Exercise 10 (Solution)
(e). We have that

$$
p(\boldsymbol{\theta} \mid \mathbf{z}) \propto p(\boldsymbol{\theta}) p(\mathbf{z} \mid \boldsymbol{\theta})=p(\boldsymbol{\theta}) g(\mathbf{T} ; \boldsymbol{\theta}) h(\mathbf{z})
$$

showing that the posterior only depend on \mathbf{z} through \mathbf{T}.
(f). We have

$$
\begin{aligned}
f(\mathbf{z} ; \boldsymbol{\theta}) & =\prod_{i=1}^{m} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(z_{i}-\mu\right)^{2}\right\} \\
& =\frac{1}{(2 \pi)^{m / 2} \sigma^{m}} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{m}\left(z_{i}-\bar{z}+\bar{z}-\mu\right)^{2}\right\} \\
& =\frac{1}{(2 \pi)^{m / 2} \sigma^{m}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left[\sum_{i=1}^{m}\left(z_{i}-\bar{z}\right)^{2}+m(\bar{z}-\mu)^{2}\right]\right\} \\
& =\frac{1}{(2 \pi)^{m / 2} \sigma^{m}} \exp \left\{-\frac{m}{2 \sigma^{2}}\left[\hat{\sigma}^{2}+(\bar{z}-\mu)^{2}\right]\right\}
\end{aligned}
$$

which only depend on ($\bar{z}, \hat{\sigma}^{2}$)
(g). $p(\mu, \tau \mid \mathbf{z})=p(\mu \mid \tau, \mathbf{z}) p(\tau \mid \mathbf{z})$ is given directly by rules from probability. Since we in the first part considered σ^{2} and therefore τ fixed, we have that $p(\mu \mid \tau, \mathbf{z})$ is as we showed in (d).
Also $p(\tau \mid \mathbf{z}) \propto p(\tau) p(\mathbf{z} \mid \tau)$ is given directly by probability rules.
(h). We have that $z_{i}=\mu+\varepsilon_{i}$ so that

$$
\begin{aligned}
E\left[z_{i}\right] & =E[\mu]+E\left[\varepsilon_{i}\right]=\mu_{0} \\
\operatorname{Var}\left[z_{i}\right] & =\operatorname{Var}[\mu]+\operatorname{Var}\left[\varepsilon_{i}\right]=k \sigma^{2}+\sigma^{2}=(k+1) \sigma^{2} \\
\operatorname{Cov}\left[z_{i}, z_{j}\right] & \left.=\operatorname{Cov}\left[\mu+\varepsilon_{i}, \mu+\varepsilon_{j}\right]=\operatorname{Cov}[\mu, \mu]+\operatorname{Cov}\left[\varepsilon_{i},\right] \varepsilon_{j}\right]=k \sigma^{2}
\end{aligned}
$$

which, together with that all the components $\mathbf{~ o f ~} \mathbf{z}$ are normal, gives the result.
(i). We have

$$
\begin{gathered}
{\left[\mathbf{I}+k \mathbf{1 1}^{T}\right]\left[\mathbf{I}-\frac{k}{1+k m} \mathbf{1 1}^{T}\right]=\mathbf{I}-\frac{k}{1+k m} \mathbf{1 1}^{T}+k \mathbf{1 1}^{T}-\frac{k^{2} m}{1+k m} \mathbf{1 1}^{T}} \\
=\mathbf{I}+\frac{-k+k+k^{2} m-k^{2} m}{1+k m} \mathbf{1 1}^{T}=\mathbf{I}
\end{gathered}
$$

This gives directly the density given using the multivariate normal distribution from the previous question.
(j). We have that

$$
\begin{aligned}
p(\tau \mid \mathbf{z}) & \propto \tau^{a-1} e^{-b \tau} \tau^{m / 2} \exp \left\{-0.5 \tau\left(\mathbf{z}-\mu_{0} \mathbf{1}\right)^{T}\left[\mathbf{I}-\frac{k}{1+k m} \mathbf{1 1}^{T}\right]\left(\mathbf{z}-\mu_{0} \mathbf{1}\right)\right\} \\
& \propto \tau^{a+m / 2-1} \exp \left\{-\left[b+0.5\left(\mathbf{z}-\mu_{0} \mathbf{1}\right)^{T}\left[\mathbf{I}-\frac{k}{1+k m} \mathbf{1 1}^{T}\right]\left(\mathbf{z}-\mu_{0} \mathbf{1}\right)\right] \tau\right\} \\
& \propto \tau^{\bar{a}-1} \exp \{-\bar{b} \tau\}
\end{aligned}
$$

with

$$
\begin{aligned}
& \bar{a}=a+m / 2 \\
& \bar{b}=b+0.5\left(\mathbf{z}-\mu_{0} \mathbf{1}\right)^{T}\left[\mathbf{I}-\frac{k}{1+k m} \mathbf{1} \mathbf{1}^{T}\right]\left(\mathbf{z}-\mu_{0} \mathbf{1}\right)
\end{aligned}
$$

which is proportional to the Gamma distribution with parameters \bar{a} and \bar{b}. Since both $p(\tau \mid \mathbf{z})$ and this Gamma distributions need to integrate to one we get that $p(\tau \mid \mathbf{z})$ is equal to this Gamma distribution.

