the results is also given. If the reader is unfamiliar with any of the results
not proved here he should consult a text such as Graybill (1969, espe-
cially pp. 4-52, 163-196, and 222-235) or Rao (1973, pp. 1-78). For the

computational aspects of matrix operations see for example Wilkinson
(1965).

Definition A matrix A is a rectangular array of numbers. If A has n rows

and p columns we say it is of order n X p. For example, n observations on p
random variables are arranged in this way.

Notation 1 We write matrix A of order nxp as

(a1 A, - ay,]
A1 Qzp " Qg
x= =(ay), (A1)
R e

where a; is the element in row i and column j of the matrix A,
i=1,...,n; j=1,..., p. Sometimes, we write (A), for aj;.
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We may write the matrix A as A(nxp) to emphasize the row and
column order. In general, matrices are represented by @o_&mg upper
case letters throughout this book, e.g. P.. B, X, Y, Z. Their elements are
represented by small letters with subscripts.

Definition The transpose of a matrix A is formed by interchanging the
rows and columns:

ay; Gy "t Gma

a3 Gy 7" Gn2
A=] ~ & '

D_..__.u ﬂuwv S h.:ﬂ

Definition A matrix with column-order one is called a column vector.
Thus

= ] [+ 31

a

is a column vector with n components.

3 In general, boldface lower case letters represent column vectors. Row

vectors are written as column vectors transposed, 1.e.
i R [ R M A

Notation 2 We write the columns of the matrix A as 8, 8y . - - Ap)
and the rows (if written as column vectors) as a;, 8, . . ., 8, S0 that

i
a;
3 A=(84),80, a) = . (A.1.2)
a7
F where
. Qyj Qi
aGn=1 " b a; =
g:—. BU

M



[

U....Ea:: A matrix written in terms of its sub-matrices is called a
partitioned matrix.

Notation 3 Let A,,, A,,, A,,, and A,, be submatrices such that

A,,(rxs) has elements ay, i=1,...,r; j=1,...,s and so on. Then we
write
}A:‘Xhuvlltﬁ }——AHXHV >mMA~.Xﬁﬁ|huv H—
Azil((n—r)xs) Ayp((n—rx(p-s))

Obviously, this notation can be extended to contain f

of Ay, A, etc.

urther partitions

A list of some important types of particular matrices is given in Table

A.1.1. Another list which dep

ends on the next section appears in Table

A3.1,
Table A.1.1 Particular matrices and types of matrix (List 1). For List 2 see
Table A.3.1.
) Trivial
Name Definiton Notation Examples
1 Scalar p=n=1 a, b (1)
2a Column Lonﬂon p=1 ab,... A_v
2
2b Unit vector (1,...,1) lord, AJ
1
3 Rectangular pxn A(nXp)
4 Square p=n A(px AH wv
(pxp) 4 s
4a Diagonal p=n,a;,=0,i#j diag (a;) AM wu
4b Identity diag (1) Iorl, AM Wv
4c Symmetric a; =ay Aw mv
2 5
4d Unit matrix p=na;=1 J, =11 AH ﬁv
11
4e Triangular matrix a; =0 below the
(upper) diagonal A’ 1 0 O
Triangular matrix a; =0 above the 220
(lower) diagonal A 3 25
5 Asymmetric a;# ay AH J
2 3
6 Null a; =0 0 Ao B J
0 0 0

As shown in Table A.1.1 a square matrix A(p X p) is &amo:& if a = 0
for all i# j. There are two convenient ways to construct diagonal :.E:._nom.
If a=(ay,...,a,) is any vector and B(p X p) is any square matrix then

iy ...O

.

diag (a) = diag (a,) = diag (a;, ..., a,)=| *

and
by -+ 0

Diag (B)={ - '

each defines a diagonal matrix.

A.2 Matrix Operations

Table A.2.1. gives a summary of various important Emn._.mu o_umamzo:m. We
deal with some of these in detail, assuming the definitions in the table.

Table A.2.1 Basic matrix operations

Operation Restrictions Definitions Remarks
1 Addition A, B of the same order A+B=(a;+b)
2 Subtraction A, B of the same order A-B=(a;—by)
3a Scalar
multiplication cA = (cay)
3b Inner product  a, b of the same order a'b=) ab,
3c Multiplication ~ Number of columns
of A equals number
of rows of B AB = (2b,) AB ﬂ.mﬂ>
4 Transpose A'=(a,,0,,...,8,) mon»_ou A2.1.
5 Trace A square trA =} a, Section A.2.2.
o pommen Asmn WL BRI,
d = = i
7 Inverse A square and | et
8 g-inverse (A7) A(nXp) AATA=A Section A.8
A.2.1 Transpose
The transpose satisfies the simple properties
(A" =A, (A+B)=A'+B, (AB) =B'A’, (A.2.1)



For partitioned A, ; i
' 11 21
w=[A A8
12 22
If A is a symmetric matrix, a; = ay, so that
A'=A.
A.2.2 Trace

The trace function, tr A =2a,; satisfies the following properties for
A(p xp), B(pxp), C(pxn), D(n X p), and scalar a:

tra=a, trAxtB=trA+tu B, traA=atrA (A.2.2a)
trCD=trDC= ), c;d;;, (A.2.2b)

i
Y x!Ax; =tr (AT), where T=), xx. (A.2.20)

To prove this last property, note that since ) x!Ax; is a scalar, the left-
hand side of (A.2.2¢) is

tr ). x]Ax, = ) trx/Ax; by (A.2.2a)
=) trAx,x, by (A.2.2b)
=trA ) x;x, by (A.2.2a).
As a special case of (A.2.2b) note that

rCC'=trC'C=), ci. (A.2.2d)

A.2.3 Determinants and cofactors
Definition The determinant of a square matrix A is defined as

_P_ = M AIS_q_a_i: <o Qpripys

where the summation is taken over all permutations v of (1,2,...,p), and
|| equals +1 or —1, depending on whether T can be written as the product
of an even or odd number of transpositions.

(A.2.3a)

For p=2,

|A]=a;1a5,—ay,a,,. (A.2.3b)

Definition The cofactor of a;; is defined by (—1)'* times the minor of a;,
where the minor of a; is the value of the determinant obtained after deleting
the ith row and the jth column of A.

We denote the cofactor of a; by A;. Thus for p=3,

Az Q3 Gz, Qa3 _|@21 Q22
A= s Ap=— » A=

Az; Qi3 asy; Qs

(A.2.3¢c)

a3y Qas
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Definition A square matrix is non-singular if |A|#0; otherwise it is
singular.
We have the following results:

P
:w E>_ = M Pa}m = M a.._,\wc. any -.._ ._.g A»PNM.“:
=1 i=1
but i
Y auAp=0, i#]. (A.2.3¢)
k=1
(I) If A is triangular or diagonal,
IAl=]T au. (A.2.30)
(11D |cAl=c”|Al (A.2.3g)
(IV) |AB|=]A||B}. (A.2.3h)
(V) For square submatrices A(p X p) and B(q xq),
A C ;
= B|. A2.31
| AL (A2.3)
Au Ap S1A I =]Ag| [A; — ApzA% Ag|
(VI) = |An1|[Az2 — Az1Air App = A |A1 — Az Az,
Ax Az (A.2.3))
A a roa—1
=|Al (b—a" A™" a).
| M- AT
(VII) For B(p X n) and C(n X p), and non-singular A(p X p),
A + BC|=|A|[I, + A~'BC|=|A|[L, + CA™'B|, (A.2.3k)

IA+b'aj=|A] (1+b' A" a).

Remarks (1) Properties (I-(II) follow easily from the definition
(A.2.3a). As an application of (I), from (A.2.3b), (A.2.3c), and (A.2.3d),
we have, for p=3,

|A| = a,1(as2833— G23837) — G12(a1 833~ Qy3031) + 813(221832— A3y az)-
(2) To prove (V), note that the only permutations giving non-zero
terms in the summation (A.2.3a) are those taking {1,...,p}to{1,..., p}

and {p+1,...,p+qtto {p+1,...,p+q} . .
(3) To prove (VI), simplify BAB' and then take its determinant where

HH -H- IPE?MN_ H—
0 ||

From (VI), we deduce, after putting All=A, A=y, etc,

A x

x

(A.2.31)

= Al {c-XA'x)}.



(4) To prove the second part of (VII), simplify

I, -A™'B
C I,
using (VI). As special cases of (VII) we see that, for non-singular A
|A+bb'|=]A| (1+b'A~'b), (A.2.3m)
and that, for B(p x n) and C(n X p),
I, +BC| =1, +CB|. (A.2.3n)

In practice, we can simplify determinants using the property that the
value of a determinant is unaltered if a linear combination of some of th
columns (rows) is added to another column (row). )
(5) Uﬂnd_.m_:m:a are usually evaluated on computers as follows. A is
decomposed into upper and lower triangular matrices A =LU. If > Vo,
then the Cholesky decomposition is used (i.e. U=L’ so A uﬁm.c. O:_m?_

wise the Crout decomposition is :
used where the dia
are ones. gonal elements of U

A.2.4 Inverse

Definition As alread i
: y defined in Table A.1.1, the i 1
unique matrix A" satisfying v (leTIERE oA ke

AAT'=ATTA=]L (A.2.42)

The inverse exists i i j j is, i
Pk e exists if and only if A is non-singular, that is, if and only if

We write the (i, j)th element of A™' by a". For partitioned A, we write
e
>u.~

The following properties hold:

1
DA™ =—(A,)
AH_H " n_ Al Q_,.; : (A.2.4b)
cA) T=cTIATY,
(1) (AB)"' =B~'A", % . .MMW
(IV) The unique solution of Ax=b is x= A" 'b. 3..&..&3

(V) If all the necessary inverses exist, th
, then for A(p X
C(nxn), and D(n x p), (pxp), B(pxn),

(A+BCD)'=A""-A"'B(C™'+DA"'B)"'DA ", (A.2.4)
(A+ab)'=A""— (A" a)(b'A")(1+b'A" a)7 1),

(VD) If all the necessary inverses exist, then for partitioned A, the
" elements of A" are
A=(Ay, I.P_%?mm}u_ul ' A= (Agy— Pulrﬂ.ﬁ?..uul.
A?=-A"A,AZ), AT =-AA A,
Alternatively, A'> and A*' can be defined by
AP =-AT1A,A%, A2 =—A%A, AT

(VII) For symmetrical matrices A and D, we have, if all necessary
inverses exist

(A.2.4g)

A B\ A1 0 -E 1

— -B'A™'B “(-E
el i al®l g (D-B'A'B)"'(-E',J)
where E=A"1B.

Remarks (1) The result (I) follows on using (A.2.3d), (A.2.3¢e). As a
simple application, note that, for p =2, we have
Al = 1 A (157 In_ug.
A11072 — Q205 V™~ 0y Ay

(2) Formulae (II)-(VI) can be verified by checking that the product of
the matrix and its inverse reduces to the identity matrix, e.g. to verify
(I11), we proceed

(AB)"Y(AB)=B'A"'(AB)=B'IB=L.

(3) We have assumed A to be a square matrix with |A|# 0 in defining
A~L. For A(nxp), a generalized inverse is defined in Section A.8.

(4) In computer algorithms for evaluating A', the following methods
are commonly used. If A is symmetric, the Cholesky method is used,
namely, decomposing A into the form LL' where L is lower triangular
and then using A~'=(L"'YL™'. For non-symmetric matrices, Crout’s
method is used, which is a modification of Gaussian elimination.

A.2.5 Kronecker products

Definition Let A =(a;) be an (m X n) matrix and B = (by) be a (pxq)
matrix. Then the Kronecker product of A and B is defined as

|h:= n:ww e D?.’
ﬂn—u Qunu N sz-w
|D:-._= .n:._uu AR 93:’

which is an (mp X nq) matrix. It is denoted by A®@B.



Definition If X is an (r % p) matrix let X" denote the np-vector obtained

by “vectorizing” X; that i .
) pw:a_nwsﬁ
another so that g the columns of X on top of one

X
X(2)

XV=| -
-u::..

From these definitions the elementar

follow: y properties given below easily

(D i?@wu.ﬂ AQ>N®HH>®AQ$ for all scalar &, and hence
can be written without ambiguity as A ® B.

II = i
( u“%hw@wg (A®B)®C. Hence this can be written as

(Il (A®B)Y=A'®B'.
(Iv) (A ®5A|-w® G) = (AF) ® (BG). Here parentheses are necessary
(V) (A®B)'=A"'"®B"! for non-singular A and B .
(VD) (A+B)®C=A®C+B®C. .
(VID AQ(B+C)=A®B+A ®C.
(VIII) (AXB)Y =(B'® A)X".
(IX) tr (A® B) = (tr A) (tr B).

A.3 Further Particular Matrices and Types of Matrix

Table A.3.1 gives another li i
e A.3. er list of some important types of i
consider a few in more detail. P matrices. We

A.3.1 Orthogonal matrices

A square matrix A(n X n) is orthogonal if AA’=1. The following proper-

ties hold:
I A'=A".
(II) A'A=1.
(III) |A|==+1.

HMMV u_,.mn 0, .-.ﬁ_: aa, =1 a;8,,=0, i#j; al,,a,,=1.
) C=AB is orthogonal if A and B are orthogonal.

MM_‘EI-.W (1) All of these properties follow easily from the definition
=I. Result (IV) states that the sum of squares of the elements in each

Table A.3.1 Particular types of matrices (List 2)
Name Definition Examples Details in
) 1 2] .
Non-singular |A|#0 g 1 Section A.2.3.
. 1 2] .
Singular |A]=0 i 2 ~ Section A.2.3.
cos 0 —sin .
Orthogonal AA'=A'A=1 ﬁ ) E Section A.3.1.
sin@ cosfl]
1 .
Equicorrelation E=(1-p)l+pJ ﬁ M 1 Section A.3.2.
p 11
1IfT1 A
t A= = ﬂ H_
Idempoten A 211 1
Centring matrix, H, H,=L,-n"'J, Section A.3.3.
Positive
definite (p.d.) xAx>0 for all x#0 x314+x3 Section A.7.
Positive semi-
definite (p.s.d.) x'Ax=0 for all x#0 (%, —x,) Section A.7.

row (column) is unity whereas the sum of the cross-products of the
elements in any two rows (columns) is zero.

(2) The Helmert matrix is a particular orthogonal matrix whose col-
umns are defined by

.M.—.u = Aﬂ—l.—____Nv yesy :l._.____Nv.-
‘.ﬂ—.g"ﬁ&u.....Bw!lﬁm.lu.v&.—o_o.....ou. ,q.“N»...¢;o
where d,={j(j— 1)} /2, is repeated j—1 times.
(3) Orthogonal matrices can be used to represent a change of basis, or
rotation. See Section A.5.

A.3.2 Equicorrelation matrix
Consider the (p xp) matrix defined by
E=(1-p)l+pd,

where p is any real number. Then ¢; =1, e; =p, for i#]. For statistical
purposes this matrix is most useful for —(p—-1)"'<p<1, when it is called
the equicorrelation matrix.

Direct verification shows that, provided p#1,—(p—1)"", then E™!
exists and is given by

E'=(1-p) 'I-p{l+(p—1)p} 7]

(A.3.2a)

(A.3.2b)



Its determinant is given by

[El=(1-p)P '{1+p(p-1)}. (A.3.2¢)

This formula is most easily verified usi i y
ng th -
6 of Section A.6. . g the eigenvalues given in Remark

A.3.3 Cenfring matrix

The (nx : e i
,E._n:A n) centring matrix is defined by H=H,, =1—n"'3, where J=11.

() H'=H, H?=H.

(I) H1=0, HI=JH=0.
(IIN) Hx=x—x1, where ¥ =n"'Y x,.
(IV) xHx=n"1} (x,— %)

Remark (1) Property (I) states that H is symmetric and idempotent
S.v Property (III) is most important in data analysis. The ith o_o:._gm of
Hx is x; —X. Therefore, premultiplying a column vector by H has the
effect Om. B.‘oanommm:m the elements of the vector as deviations from the
mean. wE.:_.m_._w. premultiplying a matrix by H re-expresses each element
of the matrix as a deviation from its column mean, i.e. HX has its (i, j)th
mﬂmamﬂ X; —X;, where X; is the mean of the jth column of X ‘.H.Em
centring” property explains the nomenclature for H. .

A.4 Vector Spaces, Rank, and Linear Equations

A.4.1 Vector spaces

The set of vectors in R" satisfies the followi i
STt 5. ollowing properties. For all x,y e R"

(1) A(x+y)=Ax+Ay,
AMV Td-_.t.unﬁ\ﬂnu..t.ﬂ.
(3) Aw)x=A(nx),

4) 1x=x.

Thus R™ can be considered as a vector space over the real numbers R.

Definition If W is a subset of R" such that for all x,ye W and A € R
Alx+y)e W,

then W is called a vector subspace of R".

Two simple examples of subspaces of R™ are {0} and R" itself.

Definition
numbers Ay, .

Vectors X, . . ., X, are called linearly dependent if there exist
.., Ay, not all zero, such that

V-“.— -+ o +‘ﬂk¥k =0.
Otherwise the k vectors are linearly independent.

Definition Let W be a subspace of R". Then a basis of W is a maximal
linearly independent set of vectors.

The following properties hold for a basis of W:

(I) Every basis of W contains the same (finite) number of elements.
This number is called the dimension of W and denoted dim W. In
particular dim R™ = n.

(ID) If %y, ..., X is a basis for W then every element x in W can be
expressed as a linearly combination of x,...,X.; that is, x=
Xy + ... +Acx, for some numbers Aq, ..., A

Definition The inner (or scalar or dot) product between two vectors
x,y€ R" is defined by

X y=Xy= ) XY
i=1
The vectors x and y are called orthogonal if x-y=0.
Definition The norm of a vector x€ R" is given by
1/2
=0 =(E7)
Then the distance between two vectors x and y is given by
[lx—yll.
Definition A basis X, ..., Xk of a subspace W of R" is called orthonor-
mal if all the elements have norm 1 and are orthogonal to one another;
that is, if
; *_. =4
XX = .,
0, i#]
In particular, if A(nXn) is an orthogonal matrix then the columns of A
form an orthonormal basis of R™.

A.4.2 Rank

Definition The rank of a matrix A(nXxp) is defined as the maximum
number of linearly independent rows (columns) in A.



We denote it by r(A) or rank (A).
The following properties hold:

(I) 0<r(A)<min(n, p).

() r(A)=r(A". o
(D) r(A+B)<r(A)+r(B). Mw.w.wz
(IV) r(AB)=<min {r(A), r(B)}. (A .A NMW

(V) r(A’A)=r(AA))= r(A). (A.42¢)

(VD) If B(nxn) and C(p x p) are non-singular then r(BAC)=r(A).

~ . (A4.2
(VID) If n=p then r(A)=p if and only if A is non-singular. TP.PNM
Table A.4.1 gives the ranks of some particular matrices.

Remarks (1) Another definition of r(A) is r(A)=the largest order of
those (square) submatrices which have non-vanishing determinants

(2) If we define M(A) as the vector subspace in R" spanned _uw the
columns of A, then r(A)=dim M(A) and we may choose linearly inde-
pendent columns of A as a basis for M(A). Note that for any p-vector x

Ax=x80,+ ... +x,8,is a li i
sl (» 1S a linear combination of th
hence Ax lies in ?A.ﬁw. of the columns of A and

(3) Define the null space of A(nxp) by
N(A)={xe R*:Ax=0}.

Then ZbP.v is a vector subspace of R” of dimension k, say. Lete,,...,e,

Wo a basis of R" for éwm.o_.. e,,...,e are a basis of 205.. n_“_..,ns

:.%_1: ..., Ae, form a me_b._m:v" linearly independent set of vectors in
(A), and hence are a basis for M(A). Thus, we get the important result

dim N(A)+dim M(A) =p. (A.4.2h)

(4) To prove (V) note that if Ax=

) 4V x=0, then A’Ax=0; conversely if
W.Pu#e then u~> Ax=|Ax|*=0 and so Ax=0. Thus ZC.CHZA..PM?V.
amaon A m_.a..P} each have p columns, we see from (A.4.2h) that
im M(A) =dim M(A'A) so that r(A)=r(A'A).

Table A.4.1 Rank of some matrices

Mairix Rank
Z.o:,mmnmc_m_. A(pxp) 4
n—.-.wmﬁv Number of non-zero g;
-1
Idempotent A ~”_. A
CAB, non-singular B, C r(A)

2 i

s

e A ki e T

RV

(5) If A is symmetric, its rank equals the number of non-zero eigen-
values of A. For general A(nXp), the rank is given by the number of
non-zero eigenvalues of A'A. See Section AL6.

A.4.3 Linear equations

For the n linear equations

X8yt ... T80 =b (A.4.3a)

or
Ax=b (A.4.3b)
with the coefficient matrix A(n X p), we note the following results:
(I) If n=p and A is non-singular, the unique solution is

1
=A""b=—[A;]b.
X b N [Ay]
(II) The equation is consistent (i.e. admits at least one solution) if and

only if

(A.4.3¢)

r(A) =r[(A, b)]. (A.4.3d)

(II1) For b=0, there exists a non-trivial solution (i.e. x# 0) if and only
if r(A)<p.
(IV) The equation A'A = A'b is always consistent.

Remarks (1) To prove (II) note that the vector Ax is a linear combina-
tion of the columns of A. Thus the equation Ax = has a solution if and
only if b can be expressed as a linear combination of the columns of A.

(2) The proof of (III) is immediate from the definition of rank.

(3) To prove (IV) note that M (A'A) S M(A") because A'A is a matrix
whose columns are linear combinations of the columns of A'. From
Remark 4 of Section A.4.2 we see that dim M(A'A) =dim M(A) =
dim M(A") and hence M(A’A)=M(A"). Thus, A'be M(A'A), and so
r(A’A)=r(A'A, A'D).

(A.4.3e)

A.5 Linear Transformations

Definitions The transformation from x(p X 1) to y(nx1) given by
y=Ax+b, (A5.1)

where A is an (nxp) matrix is called a linear transformation. For n=p,



RAYIV]

the transformation is called non-singular if A is non-singular and in this
case the inverse transformation is

x=A"Yy—b).
An orthogonal transformation is defined by

y =Ax, (A.5.2)

where A is an orthogonal matrix. Geometrically, an orthogonal matrix
represents a rotation of the coordinate axes. See Section A.10.

A.6 Eigenvalues and Eigenvectors

A.6.1 General results
If A(pxp) is any square matrix then

a(A\)=|A—-All (A.6.1)

is a pth order polynomial in A. The p roots of q(A), Ay, ..., A, possibly
complex numbers, are called eigenvalues of A. Some of the A; will be
equal if q(A) has multiple roots.

For each i=1,...,p, [A=AI|=0, so A~ is singular. Hence, there
exists a non-zero vector v satisfying

Ay=Ay. (A.6.2)

Any vector satisfying (A.6.2) is called a (right) eigenvector of A for the
eigenvalue A. If A; is complex, then y may have complex entries. An
eigenvector y with real entries is called standardized if

vy=1. (A.6.3)

If x and y are eigenvectors for A, and a € R, then x+y and ax are also
eigenvectors for A, Thus, the set of all eigenvectors for A; forms a
subspace which is called the eigenspace of A for A,.

Since the coefficient of A in q(A) is (—~1)°, we can write q(A) in terms
of its roots as

aW =TT -2).

i=1

Setting A =0 in (A.6.1) and (A.6.4) gives

IAl=]TA; (A.6.5)
that is, |A| is the product of the eigenvalues of A. Similarly, matching the

(A.6.4)

]

coefficient of A in (A.6.1) and (A.6.4) gives

M a; = trA= M W—w A}.m.@u
that is, tr A is the sum of the nmmosﬁ_.:om of A.
Let C(p X p) be a non-singular matrix. Then
|A—A1|=|C||A-AC7'C|C'|=|CAC™ — Al (A.6.7)

Thus A and CAC™! have the same eigenvalues. Further, if is an
eigenvector of A for A, then CAC™(Cy) = A;,Cy, so that

v=Cxy
is an eigenvector of CAC™' for A, .
Let amm R. Then |A +al—Al=|A—(A—a)l|, so that A +al has eigen-
values A, +a. Further, if Ay= Ay, then (A+aly=(A; +a)y, so that A

and A +al have the same eigenvectors. .
Bounds on the dimension of the eigenspace of A for A; are given by the

following theorem.

Theorem A.6.1 Let A, denote any particular @_.mnzcmh:.m.&. A(px E. with
eigenspace H of dimension r. If k denotes the multiplicity of A, in q(A),
then 1<r=<k.

Proof Since A, is an eigenvalue, there is at least one non-trivial eigen-

vector so r=1. . .
Let e,,...,e be an -orthonormal basis of H and extend it so that

[ e, f,...,5,_, is an orthonormal basis of RP”. i...:a E=

Ah. | .., owu mﬂuﬁr ..., £,_,). Then (E,F) is an orthogonal matrix so that

L = (E.F)(E, Fy =EE'+FF and |E,F)|=1. Also EAE=\EE=AL,
u L] ’

FF=1,_, and FFAE = \,FFE=0. Thus

q(\)=|A— Al =|(E, F)| |A - AL{|(E, F)|
=|(E, F)[AEE'+ AFF — \EE' - AFF'}(E, F)|

_ A>n|>v-q HJPH_
1 o FAF-AL_,

=(A—A) q1(Q), say,

using (A.2.3i). Thus the multiplicity of A, as a root of g(A) is at least r.

Remarks (1) If A is symmetric then r=k; see Section A.6.2. However,
if A is not symmetric, it is possible that r <k. For example,

A=(o o)



has eigenvalue 0 with multiplicity 2; however, the corresponding eigen-
space which is generated by (1, 0)' only has dimension 1.

(2) If r=1, then the eigenspace for A, has dimension 1 and the
standardized eigenvector for A, is unique (up to sign).

Now let A(n xp) and B(p X n) be any two matrices and suppose n = p.
Then from (A.2.3j)

—Al,
B

|_> _ =(-A)"" [BA-AL|=|AB-ALl  (A.6.8)

Hence the n eigenvalues of AB equal the p eigenvalues of BA, plus the

eigenvalue 0, n—p times. The following theorem describes the relation-
ship between the eigenvectors.

Theorem A.6.2 For A(nxp) and B(p X n), the non-zero eigenvalues of
AB and BA are the same and have the same multiplicity. If x is a
non-trivial eigenvector of AB for an eigenvalue A#0, then y=Bx is a
non-trivial eigenvector of BA.

Proof The first part follows from (A.6.8). For the second part substitut-
ing y = Bx in the equation B(ABx) = ABx gives BAy = Ay. The vector x is
non-trivial if x#0. Since Ay=ABx=Ax#0, it follows that y#0
also. H

Corollary A.6.2.1 For A(nXp), B(q%n),a(px1), and b(qx1), the matrix
Aab'B has rank at most 1. The non-zero eigenvalue, if present, equals
b'BAa, with eigenvector Aa.

Proof The non-zero eigenvalue of Aab'B equals that of b'BAa, which
is a scalar, and hence is its own eigenvalue. The fact that Aa is a
corresponding eigenvector is easily checked. M

A.6.2 Symmetric matrices

If A is symmetric, it is possible to give more detailed information about
its eigenvalues and eigenvectors.

Theorem A.6.3 All the eigenvalues of a symmetric matrix A(p X p) are
real,

Proof If possible, let
y=x+1y, A=a+ib, vy#0. (A.6.9)
From (A.6.2), after equating real and imaginary parts, we have

Ax=ax- by, Ay=bx+ay.

On premultiplying by ¥’ and x', respectively, and subtracting, we obtain
b =0. Hence from (A.6.9), A is real. W

In the above discussion, we can choose y =0 so we can assume vy to be
real.

Theorem A.6.4 (Spectral decomposition theorem, or Jordan decomposi-
tion theorem) Any symmetric matrix A(p X p) can be written as

A =TAI" = Y. hyayYlor (A.6.10)

where A is a diagonal matrix of eigenvalues of A, and T is an orthogonal
matrix whose columns are standardized eigenvectors.

Proof Suppose we can find orthonormal vectors v, . . - , ¥ Such that
Ay = Ay for some numbers A;. Then

..Ph- n. = w.__
YioAva = MYoYn = ?, i

or in matrix form
I'AT = A. (A.6.11)

Pre- and post-multiplying by T' and I gives (A.6.10). From (A.6.7), A
and A have the same eigenvalues, so the elements of A are exactly the
eigenvalues of A with the same multiplicities.

Thus we must find an orthonormal basis of eigenvectors. Note that if
N#A; are distinct eigenvalues with eigenvectors x+y, respectively,
then \,Xy=XAy=yAx=\yx, so that yx=0. Hence for a symmetric
matrix, eigenvectors corresponding to distinct eigenvalues are orthogonal to
one another.

Suppose there are k distinct eigenvalues of A with corresponding
eigenspaces H,, ..., H, of dimensions ry,...,n. Let

Since distinct eigenspaces are orthogonal, there exists an orthonormal set
of vectors e, .. .,e, such that the vectors labelled

i-1
M Ll
i-1 i

form a basis for H,. From Theorem A.6.1, r; is less than or equal to the
multiplicity of the corresponding eigenvalue. Hence by re-ordering the
eigenvalues A; if necessary, we may suppose

M-...

f
1

>ﬂp">mﬂ_4 m”H'...qﬂ‘
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and r=<p. (If all p eigenvalues are distinct, then we know from Theorem
A.6.1 that r=p).

If r=p, set y;,=e, and the proof follows. We shall show that the
situation r< p leads to a contradiction, and therefore cannot arise.

Without loss of generality we may suppose that all of the eigenvalues of
A are strictly positive. (If not, we can replace A by A +al for a suitable
a, because A and A +al have the same eigenvectors). Set

B=A- M Aeel.

i=1

Then

trB=trA— M Alele) = M A >0,

i=1 i=r+1

since r<p. Thus B has at least one non-zero eigenvalue, say 6. Let x# 0
be a corresponding eigenvector. Then for 1=<<j=<r,

fe/x=e/Bx = ?o_T Y ?Egi_nn 0,
i=1

so that x is orthogonal to e;, j=1, ..., r. Therefore,

Ox=Bx = ?rM >..iYu2TM A (e/x)e; = Ax

so that x is an eigenvector of A also. Thus 6 = A; for some i and x is a
linear combination of some of the e, which contradicts the orthogonality
between x and the ¢, M

Corollary A.6.4.1 If A is a non-singular symmetric matrix, then for
any integer n,

A" =diag(A]) and A"=TA"T". (A.6.12)

If all the eigenvalues of A are positive then we can define the rational
powers

A" =TA™I", where A" =diag(A}"), (A.6.13)

for integers s>0 and r. If some of the eigenvalues of A are zero, then
(A.6.12) and (A.6.13) hold if the exponents are restricted to be non-
negative.

Proof Since
AZ=(AI")?=TAT'TAI" =TAT'
and

AT'=TA™I', A'=diag(A{’),

-

we see that (A.6.12) can be easily proved by induction. To check that
rational powers make sense note that

(A”*Y =TA™I"...TA”T"=TAT'=A" B
Motivated by (A.6.13), we can define powers of A for real-valued

exponents.
Important special cases of (A.6.13) are
A=TAYT, A=diag(A{") (A.6.14)
when A, =0 for all i and
V e R A~ V2=diag (A7) (A.6.15)

when A, >0 for all i. The decomposition (A.6.14) is called the symmetric
square root decomposition of A.

Corollary A.6.4.2 The rank of A equals the number of non-zero eigen-
values.

Proof By (A.4.2f), r(A)=r(A), whose rank is easily seen to equal the
number of non-zero diagonal elements. W

Remarks (1) Theorem A.6.4 shows that a symmetric matrix A is
uniquely determined by its eigenvalues and eigenvectors, or more specifi-
cally by its distinct eigenvalues and corresponding eigenspaces.

(2) Since A'? has the same eigenvectors as A and has eigenvalues
which are given functions of the eigenvalues of A, we see that the
symmetric square root is uniquely defined.

(3) If the A, are all distinct and written in decreasing order say, then T’
is uniquely determined, up to the signs of its columns.

(4) If Agsy = ... =A, =0 then (A.6.10) can be written more compactly
as

3
A=TATI= M.. AivarYios
i=1
where A, =diag (A, ..., A) and Ty =(yay -« - s ¥oo)-
(5) A symmetric matrix A has rank 1 if and only if
A=xx

for some x. Then the only non-zero eigenvalue of A is given by
trA=trxx' =x'x

and the corresponding eigenspace is generated by x.
(6) Since J=11' has rank 1 with eigenvalue p and corresponding
eigenvector 1, we see that the equicorrelation matrix E = (1—p)I+pJ has



eigenvalues A, =1+(p—1)p and A,=...=Xi,=1—p, and the same
eigenvectors as J. For the eigenvectors vy, . .., ¥ We can select any
standardized set of vectors orthogonal to 1 and each other. A possible
choice for T is the Helmert matrix of Section A.3.1. Multiplying the
eigenvalues together yields the formula for |E| given in (A.3.2c).

(7) If A is symmetric and idempotent (that is, A = A’ and A®=A), then
A =0 or 1 for all i, because A =A? implies A=A

(8) If A is symmetric and idempotent then r(A)=tr A. This result
follows easily from (A.6.6) and Corollary A.6.4.2.

(9) As an example, consider

1
A= P @ (A.6.16)
The eigenvalues of A from (A.6.1) are the solutions of
1-A »p _ 5
_ p 1= =0,
namely, A; =1+p and A,=1—p. Thus,
A=diag(1+p, 1-p). (A.6.17)

For p#0, the eigenvector corresponding to A, =1+p from (A.6.2) is

(e DE)-a+0)

which leads to x; = x,, therefore the first standardized eigenvector is

Yo = nuﬂmv

Similarly, the eigenvector corresponding to A,=1—p is

V2
Yo = AIHJ\MV

Hence,

- A:..\m :,.\J.

12 -1v2
If p=0 then A =1 and any orthonormal basis will do.

(10) Formula (A.6.14) suggests a method for calculating the symmetric
square root of a matrix. For example, for the matrix in (A.6.16) with

(A.6.18)

b e

p?<1, we find on using A and I' from (A.6.11) and (A.6.14) that

>_BHH>:~—..HA9 vg
b al

where
2a=(1+p)"*+(1-p)%,  2b=(1+p)"*~(1-p)"".

*(11) The following methods are commonly used to calculate eigen-
values and eigenvectors on computers. For symmetric matrices, the
Householder reduction to tri-diagonal form (i.e. a; =0, for i=j+2 and
i<j-2) is used followed by the QL algorithm. For non-symmetric
matrices, reduction to upper Hessenberg form (i.e. a; =0 for i=j+2) is
used followed by the QR algorithm. ;

(12) For general matrices A (n X p), we can use the spectral decomposi-
tion theorem to derive the following result.

Theorem A.6.5 (Singular value decomposition theorem) If A is an
(n X p) matrix of rank r, then A can be written as

A=ULV (A.6.19)

where U(nxr) and V(pxr) are column orthonormal matrices (U'U=
V'V=1) and L is a diagonal matrix with positive elements.

Proof Since A'A is a symmetric matrix which also has rank r, we can use
the spectral decomposition theorem to write

A'A=VAV', (A.6.20)

where V(pxr) is a column orthonormal matrix of eigenvectors of A'A
and A =diag (A, ..., A,) contains the non-zero eigenvalues. Note that all
the A, are positive because \; = v{,A'Avy, =||Av)[*>0. Let

=X12, i=1....n (A.6.21)
and set L=diag(l,,...,[). Define U(n Xr) by
u,,=l"Av,, i=1,...,r (A.6.22)

Then
’ —13=1_.r ] = —-17-—-1 H» m"H.w
ufyg, = IV A AV = N VGG = 0 i%]

Thus U is also a column orthonormal matrix.

Any p-vector x can be written as x=J} &;v;+y where ye N(A), the
null space of A. Note that N(A)=N(A'A) is the eigenspace of A'A for
the eigenvalue 0, so that y is orthogonal to the eigenvectors v,. Let e



denote the r-vector with 1 in the ith place and 0 elsewhere. Then
ULV'x= ), o,ULe, +0
=2, oghug,+0
= M o Av,+Ay =Ax.
Since this formula holds for all x it follows that ULV'=A. H

Note that the columns of U are eigenvectors of AA' and the columns of
V are eigenvectors of A'A. Also, from Theorem A.6.2, the eigenvalues of
AA’ and A'A are the same.

A.7T Quadratic Forms and Definiteness

Definition A quadratic form in the vector x is a function of the form

QW=xAx= ¥ ¥ axz,

i=1j=1

(A.7.1)

where A is a symmetric matrix; that is,

OAHV" Duu.ﬂm+ v +ﬂ3Hw+Nﬂ.—nH~Hm+ vee +M....uﬁ_lu._uH_uinHﬂ.
Clearly, Q(0)=0.

Definition (1) Q(x) is called a positive definite (p.d.) quadratic form if
Qx)>0 for all x#0.

(2) Q(x) is called a positive semi-definite (p.s.d) quadratic form if
Qx)=0 for all x#0.

(3) A symmetric matrix A is called p.d. (p.s.d) if Q(x) is p.d. (p.s.d.)
and we write A>0 or A=0 for A positive definite or positive semi-definite,
respectively.

Negative definite and negative semi-definite quadratic forms are similarly
defined.

For p=2, Q(x)=x3+x3 is p.d. while Q(x)=(x,—x,)? is p.s.d.

Canonical form _Any quadratic form can be converted into a weighted

sum of squares without cross-product terms with the help of the following
theorem.

Theorem A.7.1 For uny symmetric matrix A, there exists an orthogonal
transformation

y=I"x (A.7.2)

b

such that
XAx =Y, ALy, (A.7.3)
Proof Consider the spectral decomposition given in Theorem A.6.4:
A =TAI". (A.7.4)

From (A.7.2),
XAx=yT'ATy=yTTAI'Ty=y'Ay.
Hence (A.7.3) follows. M

It is important to recall that I" has as its columns the eigenvectors of A
and that Ay, ..., A, are the eigenvalues of A. Using this theorem, we can
deduce the following results for a matrix A >0.

Theorem A.7.2 If A>0 then A,>0 for i=1,.
A =0,

..,p. If A=0, then

Proof If A>0, we have, for all x#0,
0<xXAx=Ayi+ ... +Ay}.

From (A.7.2), x#0 implies y #0. Choosing y; =1, y,= ... =Y, uo.. we
deduce that A,>0. Similarly ;>0 for all i. If A=0 the above ine-
qualities are weak. W

Corollary A.7.2.1 If A>0, then A is non-singular and |A|>0.
Proof Use the determinant of (A.7.4) with A,>0. W
Corollary A.7.2.2 If A>0, then A™'>0.
Proof From (A.7.3), we have

XA7'x=2 yA. M

Corollary A.7.2.3 (Symmetric decomposition) Any matrix A=0 can
be written as

(A.7.5)

A =B? (A.7.6)
where B is a symmetric matrix.
Proof Take B=TAY " in (A.7.4). W

Theorem A.7.3 If A=0 is a (pXp) matrix, then for any (p X n) matrix
C, CAC=0. If A>0 and C is non-singular (so p=n), then C'AC>0.

Proof If A=0 then for any n-vector x#0,
¥'C'ACx=(Cx)A(Cx)=0, so C'AC=0.



If A >0 and C is non-singular, the Cx # 0, so (Cx)'A(Cx)>0
Saocy & , 80 (Cx)’A(Cx) >0, and hence

Corollary mr.q.w.u If A=0 and B >0 are (p X p) matrices, then all of the
non-zero eigenvalues of B™'A are positive.

—u-M.e— Since B>0, B~'? exists and, by Theorem A.6.2, B"/2AB™ 2,
HLW, m.mm,_w AB~' have the same eigenvalues. By Theorem A.7.3,
B™“AB™“=0, so all of the non-zero eigenvalues are positive. W

Remarks (1) There are other forms of interest:

(a) h..n.ann.. form. a'’x=a,x,+ ... +a,x,. Generally called a linear com-
bination.

(b) Bilinear form. X' Ay =Y, ayxy;.

(2) We have noted in Corollary A.7.2.1 that |A|>0 for A>0. In fact,
|A :,V.o no.a all partitions of A. The proof follows on considering x'Ax> 0
for all x with x,., = ... =x, =0. The converse is also true.

(3) For
1
Mup _U p’<i1

the transformation (A.7.2) is given by (A.6.18),

uq._. = Akn +HNV.~1\M..
Thus, from (A.7.3) and (A.7.5),

y2=(x,— kuv?\m.

xTx=x3+2px, %, +x3=(1+p)yi+(1—-p)y3,

H 2 2

N‘MI~ .. S 2_ 2y — ¥1 y2

X a=o (x1—2px x5+ x3) H+ﬁ+ulﬁU .

W H.m%wauinm_ interpretation of these results will be found in Section
(4) Note that the centring matrix H=0 because x'Hx =Y (5 —%)*=0.
(5) For any matrix A, AA'=0 and A'A=0. Further, r(AA")=

r(A’A)=r(A).

*A.8 Generalized Inverse

We now consider a' method of defining an inverse for any matrix.

Definition For a matrix A(nxp), A is called a g-inverse (generalized

o i

invers Al
inverse) of A if AA-A=A. (A.8.1)

A generalized inverse always exists although in general it is not unique. W

Methods of construction
(1) Using the singular value decomposition theorem, (Theorem A.6.5)

for A(nxp), write A =ULV'. Then it is easily checked that
A" =VL'U (A.8.2)
defines a g-inverse.

(2) If r(A)=r, re-arrange the rows and columns of A(nxp) and
partition A so that A, is an (rx r) non-singular matrix. Then it can be

verified that
__ (AT J
= A.8.3
S (A8
is a g-inverse.
The result follows on noting that there exist B and C such that

_‘PHM"»_P:W._ pm—"ﬂ >: and }NN"AH >: B.

(3) If A(p % p) is non-singular then A™ = A~ is uniquely defined.

(4) If A(pxp) is symmetric of rank r, then, using Remark 4 after
Theorem A.6.4, A can be written as A =T A"}, where ', is a column
orthonormal matrix of eigenvectors corresponding to the non-zero eigen-
values A, =diag (A, ...,A,) of A. Then it is easily checked that

A =DAT'TY (A.8.4)
is a g-inverse,
Applications
(1) Linear equations. A particular solution of the consistent equations
Ax=b, (A.8.5)
is
x=A"b. (A.8.6)

Proof From (A.8.1),
AA Ax=Ax>> AAb)=b
which when compared with (A.8.5) leads to (A.8.6). M
It can be shown that a general solution of a consistent equation is
x=Ab+(1-G)z,

where z is arbitrary and G = A"A.. For b= 0, a general solution is (1-G)z.



2 Ozanaq.ﬂ.a forms. Let A(p X p) be a symmetric matrix of rank r< p.
Then there exists an orthogonal transformation such that for X restricted

“o M(A) the subspace spanned by the columns of A, x'A"x can be written
$

XA x=) u?/A, (A.8.7)

where Ay, ..., A, are the non-zero eigenvalues of A,

Proof First note that if x lies in M(A) we can write x =
sl (A) write x=Ay for some y,

XA x=yAA Ay=y'Ay

does not a.n.ua:a upon the particular g-inverse chosen. From the spectral
aoooaﬁom_ro:. of A we see that M(A) is spanned by the eigenvectors of
A oo_.m.owvos&nm to non-zero eigenvalues, say by (yq,...,vy,)=T

.ﬂ_n:..m x€ M(A), it can be written as x=T,m for some _1...4%8n _“.
Defining A~ by (A.8.4), we see that (A.8.7) follows. .

Remarks (1) For the equicorrelation matrix E, if
L, . . Z H + - H =
(1-p) 1 is a g-inverse of E. PN e
(2) Under the following conditions A~ is defined uniquely:
AAA=A, AA and A"A symmetric, A-AA-=A-

*(3) For A=0, A~ is normall i
. ) y computed by using Cholesky d s
ition (see Remark 4, Section A.2.4.). e s

A.9 Matrix Differentiation and Maximization Problems

Let us define the derivative of f(X) with respect to X(n x p) as the matrix

3(X) _ (200)

oX 9%

We have the following results:

oa'x _

ﬁc Mﬁ?ln. TP.@.C
a'x_ . OAx _ . OX'Ay

(I ——=2x, ax (AT AX, ——==Ay. (A.9.2)

(I11) % = X, if all elements of X(n xn) are distinct
Xij
x:u m“mu s - .
= f X is symmetric, (A.9.3)
rx:. ) B R
where X;; is the (i, j)th cofactor of X.
(IV) Wﬁw%ﬂd. if all elements of X(n X p) are distinct,
=Y + Y —Diag (Y) if X(nXxn) is symmetric. (A9.4) -
-1
V) mImN]iu ~X"'3, X" if all elements of X(n % n) are distinct
Xij
X3, X i nJ N ;
e u k] x ﬁ :
Aixl_@lu__;ﬂl, i#] if X is symmetric
(A.9.5)
where J;; denotes a matrix with a 1 in the (i, j)th place and zeros
elsewhere.

We now consider some applications of these results to some stationary
value problems. .
Theorem A.9.1 The vector x which minimizes
f(x)=(y—Ax)'(y—Ax)
is given by
A'Ax=Aly. (A.9.6)

Proof Differentiate f(x) and set the derivative equal to 0. Note that the
second derivative matrix 2A’A = 0 so that the solution to (A.9.6) will give
a minimum. Also note that from (A.4.3¢), (A.9.6) is a consistent set of

equations. M '

Theorem A.9.2 Let A and B be two symmetric matrices. Suppose that
B >0. Then the maximum (minimum) of x'Ax given

WBx=1 (A9.7)

is attained when x is the eigenvector of B™'A corresponding to the largest

(smallest) eigenvalue of B 'A. Thus if A, and A, are the largest and

smallest eigenvalues of B™'A, then, subject to the constraint (A.9.7),
maxxAx=1;, minxAx=A, (A.9.8)

Proof Let B2 denote the symmetric square root of B, and let y =B"?x.



Then the maximum of x’Ax subject to (A.9.7) can be written as

max yB2AB "%y subjectto y'y=1. (A.9.9)

_—..\.M” :ﬂluuwﬂ.w,%““ubﬂﬁw be a spectral decomposition of the symmetric
. Let z=T"y. Th =yTT'y=y
i i y en Zz=yTIT'y=y'y so that (A.9.9)

max 7' Az = max Y Az? subjectto zz=1. (A.9.10)

If the eigenvalues are written in descending order then (A.9.10) satisfies
max ), \,z2< )\, max Y 22=),.

Further this bound is attained for z=(1, 0, . .., 0, that is for y = d
for x=B~"y,,. By Theorem A.6.2, B"'A and wLbb-—-.w __Hﬂw ”ﬂo
same eigenvalues and x =B~""%y,,, is an eigenvector of B™'A correspond-
ing to A,. Thus the theorem is proved for maximization. .

The same technique i i
Mgl q can be applied to prove the minimization

Corollary A.9.2.1 If R(x)=x'Ax/x'Bx then, for x#0,

A, <R(x)=A,. (A.9.11)

-_v._-dem Since R(x) mm Eé:ﬁ: under changes of scale of =, we can regard
the problem as maximizing (minimizing) x’Ax given (A.9.7). W

Corollary A.9.2.2 The maximum of a'x subject to (A.9.7) is
(a'B 'a)'2, (A9.12)
Further
max {(@'x)*/(x'Bx)} =a'B"'a (A.9.13)

and the maximum is attained at x=B " 'a/(a’'B'a)'"2.
Proof Apply Theorem A.9.2 with ¥Ax=(a'x)’=x'(aa')x. W

Ho_wﬂ.._s (1) > n._w.oﬁ method is sometimes instructive. Consider the
problem of maximizing the squared distance from the origin

hn+<u
of a point (x, y) on the ellipse

.y

2
s+s=1. (A.9.14)

2
o

When y? is eliminated, the problem reduces to finding the maximum of
x2+b2(x*a*-1), x€[-a,al.
Setting the derivative equal to 0 yields the stationary point x =0 which,
from (A.9.14), gives y = +b. Also, at the endpoints of the interval (x = +a),
we get y=0. Hence
max (x2+ y?) = max (a?, b?).
This solution is not as elegant as the proof of Theorem A.9.2, and does

not generalize neatly to more complicated quadratic forms.
(2) The results (A.9.1)-(A.9.2) follow by direct substitution, e.g.

hn_xilmlan x,+ + )=a
" By, AT e ayXyp 1

proves (A.9.1). For (A.9.3) use (A.2.3d).

A.10 Geometrical Ideas

A.10.1 n-dimensional geometry

Let e, denote the vector in R™ with 1 in the ith place and zeros elsewhere
so that (e,,...,e,) forms an orthonormal basis of R". In terms of this
basis, vectors x can be represented as x=) xe, and x; is called the ith
coordinate axis. A point a in R" is represented in terms of these
coordinates by x;=ay, ..., X, = Gy The point a can also be interpreted as
a directed line segment from 0 to a. Some generalizations of various basic
concepts of two- and three-dimensional analytic Euclidean geometry are
summarized in Table A.10.1.

A.10.2 Orthogonal transformations

Let T be an orthogonal matrix. Then T'e; =), i=1,..., 1, also form an
orthonormal basis and points x can be represented in terms of this new

basis as
x= 2, %€= 2, Y¥ar
where y, =X are new coordinates. If % and x® are two points with
new coordinates y'* and y® note that
A%:‘_ 1%3&&%: e u__SJ - ANH: . NSJ_.H..—..AH:._ 4 SJ
oy ANEIuGJAu:HIMGJ.



Table A.10.1 Basic concepts in n-dimensional geometry

Concept Description A__u__n AM awv.av

Point a X1=0qy,...,%, =4,

fa-bl={L @by}

Line passing through a, b x=Aa+(1-2)b is the equation

Line passing through 0, a x=Aa

Angle between lines from
Otoaand0tob

Distance between a and b

Direction cosine vector of a line (cos vy, ..., cos ¥,), cos v, = a/lal;
from 0 to a v, =angle between line and ith axis
Plane P a’x=c is general equation
Plane through b, ..., b, x=2Ab, YA=1
Plane through 0, b,, . .., b, x= 2 Ab,
Hypersphere with centre a
and radius r (x—a)(x—a)=r?
Ellipsoid (x—a)A ' (x—a)=c* A>0

6 where cos 8 =a'b/{|a [b]}'*>, 0<@<=

so that orthogonal transformations preserve distances. An orthogonal
transformation represents a rotation of the coordinate axes (plus a
reflection if [I|=~1). When n=2 and |I'|=1, T can be represented as

Aocm mlwma J
sin® cos@

and represents a rotation of the coordinate axes counterclockwise through
an angle 6.

A.10.3 Projections

Consider a point a, in n dimensions (see Figure A.10.1). Its projection
onto a plane P (or onto a line) through the origin is the point & at the foot
of the perpendicular from a to P. The vector & is called the orthogonal
projection of the vector a onto the plane.

Let the plane P pass through points 0, b,,...,b, so that its equation
from Table A.10.1 is

N"M\f_—um. H"A—u?...'-vrw.
Suppose rank (B) = k so that the plane is a k-dimensional subspace. The

U

Figure A.10.1 4 is the projection of a onto the plane P.

point & is defined by x= Mm_v: where Xy, ..., A, minimize
Tl M ??s .
since # is the point on the plane closest to a. Using Theorem A.9.1, we
deduce the following result.
Theorem A.10.1 The point @ is given by

4=B(B'B) 'B'a. B (A.10.3a)
any

Note that B(B'B)'B’ is a symmetric idempotent matrix. #.. ?.or
symmetric idempotent matrix can be used to represent a projection.

A.10.4 Elipsoids

Let A be a p.d. matrix. Then
(x—a)A l(x—a)=c? (A.10.4a)
ipsoid i i i We note that the centre of the
epresents an ellipsoid in n dimensions. .
M:_Mﬁmca is at x =a.. On shifting the centre to x=0, the equation becomes
XA 'x=c% (A.10.4b)

Definition Let x be a point on the ellipsoid defined by A>.5...amv and J”
f(x)=|ix—all* denote the squared distance between o and x. } r.:« «ra.zm
a and x for which x is a stationary point of f(x) is called a principal axis of



the ellipsoid. The dist, —all i o
pinslog aM.m. istance |x—al is called the length of the principal

Theorem A.10.2 Let A,,..., A, be the eigenvalues of A satisfying A, >

Ay> ... >),. Suppose that i
ne Y1)+« + » Yy AT n‘ﬂ& correspond i =-
tors. For the ellipsoids (A.10.4a) and AV_.ELS. we rauem e e

(1) The direction cosine vector of the ith principal axis is .
(2) The length of the ith principal semi-axis is cA}.

Proof It is w.m_.mnmni to prove the result for (A.10.4b). The problem
_.oa._oo.m 8.?55@ the stationary points of f(x)=x'x subject to x lying on
the ellipsoid ¥’ A™'x = c?. The derivative of x’A 'x is 2A"'x. Thus a point
y represents a direction tangent to the ellipsoid at x if Nw.mPLuuov
..H.ro. anna..mmﬁ of f(x) is 2x so the directional derivative of f(x) m.a the
direction y is 2y'x. Then x is a stationary point if and only if for all points
y representing tangent directions to the ellipsoid at x, we have 2y'x=0;

that is if
YAT'x=0>y'x=0.

This condition is satisfied if and only if A 'x i .
if x i y if A™"'x is proportional to x; that is i
and only if x is an eigenvector of A", R 0 x; that is if

Az

Y2 y2x

yiEyr'x

i

Figure A.10.2 Ellipsoid XA 'x=1. Lines de
ared second pancioal aves, Tl bl i fined by y, and y, are the first

Setting x= By, in (A.10.4b) gives B2/A, =c?, so B =cA}™. Thus, the
theorem is proved. M

If we rotate the coordinate axes with the transformation y =1"x, we
find that (A.10.4b) reduces to

M w:n.... A= e
Figure A.10.2 gives a pictorial representation.
With A =1, (A.10.4b) reduces to a hypersphere with A, = ... =A, =1

so that the As are not distinct and the above theorem fails; that is, the
position of vq, i=1,...,m through the sphere is not unique and any
rotation will suffice; that is, all the n components are isometric.

In general, if A=Ay, the section of the ellipsoid is circular in the
plane generated by v, Ya+n- Although we can construct two perpendicu-
lar axes for the common root, their position through the circle is not
unique. If A equals the equicorrelation matrix, there are p—1 isotropic
principal axes corresponding to the last p—1 eigenvalues,



