Exercise 10 (Solution)
(e). We have that

p(0lz) o p(0)p(z|0) = p(0)g(T; 6)h(z)
showing that the posterior only depend on z through T.
(f). We have
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which only depend on (z,5?)

(9). p(u,7|z) = p(p|T, z)p(7|2) is given directly by rules from probability. Since we in the
first part considered % and therefore 7 fixed, we have that p(u|7,z) is as we showed
in (d).

Also p(7|z) o p(7)p(z|T) is given directly by probability rules.
(h). We have that z; = 1 + &; so that

Elz] =E[p] + Elei] = po
Var[z;] =Var[u] + Var[e;] = ko? + 0 = (k + 1)0?
Cov[zi, 2;] =Cov[u + &i, u + €] = Coviu, u] + Covle;, J¢;] = ko?

which, together with that all the components of z are normal, gives the result.

(7). We have
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This gives directly the density given using the multivariate normal distribution from
the previous question.



(7). We have that
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with
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a =a
b=b+0.5(z — pol)"[I — 1+’7€m11T](z — pol)

which is proportional to the Gamma distribution with parameters @ and b. Since both

p(7|z) and this Gamma distributions need to integrate to one we get that p(7|z) is
equal to this Gamma distribution.



