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Exercise 1 (AR(1) models)
Consider the AR(1) process

x1 =µ1 + σ1ε1

xi =µ+ a(xi−1 − µ) + σεi, i = 2, 3, ...

where ε1, ε2, ... are iid standard normal variables and σ1 = σ/
√

1− a2. We will assume
0 < a < 1 and σ > 0.

(a). Show that if µ1 = µ and σ1 = σ/
√

1− a2, then

E(xi) =µ

Var(xi) =Var(x1)

Cov(xi, xi+τ ) =Var(xi)a
τ

for all i > 1.

Hint: Show it recursively.

A random vector x = (x1, · · ·xn)T is said to have the multivariate normal distribution if it
satisfies the following condition:

Every linear combination of its components

y = a1x1 + · · ·+ anxn

is normally distributed. That is, for any constant vector a ∈ Rn, the random variable
y = aTx has a univariate normal distribution.

If µ is the expectation vector of X and Σ is the covariance matrix of x, we say that
x ∼ MVN(µ,Σ) or just x ∼ N(µ,Σ).

(b). Show that x = (x1, ..., xn) is MVN(µ,Σ) where Σ is a matrix with elements

Σi,i =σ2
1

Σi,i+τ =σ2
1a

τ
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Maximum likelihood estimates for (a, µ, σ2) can be obtained by maximizing

L(a, µ, σ2) = f(x|a, µ, σ2)

In general these equations become a bit complicated. We will therefore do two “tricks” to
make it simpler.

The first trick is to define µ̃ = µ(1− a) such that

xi = µ̃+ axi−1 + σεi, i = 2, 3, ...

The second trick is to consider an approximate likelihood function defined as

L̃(a, µ, σ2) = f(x−1|x1, a, µ, σ
2),

where x−1 = (x2, ..., xn). That is we assume x1 do not contain any information about
(a, µ, σ2) (this is not true in practice, but if n is large, the information loss is negligible).

(c). Write down the log-likelihood based on L̃ and use this to derive a linear equation
system that the ML estimates for (a, µ̃) must satisfy. How can you obtain an estimate
of µ from this?

Also find an explicit expression for the ML estimate for σ2 as a function of the other
parameters.

Luckily, we do not have to implement these equations because most packages have suitable
routines for doing this. We will see how we can perform estimation in R using the routine
gls within the library nlme.

(d). Show that

cor(xi, xj) = exp(−|i− j|/θ)

for a proper choice of θ. This correlation structure is usually named the exponential
correlation function

(e). At the course home page, there is a file x sim.dat which contains a simulated time
series from the AR(1) model with a = 0.9, µ = 2 and σ = 1.

The following R code can be used for estimation of the parameters involved:

tim = 1:100

fit = gls(x~1,correlation=corAR1(form=~tid))

summary(fit)

Take a look on the help page for the gls and make sure you understand the call
above.

Read out the parameter estimates from the output of the call and compare with the
true values.
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(f). Try also out the command

fit2 = gls(x~1,correlation=corExp(form=~tid))

and from exercise (d) try to make the connection between the phi parameter in fit

and the range parameter in fit2.

Exercise 2
Consider the state space model

Y1 ∼N(µ1, σ
2
1)

Yt =αYt−1 +Wt, t = 2, 3, ... Wt
ind∼ (0, σ2)

Zt =Yt + ηt, t = 1, 2, 3, ... ηt
ind∼ (0, τ 2)

where all {Wt} also are independent of all {ηt}. We will assume that µ1 = 0 and σ2
1 =

σ2/(1− α2) in the following (corresponding to 2. order stationarity).
Assume we observe Z = (Z1, ..., ZT )T . We will in this exercise consider methods for

calculating the density f(z1, ..., zT ;θ), corresponding to the likelihood L(θ) where θ are
the parameters involved.

The following results from probability theory will be useful: Assume X1 and X2 are
arbitrary random variables while X3 may be a random variable or a vector of random
variables. Then

E[X1|X2] =E[E[X1|X2, X3]]

var[X1|X2] =var[E[X1|X2, X3] + E[var[X1|X2, X3]]

cov(X1, X2) =E[cov(X1, X2)|X3] + cov[E(X1|X3), E(X2|X3)].

Further, if X = (X1, X2) is bivariate normally distributed with expectation vector ν and
covariance matrix Σ then

E(X1|X2 = x2) =ν1 + Σ12Σ−1
22 (x2 − ν2)

var(X1|X2 = x2) =Σ11 − Σ12Σ−1
22 Σ21

This result also holds if X is conditioned on some other variable(s).

(a). Show that Z is multivariate normal distributed.

Hint: Use the results for the AR(1) model in the previous model.

(b). Find the expectation of Zt.

Hint: Use the rule of double expectation and condition on Yt.
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(c). Show that

cov(Zt, Zt+τ ) = cov(Yt, Yt+τ ) + τ 2
t I(τ = 0)

where I(·) is the indicator function.

Hint: Use the rules above with X3 = (Yt, Yt+τ ).

The results above combined with that the multivariate density is given by

f(z;θ) =
1

(2π)T/2|Σ|1/2
exp{−0.5(z− µ)TΣ−1(z− µ)}

can be used to calculate the density for any T . A problem with this approach is however
that when T is large, the matrix calculations involved can be computationally costly, and
cheaper alternatives would be preferable. We will look at how calculations can be performed
recursively.

For the following, define

ŷt|s =E(Yt|Z1, ..., Zs) ẑt = E(Zt|Z1, ..., Zt−1)

Pt|s =var(Yt|Z1, ..., Zs) St = var(Zt|Z1, ..., Zt−1)

where s = 0 correspond to conditioning on the empty set. Note that ŷ1|0 = µ1 and P1|0 = σ2
1

is given directly by the model.

(d). Show that

f(z;θ) = φ(z1;µ1, σ
2
1 + τ 2)

T∏
t=2

φ(zt; ẑt, St)

where φ(z;µ, σ2) is the univariate normal density for Z = z having mean µ and
variance σ2.

(e). Show that

ẑt =ŷt|t−1, St = Pt|t−1 + τ 2
t (*)

(f). Show that(
yt
zt

)
|z1, ..., zt−1 ∼ MVN

((
ŷt|t−1

ẑt

)
,

(
Pt|t−1 Pt|t−1

Pt|t−1 St

))
and use this to show that

ŷt|t =ŷt|t−1 +
Pt|t−1

St
(zt − ŷt|t−1), Pt|t = Pt|t−1 −

P 2
t|t−1

St

Show that these equations are equivalent to

Kt =
Pt|t−1

St

ŷt|t =ŷt|t−1 +Kt(zt − ŷt|t−1), Pt|t = Pt|t−1(1−Kt)
(**)
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(g). Show that

ŷt+1|t =αŷt|t, Pt+1|t = α2Pt|t + σ2 (***)

(h). Consider now a case where observation Zt is missing. Argue that in this case,

ŷt|t =ŷt|t−1, Pt|t = Pt|t−1

while there will be no contribution in the likelihood at this time-step.

(i). Argue why equations (∗),(∗∗) and (∗ ∗ ∗) can be used to calculate the likelihood
recursively.

Equations (∗),(∗∗) and (∗ ∗ ∗) are actually the univariate version of the famous Kalman
filter which you now have verified!

(j). At the course webpage there is an R-script, exer2_kalman.R, including simulation
of data (using the parameter values µ1 = 0, σ1 = 0.1, α = 0.9, β = 1, σ = 0.5, τ = 1)
and performing Kalman filtering.

Run the Kalman filter with the true parameter values and plot the predictions ŷt|t
together with a confidence band (95% prediction intervals). You should also include
the observation points in the plot.

Comment on the results. In particular, what happens with the prediction intervals
when there are several missing values in a row.

(k). In the script there are also commands for calculating the log-likelihood for different
values of α, keeping the other parameters fixed. Look at the plot you get and comment
on the results.

(l). Finally, the script contain a call to the optimization routine nlm which can be used
to maximize the likelihood with respect to all the parameters involved. Look at the
final estimates and comment on the differences from the true values.

Run the Kalman filter again, now using the estimated parameter values. Make a plot
similar to the one made in the routines and discuss differences.

Exercise 3 (Autocorrelation functions)
(a). Consider again the data set from exercise 1 which was simulated data from an AR(1)

model. The autocorrelation function (ACF) can be estimated in R by the acf func-
tion. Perform the commands

x.sim = scan("x_sim.dat")

acf(x.sim)
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The plot shows estimates of ACF for different lags (lag is here defined as the dif-
ference in time). The horizontal dashed lines shows confidence bands which can be
interpreted in that estimates outside these bands are significantly different from zero.

How many significant terms are there? How do the ACF decay with increasing lag?

(b). Consider now data simulated from an MA(q) process which can be simulated (for
q = 2) by

n=100;q=2;beta = c(0.7,0.3)

eps = rnorm(q+n)

x = rep(NA,q+n)

for(i in 1:n)

x[q+i] = eps[q+i]+sum(beta*eps[q+i-1:q])

x = x[-c(1:q)] #Removing the fist q which are just NA

acf(x)

where again the acf routine is used to plot the autocorrelation function.

Repeat the commands above several times. Try also out different values of q (with
your own choice of β’s). What is typically the number of lags for which the correla-
tions are significantly different from zero? Relate this to q.

Discuss how this can can be used to identify the order of the MA process.
It is more difficult to read the order of an AR process from the ACF. A useful alternative

in that case is the partial autocorrelation function (PACF) which is defined as

ρτ = cor[xi, xi+τ |xi+1, ..., xi+τ−1]

(c). Show that for an AR(p) process ρτ = 0 for τ > p

(d). The PACF can also be estimated by the acf routine using the option type="partial",
i.e. try out

acf(x.sim,type="partial")

for the data set from exercise 1. How many significant lags do you get in this case?
How does that fit with the true model?

Exercise 4
The data set Hawaii (available from the course webpage) contains abundance of a bird
species at an island in Hawaii from 1956 to 2003 in addition to the amount rainfall within
each year. A possible regression model in this case is

Yi = β0 + β1i+ β2Ri + εi

where i is a year index, Ri is rainfall in year i while Yi in this case is the square root of
abundance. (in the R-language)
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Hawaii = read.table("Hawaii.txt")

library(nlme)

M0 = gls(sqrt(Abundance)~Year+Rainfall,data=Hawaii)

acf(resid(M0))

where the last command plots the autocorrelation function on the residuals.

(a). Assume first that all the noise terms are independent. R-commands for performing
the regression analysis is given by

Hawaii = read.table("Hawaii.txt")

library(nlme)

M0 = gls(sqrt(Abundance)~Year+Rainfall,data=Hawaii)

acf(resid(M0))

where the last command also plot the ACF. Try out these commands and plot the
ACF function of the residuals. Do they look independent?

(b). An alternative analysis is to assume that the noise terms follow an AR(1) model, i.e.

εi = φεi−1 + ηi

where now the ηi’s are independent. This model can be analyzed by the R-command

M1 = gls(sqrt(Abundance)~Year+Rainfall,data=Hawaii,

correlation=corAR1(form=~Year))

What is the estimate of φ? How can this be used to calculate estimates of ηi?

(c). Calculate estimates of ηi and make a plot of the ACF for these terms. Do the plot
indicate that the AR(1) model is reasonable?

Exercise 5 (Estimation of variograms)
Within the field of geostatistics, it has been more common to talk about variograms rather
than covariance functions. The variogram is defined as

2γY (h) = var[Y (s + h)− Y (s)]

where we indirectly have assumed that the variogram is stationary (do not depend on s).

(a). Show that the variogram can be calculated from the covariance function.

(b). Show that the variogram is equal to zero at h = 0. Find also lim||h||→0 2γY (h) and
relate this to the nugget effect.

(c). Assume the covariance function CY (h) converges to zero as ||h|| increases to infinity.
Find the limit value of the variogram 2γY (h as ||h|| increases to infinity. This limit
value is usually called the (partial) sill of the variogram.
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The variogram can be estimated by

2γ̂0
Z(h) = ave{(Y (si)− Y (sj))

2; ||si − sj|| ∈ T (h)}

Here T (h) can be equal to {h} in which case the variogram only can be estimated for the
distances that are available in the data or it can be a tolerance region around h (e.g. h±∆
where ∆ is small). In principle we could program this estimate by yourself but usually it is
easier to use some available routine. We will here consider the routine variogram within
the R package gstat.

For illustration we will use the sea surface temperature data from the book at February
98 (see fig 5.4). These data are available from the course web page and can be read by the
R command

d = read.table("SST_feb98.txt",header=T)

(d). Calculate and plot the variogram through the command

library(gstat)

plot(variogram(temp~1,d,locations=~x+y)

(Note that it is the estimated semivariogram γ̂0
Z(h) that is plotted.)

(e). Fitting an empirical variogram to a parametric function can be performed through
the command fit.variogram routine. Run the commands

vgm1 = variogram(temp~1,d,locations=~x+y)

res = fit.variogram(vgm1,vgm(psill=1,"Mat",range=300,nugget=1,kappa=0.5))

Here the second input to the fit.variogram both specifies the variogram model
(Matern in this case) and starting values on the parameters involved (see the help
function for the fit.variogram ). Note that the range parameter corresponds to θ1

and kappa corresponds to θ2 in equation (4.6) in the book. Note also that the routine
uses a parameter called partial sill (psill ). This is defined as

psill = Var[Y (s)]− nugget

which is the part of the total variance that is not the nugget effect. This can be used
to calculate the nugget effect.

What are the estimates of the parameters in this case?

You can also plot the empirical variogram together with the estimated parametric
variogram through the commands

plot(vgm1$dist,vgm1$gamma)

lines(variogramLine(vgm(res[2,2],"Mat",res[2,3],kappa=0.5),

maxdist=max(vgm1$dist)))
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Do the fitted variogram look reasonable in this case?

(f). The fit.variogram actually do not estimate kappa but only uses the specified initial
value. Try out different values of kappa to get a better fit (it is most important that
the fit is good for small values of h).

Exercise 6 (Estimation under dependence)
Assume Z is a random vector of length m following a multivariate normal distribution
MVN(µ1, σ2C) where C in this case is a correlation matrix (the diagonal elements are all
equal to one). Our interest will be in estimation of µ and σ2, assuming C is known and
invertible. We will look at two ways of obtaining the ML estimates.

(a). Show that the density for Z = z can be written as

f(z;µ, σ2) =
1

(2π)m/2|σ2C|1/2
exp{− 1

2σ2
(z− µ1)TC−1(z− µ1)}

(b). Show that the maximum likelihood estimates for µ and σ2 are given by

µ̂ =
1TC−1z

1TC−11

σ̂2 =
1

m
(z− µ̂1)TC−1(z− µ̂1)

The vector 1TC−1

1TC−11
can be considered as a set of weights given to each observation.

(c). Show that for independent data, we get the standard estimates.

(d). As an alternative, write C−1 = LTL (such a matrix L always exists since C is

symmetric). Define Z̃ = LZ. Show that Z̃ ∼ MVN(µL1, σ2I) where I is the identify
matrix of dimension m × m. Argue why this corresponds to an ordinary linear
regression setting with L1 corresponding to the design matrix.

(e). Find the ML estimates for µ and σ2 based on Z̃ and show that this corresponds to
the expressions above.

Consider now a concrete example where the covariances are defined through a stationary
covariance function CZ(h) = exp(−0.5||h||). Assume further you have observed points at
positions {(0.95, 1), (1, 0.95), (1, 1.05), (1.05, 1), (10, 10)}.

(f). Calculate the weight vector in this case. Argue why these weights are reasonable

Exercise 7 (Wiener processes)
Variograms can be stationary even in cases where the covariance function not is stationary.
One such example is the Wiener process. A Wiener process {W (t), t ∈ R+} is a continuous
time process characterized by the three properties
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• W (0) = 0

• The function t→ W (t) is almost surely continuous

• Wt has independent increments with W (t)−W (s) ∼ N(0, t− s)

(a). Show that cov(W (s),W (t)) = min(s, t) so that the covariance function is not sta-
tionary

(b). Show that the variogram Var[W (s + h) − W (s)] = |h| so that the variogram is
stationary

Exercise 8 (Boreality data)
In the introductory lecture we discussed a data set giving the number of species that
belong to a set of boreal species divided by the total number of species at a site (Bor
below). As an explanatory variable we considered an index of wetness (Wet below). In the
introductory lecture we discusses the problems with the independence assumption. The
following commands reproduce the analysis made then:

Boreality = read.table("Boreality.txt",header=T)

Boreality$Bor<-sqrt(1000*(Boreality$nBor+1)/(Boreality$nTot))

library(nlme)

B.lm<-gls(Bor~Wet,data=Boreality)

summary(B.lm)

plot(Boreality$Wet,Boreality$Bor)

E<-resid(B.lm)

library(gstat)

mydata<-data.frame(E,Boreality$x,Boreality$y)

coordinates(mydata)<-c("Boreality.x","Boreality.y")

bubble(mydata,"E",col=c("black","grey"),

main="Residuals",xlab="X-coordinates",

ylab="Y-coordinates")

Vario1 = variogram(E ~ 1, mydata,locations=seq(0,2500,length=20))

plot(Vario1$dist,Vario1$gamma)

In this exercise we will consider a spatial model.

(a). Repeat the commands above and argue why a spatial model is necessary.

(b). A model with a Gaussian covariance function can be fitted by the following commands
(without and with a nugget effect):

fit.gaus0 = gls(Bor~Wet,correlation=corGaus(form=~x+y),data=Boreality)

fit.gaus = gls(Bor~Wet,correlation=corGaus(form=~x+y,nugget=TRUE),data=Boreality)
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(These calls may be a bit time-consuming.)

A possible model comparison criterion is the AIC criterion, defined by

AIC = −2 ∗ log.likelihood + 2 ∗ npar

Here, the best model is considered to be the one with the lowest AIC value.

In R you can easily get the AIC values by the command

AIC(B.lm,fit.gaus0,fit.gaus)

Perform these commands and discuss your results.

(c). Consider now the exponential covariance function (both with and without nugget
effect). Do this model give a better fit to the data? (Use the AIC criterion again.)

(d). Now calculate the fitted variogram for the best model you have found and draw this
line on top of the empirical variogram you fitted above. Do the fit seem reasonable?

Hint: Look at the help page for the appropriate covariance function in order to
calculate this. You will then need to convert from covariance function to variogram.
(Note: I was not able to find out how to extract nugget effect and range from the
fitted objects and had to insert these values manually. If you find out how to do this,
tell me!)

We will now consider the problem of prediction. Assume we want to predict at the
locations sp1 = (2197.922, 2086.046) with corresponding value of Wet = −0.0252 and
sp2 = (1940.748, 1778.798) with corresponding value of Wet = −0.02594. A reasonable
predictor is the conditional expectation using the “plug-in” rule. The plug-in rule means
that we treat the estimates of the parameters as the true values (and ignore the uncertainty
involved here).

Use Z(s) for the response at site s. Denoting Z1 = (Z(s1), ..., Z(sm)) the set of obser-
vations and Z2 = (Z(sp1), Z(sp2)) the prediction points, we are interested in prediction of
Z2 given Z1 (so we here are actually interested in predicting observations at new sites).

(e). Calculate the expectation vector µ1 = E[Z1] and µ2 = E[Z2]

(f). Calculate the covariance matrix of Z1.

Hint: You will here need to calculate all the distances between the positions for Z1

and then use the parametric form of the covariance function to obtain the matrix.
The R function dist can be useful here.

Denote this matrix by Σ11.

(g). Calculate the covariance matrix of Z2.

Denote this matrix by Σ22.
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(h). Also calculate the m × 2 matrix Σ12 which contains all the covariances between
elements of Z1 and Z2.

(i). Argue why

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
where Σ21 = ΣT

12 is the covariance matrix of (Z1,Z2).

(j). Calculate the quantities

Ẑ2 =µ2 + Σ21Σ
−1
11 (Z1 − µ1)

V2 =Σ22 −Σ21Σ
−1
11 Σ12

and argue why these are useful for performing predictions.

(k). Plot Σ21Σ
−1
11 against the the distances between spi and the observation points (one

plot for each prediction point). Discuss this plot.

Assume now that our real interest is in a latent process {Y (s)} where Z(si) = Y (si) +
ε(si), i = 1, ...,m and where the ε’s are independent measurement noise. Assume further
that the nugget effect corresponds to the measurement noise in this case (so that the
latent Y process has a covariance function that is continuous in zero). Denote Y2 =
(Y (sp1), Y (sp2)).

(l). Argue why Ẑ2 can be used as a prediction of Y2

(m). Argue also that uncertainty measures about Y2 can be obtained by subtracting the
nugget effect from the diagonal of V2. Compare these with the uncertainties about
Z2.

Exercise 9 (Gaeten & Guyon (2009) exercise 1.8)
For a stationary process Y (·) on R, with covariance function CY (·), we observe Y (0) = −1
and Y (1) = 1. (Note that this correspond to a case where we do not have any measurement
errors, i.e Z(0) = Y (0), Z(1) = Y (1).)

(a). Show that µ̂gls = 0 in this case.

(b). Show that ordinary kriging gives

Ŷ (s) =
CY (s− 1)− CY (s)

CY (0)− CY (1)

Hint: Calculate C−1
Y Y first.

12



(c). One can also show that the variance of the prediction error at s is

σ2
Y,ok(s) = CY (0)

(
1− (CY (s)+CY (s−1))2

CY (0)2−CY (1)2

)
+ 2CY (s)CY (s−1)

CY (0)−CY (1)

but this you do not need to show. Show however that σ2
Y,sk(s) = 0 for s = 0, 1 and

argue that this is reasonable.

(d). Draw the graphs of s → Ŷ (s) and s → σ2
Y,sk(s) for s ∈ [−3, 3] when CY is the

exponential covariance function with CY (0) = 1 and θ1 = 1. as well as the Gaussian
covariance function with the same parameters. Comment on these graphs.

Exercise 10 (Bayesian analysis)
Assume z1, ..., zm are iid, zi = µ+εi, εi ∼ N(0, σ2). Our interest is in estimating µ through
a Bayesian approach, we will for simplicity assume σ2 known. As a prior, we will assume
µ ∼ N(µ0, kσ

2) where k can be seen as the relative uncertainty in µ compared to the
uncertainty in one observation.

(a). Show that

f(z;µ) = g(z̄;µ)h(z)

where h(·) is a function not depending on µ. z̄ is in this case what we call a sufficient
statistic.

(b). Show that

p(µ|z) ∝ p(µ|z̄)

(where ∝ means proportional to) and that this implies that

p(µ|z) = p(µ|z̄)

Argue why this means that the posterior distribution for µ only depend on z through
the sufficient statistic z̄.

(c). Show that(
µ
z̄

)
∼MVN

((
µ0

µ0

)
, σ2

(
k k
k k + 1/m

))
(d). Show that

E[µ|z] =µ0 +
k

k + 1/m
(z̄ − µ0) =

k−1µ0 +mz̄

k−1 +m

Var[µ|z] =
σ2

k−1 +m
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(e). Assume in general we have some data z and our interest is in estimating θ where
p(θ) is some prior for θ. Assume further that

f(z;θ) = g(T;θ)h(z)

where h(·) is a function not depending on θ. T, possibly a vector, is in this case the
sufficient statistic. Show that

p(θ|z) = p(θ|T)

that is the posterior only depend on the sufficient statistic T.

(f). Assume now in the normal iid example above that σ2 also is unknown so that θ =
(µ, σ2). Show that T = (z̄, σ̂2) where σ̂2 = 1

m

∑m
i=1(zi − z̄)2 is a sufficient statistic in

this case.

In Bayesian analysis it is mathematically more convenient to work with the precision
parameter τ = 1/σ2. Define now θ = (µ, τ) and assume

p(µ, τ) = p(µ|τ)p(τ)

where µ|τ ∼ N(µ0, kτ
−1) as before while τ is given a Gamma prior with parameters (a, b),

i.e.

p(τ) =
ba

Γ(a)
τa−1e−bτ

(g). Show that

p(µ, τ |z) = p(µ|τ, z)p(τ |z)

where p(µ|τ, z) is the distribution you found in (c) (now expressed with τ instead of
σ2). Also show that

p(τ |z) ∝ p(τ)p(z|τ)

(h). Show that

z|τ ∼ MVN
(
µ01, σ

2[I + k11T ]
)

= MVN
(
µ01, τ

−1[I + k11T ]
)

Hint: Argue first that z is MVN and then use rules about expectations and variances
to find these.

(i). Convince yourself on that [I + k11T ]−1 = [I− k
1+km

11T ] and use this to show that

p(z|τ) ∝ τm/2 exp{−0.5τ(z− µ01)T [I− k
1+km

11T ](z− µ01)}
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(j). Show that

p(τ |z) ∝ τ ā−1e−b̄τ

for some properly chosen ā, b̄ (which will depend on the data. Use this to argue that
also the posterior of τ is a Gamma distribution.

Exercise 11 (Identifying acid-sensitive waters)
The data to be used in this exercise are a subset of data analyzed in Cruikshanks et al.
[2006]. We follow Zuur et al. [2009] and only use the 2003 data, and several recordings are
dropped. The original research sampled 257 rivers in Ireland. We quote Zuur et al. [2009]:

One of the aims was to find a different tool for identifying acid-sensitive wa-
ters, which currently uses measures of pH. The problem with pH is that it is
extremely variable within a catchment and depends on both flow conditions
and underlying geology. As an alternative measure, the Sodium Dominance
Index (SDI) is proposed as an indicator of the acid sensitivity of rivers. SDI is
defined as the contribution of sodium (Na+) to the sum of the major cations.
The motivation for this research is the increase in plantation forestry cover in
Irish landscapes and its potential impacts on aquatic resources.

Of the 257 sites, 192 were non-forested and 65 were forested. The data are available in the
SDI2003.txt file from the webpage and can be read into R through

SDI2003 = read.table("SDI2003.txt",header=TRUE)

A plot giving the observed sites with filled circles indicating forested sites and open circles
the non-forested sites can be produced by the following commands:

MyPch<-vector(length=dim(SDI2003)[1])

MyPch[SDI2003$Forested==1]<-16

MyPch[SDI2003$Forested==2]<-1

plot(SDI2003$Easting,SDI2003$Northing,pch=MyPch)

(a). Consider first an ordinary regression model (in R terminology)

pH ∼ 1 + SDI ∗ log(Altitude) ∗ factor(Forested)

that is an intercept and the three covariates SDI, log(Altitude), Forested (the
last one a factor with two levels) in addition to all pairwise interactions as well as
the 3-way interaction between all three covariates.

Fit this model by the command

M1 = gls(pH~SDI*Forested*lAltitude,data=SDI2003,method="ML")

Model selection based on the AIC criterion can be performed through the command
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stepAIC(M1)

which is available from the MASS library What is your final model?

Note: Above the option method="ML" is used for gls to use Maximum likelihood for
estimation. for selection of fixed effects (covariates), this is the preferred estimation
method. However, when testing for correlation structures, it is preferable to use
REML which is the default method in gls.

(b). Inspect the spatial structure of the residuals from the M1 model above. Is the assump-
tion about independence reasonable? (Look at variograms in different directions in
this case)

Also try to perform a permutation test for a formal testing of spatial dependence.

(c). Another way of validating the need for spatial structures is to include a covariance
structure into the model. Try out different covariance functions. Use the AIC crite-
rion for validating the need for spatial structures.

In case you get a different answer here compared to the previous exercise, discuss
possible reasons for this.

(d). For the best spatial model you found, use the stepAIC routine to do model selection
with respect to the covariates again (this part can be quite time-consuming) (note
that you should use ML estimation in this part). Compare your results with the
previous ones.

(e). Based on your results, make a conclusion on the importance of the various covariates.

(f). Consider now a more theoretical problem. Let

yi = β0 +

p∑
j=1

βpxij + εi

with {εi} being independent N(0, σ2) variables.

Assume however that covariate xip is missing and that you perform your analysis
based on the simplified model

yi = β0 +

p−1∑
j=1

βpxij + ε̃i

Assume further that the missing covariate xip has a spatial structure with

cov[xip, xi′p] = Cp(||si − si′||)

where si is the spatial position of observation i.

Calculate the covariance structure of {ε̃i}.
Discuss the importance of this result related to the conclusions you made above.
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Exercise 12 (Gaussian processes and precision matrices)
Assume x ∼ MVN(µ,Σ). We will assume Σ is of full rank. Assuming

x =

(
x1

x2

)
, µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

we will make use of the results

E[x1|x2] =µ1 + Σ12Σ
−1
22 (x2 − µ2)

Var[x1|x2] =Σ11 −Σ12Σ
−1
22 Σ11

The precision matrix is defined as Q = Σ−1. We will in this exercise discuss some
properties of Q. We will start with showing a general result on inverses of partitioned
matrices.

(a). Assume

Q =

(
Q11 Q12

Q21 Q22

)
where

Q11 =[Σ11 −Σ12Σ
−1
22 Σ21]−1

Q12 =−Σ−1
11 Σ12Q22

Q21 =−Σ−1
22 Σ21Q11

Q22 =[Σ22 −Σ21Σ
−1
11 Σ12]−1

Show that ΣQ = I so that Q is the inverse of Σ.

(b). Show that Var[xi|x−i] = Q−1
ii where x−i is the subvector of x excluding xi.

(c). Show that E[xi|x−i] = µi −Q−1
ii

∑
j 6=iQi,j(xj − µj).

(d). Explain why Qi,j = 0 is equivalent to that xi is conditional independent of xj (where
we condition on all other elements).

Hint: Consider the case i = 1, j = 2 and define x1 = (x1, x2). Show that the
conditional covariance matrix is diagonal if Q1,2 = 0.

Consider now the AR(1) process

x1 ∼N(0, σ2/(1− a2))

xi =axi−1 + εi, εi
iid∼ N(0, σ2).
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(e). Show that

x1|x−1 ∼N(ax2, σ
2)

xi|x−i ∼N( a
1+a2

(xt−1 + xt+1), σ2

1+a2
), i = 2, ..., n− 1

xn|x−n ∼N(axn−1, σ
2)

Use this to specify the structure of Q.

(f). Specify the ratio of non-zero elements in Q. Calculate this ratio for n = 100, n = 1000
and n = 5000.

For each of these values of n, compute the number of operations needed for calculating
xTQx by direct calculation and by utilization of the sparse structure of Q.

(g). For calculations involving covariance or precision matrices, Cholesky decompositions
are essential (for instance, determinants can be calculated through products of the
diagonal elements in the Cholesky decomposition. Assuming Q contains the precision
matrix, the time used for calculating the Cholesky decomposition in R can be found
by the command

unix.time(chol(Q))

Try this out for the different values of n and record the time that is used.

(h). A sparse representation of Q and a corresponding Cholesky decomposition using
sparse matrix computation can be obtained by the following commands:

library(Matrix)

n = dim(Q)[1]

i = c(1:n,1:(n-1),2:n)

j = c(1:n,2:n,1:(n-1))

x = c(diag(Q),diag(Q[-1,-n]),diag(Q[-n,-1]))

Q.sparse = sparseMatrix(i=i,j=j,x=x)

unix.time(chol(Q.sparse))

Here i and j are the indices giving the non-zero entries in the precision matrix
while x are the corresponding values obtained from the diagonal and the two closes
off-diagonals in Q.

Try these commands out for different values of n and compare the computing time
with the ones obtained in the previous exercise.

Exercise 13
Assume Y = (Y1, ..., Ym) has a density

p(y) ∝ exp{−0.5[
m∑
j=1

αj(yj − µj)2 +
n∑
j=1

∑
k∈Nj

βjk(yj − µj)(yk − µk)]}
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where Nj ⊂ {1, ...,m} is a neighborhoodset of j where we assume k ∈ Nj ⇒ j ∈ Nk.

(a). Show that Y is multivariate normal and find the expectation vector µ and the pre-
cision matrix Q.

(b). Show that [Yi|Y−i] only depend on {Yj, j ∈ Ni}. Find the conditional distribution.

(c). Assume now that Zi|Yi ∼ Poisson(exp(Yi)) and that conditional on Y, all the Zi’s
are independent. Show that the distribution of Y|Z can be written on the form

p(y|z) ∝ exp{−0.5[
m∑
j=1

gi(yi, zi) +
n∑
j=1

∑
k∈Nj

βjk(yj − µj)(yk − µk)]}

for some appropriate functions gi.

Use this to show that the distribution of Yi|Y−i,Z only depend on Y through {Yj, j ∈
Ni}.
Is the conditional distribution still Gaussian?

Exercise 14 (The geoR package)
(a). Go into the webpage http://leg.ufpr.br/geoR/ for geoR and go through the three

first sections of the illustration session. Make sure you understand the main structure
of a geodata object.

We will now see how we can put a time-series into the geoR package. We will illustrate
this through the AR(1) model

yt = ayt−1 + σεt

where εt ∼ N(0, 1) and all εt’s are independent.

(b). Show that if y1 ∼ N(0, σ2/(1− a2)), then all yt have the same distribution.

Also calculate the semivariogram

2γ(h) = Var[Z(t+ h)− Z(t)]

for h = 0, 1, 2, ....

(c). Simulate a time series of length n = 1000 from an AR(1) model using σ2 = 1 and
a = 0.95.

Put the data into a geodata object and use the geoR package to estimate the vari-
ogram.

Plot the (semi)variogram and superimpose the true function.

Hint: Put the second coordinate equal to 1 for all observations. Note that geoR plots
by default the semivariogram.
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(d). Repeat (c) several times and summarize your findings.

Exercise 15 (geoR (cont))
We will in this exercise consider further the data you simulated in exercise 14. Fitting a
variogram to a parametric form can be based on maximum likelihood theory (the routine
gls does that) or on least squares principles (which the variofit routine does). Assuming
γ̂ is a vector of variogram estimates at different distances (using for example the variog

routine) and γ(θ) the corresponding parametric variogram for a set of parameter values θ,
the (weighted) least squares approach is based on minimizing

[γ̂ − γ(θ)]TV(θ)−1[γ̂ − γ(θ)]

with respect to θ. Here V(θ) is a weight function (equal to identity for ordinary least
squares).

(a). Explore the R-routine variofit and use this routine to perform a least squares fit
to the data assuming an exponential covariance function.

(b). Modify you call to variofit to perform weighted least squares. Use the estimates
obtained by the ordinary least squares method as initial values.

Look on the help page to see how these weights are constructed.

(c). Explore the R-routine likfit and use this routine to obtain ML-estimates assuming
again an exponential covariance function. Use estimates obtained by the ols or wls
as initial values.

(d). Plot all variograms fitted in the same plot.

(e). Repeat the above a few times and summarize your findings.

Exercise 16 (Cliques)
Remember that cliques are subsets c of {1,...,m} such that if i, j ∈ c then i ∈ Ni (and vice
verse).

(a). Assume the AR(1) model. What are the cliques in this case?

(b). Consider then the AR(2) model. What are the cliques in this case?

(c). Consider the following graphical model

�
�� �
���
�� �
��
�
��

y1 y4

y2 y3

y5

��
�

PPP

where a line between component means that they are neighbors. Specify the set of
cliques in this case.
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Exercise 17 (The Potts model)
Assume Y1, ..., Yn are random variables over a lattice indexed by i, ..., n. Assume Yi ∈
{1, ..., K}, i.e. Yi is a categorical variable. Assume the probability for a particular config-
uration y = (y1, ..., yn) is given by

Pr(Y = y) = C exp{
n∑
i=1

αi,yi + 1
2
β
∑
i

∑
j∈Ni

I(yi = yj)}

where Ni is the set of neighbor points to i while I(·) is the indicator function and C is a
proportionality constant. This is called the Potts model within statistical mechanics, but
is widely used in other fields such as image analysis.

(a). Write down a formula for C. How many terms needs to be added if n = 1002 and
K = 4?

(b). Consider the case where β = 0, what kind of interpretation can you have on αi,k, i =
1, ..., n, k = 1, ..., K?

(c). Assuming now β > 0, what kind of interpretation do you have on this parameter?

(d). Show that

Pr(Yi = k|Yj = yj, j 6= i) =
exp{αi,k + β

∑
j∈Ni

I(yj = k)}∑
l exp{αi,l + β

∑
j∈Ni

I(yj = l)}

(e). Assume now we have observations Z1, ..., Zn that conditional on Y1, ..., Yn are in-
dependent and that [Zi|Yi = k] = fk(zi), that is the observations follow different
distributions depending on which group Yi belongs to. Show that

Pr(Y = y|Z = z) = C exp{
n∑
i=1

ᾱi,yi + 1
2
β
∑
i

∑
j∈Ni

I(yi = yj)}

for some properly chosen ᾱi,yi

Exercise 18 (CAR models)
Consider the CAR model

[Yi|Yj, j 6= i] = N(
∑
j∈Ni

cijyj, σ
2
i )

We will consider the cases where C = φH and M = τ 2∆ with ∆ being diagonal (so that
σ2
i = τ 2∆ii).

Remember the requirements needed:

(∗) ∆−1
ii hij = ∆−1

jj hji
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(∗∗) λ̃−1
(1) < φ < λ̃−1

(n) where λ̃(1) ≤ λ̃(2) ≤ · · · ≤ λ̃(n) are the ordered eigenvalues of

M−1/2HM1/2

Define W such that wij = I(i and j are neighbors), that is the adjacency matrix.
We will consider processes on a regular lattice, so that i ∈ {(u, v), 1 ≤ u ≤ n1, 1 ≤ v ≤

n2} where we will use n1 = n2 = 10. Also assume Nu,v = {(u − 1, v), (u + 1, v), (u, v −
1), (u, v + 1)} (with some corrections on the borders). The adjacency model can then be
constructed by the commands

n1=n2=10;n = n1*n2

W = matrix(0,nrow=n,ncol=n)

#Neighbors in horizontal direction

for(j in 1:(n2))

for(i in 1:(n1-1))

{

W[(j-1)*n1+i,(j-1)*n1+i+1] = 1

W[(j-1)*n1+i+1,(j-1)*n1+i] = 1

}

#Neighbors in vertical direction

for(j in 1:(n2-1))

for(i in 1:(n1))

{

W[(j-1)*n1+i,j*n1+i] = 1

W[j*n1+i,(j-1)*n1+i] = 1

}

N = rowSums(W)

(The last command gives the number of neighbors to each site.)

(a). Show that M−1/2HM1/2 = ∆−1/2H∆1/2

(b). Assume we are interested in cor[Y1, Y2|Yk, k 6= 1, 2]. Define Q11 to be the block of Q
corresponding to (Y1, Y2).

How can cor[Y1, Y2|Yk, k 6= 1, 2] be calculated from Q11?

Also express the correlation as a function of elements in ∆ and H.

(c). Consider the case ∆ = I,H = W, which is called the Homogeneous CAR (HCAR)
model.

(i) Show that requirement (∗) is satisfied in this case.

(ii) Calculate cor[Y1, Y2|Yk, k 6= 1, 2]. What restrictions does this give on φ.

(iii) Using the eigenvalue requirements, what requirements are needed on φ in this
case?
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(iv) For φ = 0.2 and τ = 1, calculate the covariance matrix matrix and look in
particular on the variances. Make a plot of the variances over the n1 × n2

lattice. Comment on the results.

(d). Consider now the case ∆ = diag{|N(si)|−1}, hij = wij|N(si)|−1 which is called the
Weighted CAR (WCAR) model.

(i) Show that requirement (∗) is satisfied in this case.

(ii) Calculate cor[Y1, Y2|Yk, k 6= 1, 2]. What restrictions does this give on φ.

(iii) Using the eigenvalue requirements, what requirements are needed on φ in this
case?

(iv) For φ = 0.8 and τ = 1, calculate the covariance matrix matrix and look in
particular on the variances. Make a plot of the variances over the n1 × n2

lattice. Comment on the results.

(e). Consider now the ACAR model ∆ = diag{|N(si)|−1}, hij = wij|N(si)|−1/2|N(sj)|1/2

(i) Show that requirement (∗) is satisfied in this case.

(ii) Calculate cor[Y1, Y2|Yk, k 6= 1, 2]. What restrictions does this give on φ.

(iii) Using the eigenvalue requirements, what requirements are needed on φ in this
case?

(iv) For φ = 0.2 and τ = 1, calculate the covariance matrix matrix and look in
particular on the variances. Make a plot of the variances over the n1 × n2

lattice. Comment on the results.

Exercise 19 (Computation by simulation)
For hierarchical models we are interested in conditional distributions p(θ|z) where Z de-
notes the set of observations while θ is some unknown quantity of interest (which could be
either be a latent process or, in a Bayesian setting, unknown parameters, or both).

In many situations the distribution p(θ|z) is not numerically tractable. Assume however
that we are able to simulate from p(θ|z) and let {θ(s), s = 1, ..., S} be a set of such
simulations.

(a). Assume our interest is in E[g(θ)|Z = z]. Suggest an estimator for this quantity based
on the simulations.

(b). Assume the simulations are obtained independently. Calculate the variance of the
estimator in (a) and comment on its dependence on S.

(c). Consider a hierarchical model where q ∼ Beta(α, β) and where Z|q ∼ Binom(n, q).
Our interest will be in g(q) = q/(1− q) which we call the odds.

Note: The Beta distribution is given by p(q;α, β) ∝ qα−1(1− q)β−1.

(i) Show that q|Z = z also follows a Beta distribution with parameters updated.
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(ii) Assume now that α = β = 1 and that n = 20, z = 5. Use simulations to
estimate E[g(q)|Y = y]. How can you assess the variance of this estimate?

Hint: The command rbeta(S,a,b) can be used to simulate from the Beta
distribution.

(iii) How can you use the simulations to approximate the density p(q|z)?

Exercise 20 (INLA and the Besag model)
The besag model specified in the INLA package is defined as

[δi|δj, j 6= i] = N(|N (si)|−1
∑

j∈N (si)

δj, τ
2|N (si)|−1)

(a). Show that this corresponds to a CAR model where Q = M−1(I − H) with M =
τ 2∆,∆ = Diag{|N (si)|−1} and Hij = aij|N (si)|−1 where aij = I(j ∈ N (si)).

Show that this is a special case of the WCAR model with φ = 1.

Hint: Use the results from exercise 12.

(b). Show that 1T (I−H) = 0 and use this to explain why I−H has an eigenvalue equal
to 0. Discuss the implication of this.

(c). Related to the problem in the previous exercise, define ξi = δi + c where c is a
constant. Show that ξ has exactly the same conditional distributions as δ.

One can actually show that these properties of the besag model makes it improper in the
sense that it does not integrate to one. This has not restricted people from using the model
because in most cases we are interested in the distribution of δ conditional on data, and
such models typically turn out to be proper.

(d). Assume in this part that |N (si)| are equal for all i so that we can write M = τ̃ 2I.
Assume further that we have observations

Zi = δi + εi, i = 1, ...,m

where the εi’s are iid and N(0, σ2).

Show that [δ|Z] becomes a multivariate Gaussian distribution with a precision matrix
that is of the form Qpost ∝M−1(I−φH) where φ is now a parameter with 0 < φ < 1.

Using the script from exercise 18, verify numerically that 0 < φ < 1 is sufficient for
Qpost to be positive definite.

Using improper models for inference within a model is by this possible. If however one
considers model selection and use e.g. marginal likelihoods, problems might arise. In such
cases it is better to consider proper models for the latent processes.

In the following, we will consider the WCAR model specified by Q = τ−2∆−1(I− φH)
where 0 < φ < 1 and where ∆ and H are defined as in (a).
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(e). Show that in this case

[δi|δj, j 6= i] = N

 φ

|N (si)|
∑

j∈N (si)

δj, τ
2|N (si)|−1


(f). Define δ̃ = ∆−1/2δ. Show that the precision matrix Q̃ for δ̃ is equal to τ−2(I− φH̃)

where H̃ is a known matrix.

(g). Consider now a model Z = XTβ+δ+ε. Show that this can be rewritten in a similar
way as the spatial rates model considered in the lecture notes.

(h). Consider now the doctor’s prescription data. Use the above analysis to perform
inference using the WCAR model.

(You will here need to modify the code involving the spatial rates model appropri-
ately.)

Compare your results both with the independence model and the spatial rates model
with respect to

• Estimates of β

• The marginal likelihood

• The DIC

Summarize your findings.

Exercise 21 (Markov Chain Monte Carlo)
In complex models, direct simulation from p(y|z) may be impossible. Markov chain Monte

Carlo (MCMC) algorithms are algorithms constructed such that y(1),y(2),y(3), ... are gen-
erated in sequence such that

• y(s) is generated only depending on y(s−1) (which makes it a Markov chain).

• As s increases, the distribution of y(s) converges towards p(y|z)

Under some additional requirements, we also have that S−1
∑S

s=1 g(y(s)) converges towards
E[g(Y)|Z = z].

There are many possible MCMC algorithms. Perhaps the most simple one is the Gibbs
sampler. Assume y = (y1, ..., yn). The algorithm is then defined by

• For s = 1, 2, 3, ...

– simulate ys1 ∼ p(y1|ys−1
2 , ..., ys−1

n )

– simulate ys2 ∼ p(y2|ys1, ys−1
3 , ..., ys−1

n )

–
...
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– simulate ysn ∼ p(yn|ys1, ys2, ..., ysn−1)

Note that we only need univariate simulations and that only conditional distributions are
required.

Consider a simple model where

[yi|µ, τ ] =N(µ, τ−1), i = 1, ..., n

[µ, τ ] =[µ][τ ]

where

[µ] =N(µ0, τ
−1
0 )

[τ ] =Gamma(a, b)

(a). Show that

[µ|y, τ ] =N(µ̄, τ̄−1)

[τ |y, µ] =Gamma(ā, b̄)

for appropriatly chosen µ̄, τ̄ and ā, b̄.

Show in particular that the conditional distributions only depend on y through ȳ
and

∑n
i=1(yi − ȳ)2.

(b). Use the above results to implement a Gibbs sampler for simulating from p(µ, τ |y).

For µ0 = 0, τ0 = 0.01 and a = b = 0.05 with n = 5, ȳ = 15.4 and
∑n

i=1(yi−ȳ)2 = 17.2,
run the Gibbs sampler. Use µ = 0, τ = 1 as starting values for the simulations.

Plot the simulated values of µ and τ as functions of iteration numbers. Do the
simulations seem to stabilize fast?

Hint: The command rgamma(1,shape=a,rate=b) can be used to simulate from the
Gamma(a, b) distribution.

(c). Use the simulations to produce approximations of E[µ|y] and E[τ |y] as well as 95%
credibility intervals for both parameters.

Also use the simulations to estimate the correlation between µ and τ conditional on
the data y.

Exercise 22 (Markov random fields and blurring)
Consider an Ising random field Y : {Yu;u ∈ LD} where LD is a regular lattice over D ⊂ R2,
and Yu ∈ {0, 1}. The clique system consists of all closest neighbors of lattice nodes and
the interaction parameter is β. The Gibbs formulation of random field is:

Pr(Y = y) = const× exp{−β
∑
v∼u

yuyv}

where v ∼ u means that v and u are closest neighbors. In the following only lattice nodes
in the interior of LD need to be considered - hence border problems can be ignored.
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(a). Specify the Markov formulation for the random field and specify in particular the
associated neighborhood system {N (u);u ∈ LD}.

Observations are available in all lattice nodes Z = {Zu;u ∈ LD} and the observation model
contains blurring :

[Zu|Y = y] =
1

5

∑
t∈ν(u)

yt + eu

with blurring-domain ν(u) being the lattice node u and the four closest lattice nodes. If
u = (i, j) the blurring-domain is {(i, j), (i−1, j), (i, j−1), (i+1, j), (i, j+1)}, ie five lattice
nodes. The observation errors eu are spatially independent.

(b). Why do you think the observation model is called “blurring”?

(c). Develop the expression for the Markov formulation for the posterior model, [Y|z],
and specify in particular the associated neighborhood system.

Also specify all clique configurations in this case.

Exercise 23 (Potts models and computation)
Direct calculations from the Potts models is usually intractable, and Monte Carlo methods
are usually applied instead.

Simulation from a Potts model can be performed by a Markov Chain Monte Carlo
algorithm which is an iterative algorithm sampling Ys+1 conditional on Ys in such a way
that Ys is approximately distributed according to the Potts model when s is large. In par-
ticular, a Gibbs sampler algorithm, corresponding to sampling Y s+1

i from the conditional
distribution derived above, can easily be implemented. A script for simulation from this
model is given at the course web page as potts sim.R.

(a). Go through the script and make sure you understand how the algorithm works.

(Note in particular the trick with including an extra line of points around the grid-
points which makes it easier to calculate the number of neighbors at the borders.)

(b). Run the script. Try also out different values of β and comment on differences.

Note: These simulations are somewhat time-consuming.

Markov Chain Monte Carlo methods should be used with care, since they might fail to
converge (actually having very slow convergence). A usual way to check this is to look at
trace plots of g(Xs) for some function(s) g(·) and see if it both has stabilized and is varying
reasonable. Many choices of g(·) are possible. Some possibilities for the Potts model are

gk(y) =
n∑
i=1

I(yi = k), k = 1, ..., K

and

gK+1(y) =
∑
i

∑
j∈Ni

I(yi = yj)
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(c). Use the given script to plot these functions and try to evaluate whether it seems like
things have converged.

(d). In the script there are also commands for simulating data conditional on the last
simulated configuration. Here it is assumed that

Zi|Y = y ∼ N(µyi , σ)

Try to modify the simulation part such that the simulations now are conditional on
the observations Z. Perform simulations and plot the images you obtain in this case.
Remark on differences you get in this case compared to the unconditional simulation.

Exercise 24 (Spatial interpolation using geoR)
As part of monitoring the pollution in the Barents region, a whole range of chemical
elements were analyzed in the Kola region. Parts of these data can be downloaded from
the course project page (the kola.Rdata file). A short description of the data is given by
the env geochemical atlas.pdf file on the same page. The data can be loaded into R
with the command

load("kola.Rdata")

which gives you an object kola.geoR of class geodata. A plot of the geographical locations
(after you have loaded the geoR library) for the data and some specific plots for the Nickel
measurements can be obtained by the command

plot(kola.geoR,data=kola.geoR$data[,"Ni"])

and similarly for the other measurements (colnames(kola.geoR$data) gives a list of
the available measurements). We will in this exercise analyze these data using the geoR
package. Note that it might be a good idea to transform the x- and y- coordinates to be in
the range [0, 1] in order to make some of the routines in geoR work properly. I.e. perform
the commands

kola.geoR$coords = coords2coords(kola.geoR$coords,xlim=c(0,1),ylim=c(0,1))

kola.geoR$borders = coords2coords(kola.geoR$borders,xlim=c(0,1),ylim=c(0,1))

We will in the following concentrate on the Nickel component.

(a). From the histogram of the Nickel components, the data does not look very Gaussian.
Make an alternative plot using the log-transform of the response instead. Does this
look better from a Gaussian distribution perspective?

(b). Fit an ordinary linear regression model with the logarithm of Nickel as response
and the geographical coordinates and elevation (given in kola.geoR$covariate ) as
explanatory variables. Explore the spatial correlation of the residuals (through esti-
mates of variograms) and discuss why the inferences about the regression parameters
obtained should be used with care.
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Defining Z(s) to be the observed log-value of Nickel at site s, assume now a model

Z(s) = x(s)Tβ + δ(s)

where x(s) are covariates at site s and {δ(s)} is a zero-mean Gaussian process. We will
be interested in selecting the best model both with respect to the expectation structure
(selection of covariates) and the best model for the covariance structure. Usually one
wants most of the structure to be modeled through the expectation structure (easiest to
predict). A good strategy is this therefore to start with choosing a model for the covariance
structure using as many covariates as possible and thereafter perform model selection using
the chosen model for the covariance structure.

(c). A model including the coordinates and elevation in the expectation structure and
using a Matern covariance structure can be fitted by the following command:

ml1 = likfit(kola.geoR,data=log(kola.geoR$data[,"Ni"]),

trend=trend.spatial(~coords+ELEV,kola.geoR),

ini.cov.pars=c(0.5,0.5),fix.kappa=FALSE)

(Note: This call can be a bit time-consuming.) Further, the AIC value for this model
can be obtained by

AIC(ml1)

By including an option fix.nugget=TRUE in the call to likfit, the nugget effect
will be fixed (to the default value zero).

Try out different models for the covariance structure (including the Matern, expo-
nential, Gaussian and spherical) both with and without nugget effects. Based on the
AIC values, which model performs the best?

Summarize your findings.

(d). Try out a Bayesian approach for fitting the model you found in the previous exercise.
Use this to predict the Nickel content on a grid within the area of interest.

Hint: You need to deal with that the covariates involved are only available in the
observation sites. Imputing these missing values in some way might be a possibility.

(e). Assume our interest is in high values of Nickel. Estimate the size of the region for
which the Nickel value is above 100. Include an uncertainty measure to your estimate.

(f). Discuss strengths and weaknesses with the points you have been through.

Exercise 25
(a). Assume C1 and C2 are two covariance functions for processes within Rd that are

both non-negative definite. Show that the sum of these covariance functions also is
non-negative definite
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Consider now the spatio-temporal model (Eq (6.8) in the textbook)

Y (s, t) = µ(s, t) + β(s) + γ(t) + κ(s, t) + δ(s, t)

where

cov(β(s), β(x)) =Cβ(s,x)

cov(γ(t), γ(r)) =Cγ(t, r)

cov(κ(s, t), κ(x, r)) =Cκ(s,x, t, r)

cov(δ(s, t), δ(x, r)) =σ2
δI(x = s, t = r)

(b). Express the covariance function CY (·; ·) for {Y (s, t)} through the individual covari-
ance functions above.

(c). Show that if each of the individual covariance functions are non-negative definite,
then also CY (·; ·) is non-negative definite.

Exercise 26
Consider a time-discrete spatio-temporal process {Yt(s)} where

Y1(s) =
1√

1− a2
δ1(s)

Yt(s) =aYt−1(s) + δt(s) t = 2, 3, ...

where {δt(s)} is a zero-mean spatially correlated but independent in time. Assume further
that

Cov[δt(s), δt(x)] = Cδ(s,x)

for all t.

(a). Show that

cov[Yt(s), Yt(x)] =
1

1− a2
Cδ(s,x)

for all t.

(b). Show that

cov[Yt(s), Yt−1(x)] = acov[Yt−1(s), Yt−1(x)]

and use this to show that the process is separable.

(c). Show that the process is 2. order stationary in time.

What requirements are needed for the process to also be 2. order stationary in space?
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Exercise 27 (Separable covariance functions)
Assume C(s)(h) is a purely (stationary) spatial covariance function in Rd and C(t)(τ) is a
purely (stationary) temporal covariance function. We will in this exercise show that

C(h, τ) = C(s)(h)× C(t)(τ)

is a valid (stationary) covariance function in space-time.

(a). Recall Bochner’s Theorem (Theorem 4.1) in the book and use this to show that
C(h, τ) is a valid covariance function if and only if it can represented by

C(h, τ) =

∫
ω∈Rd

∫
ν∈R

cos(ωTh+ ντ)f(ω, ν)dωdν

where f(ω, ν) ≥ 0 is symmetric about (0, 0)

(b). Using that cos(x + y) = cos(x)cos(y) − sin(x)sin(y) show that C(h, τ) is a valid
covariance function if and only if it can represented by

C(h, τ) =

∫
ω∈Rd

∫
ν∈R

cos(ωTh)cos(ντ)f(ω, ν)dωdν (*)

Hint: Use the symmetry properties of f(·, ·) to show that the sinus-parts integrates
to zero.

(c). Show that C(h, τ) = C(s)(h)×C(t)(τ) indeed can be represented by (*) and that this
proves that it is a valid covariance function in space-time.

Exercise 28 (Separable covariance functions and kriging)
Consider a zero-mean time-discrete spatio-temporal process {Yt(s)} with a separable co-
variance function given by

CY ((s, t), (x, t+ τ)) = C
(s)
Y (s,x)C

(t)
Y (τ)

where we assume C
(t)
Y (0) = 1.

Assume further that we have the observations {Y (sj, v), j = 1, ...,m, v = 1, ..., t} and
we want to predict Y (s0, t+ 1).

We will further define

YT
v =(Y (s1, v), ..., Y (sm, v))

YT =(YT
1 , ...,Y

T
t )

(a). Show that

cov[Y (si, v), Y (sj, w)] = cov[Y (si, v), Y (sj, v)]C(t)(w − v).
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(b). Define CY to be the mt ×mt covariance matrix for the observed Y. Show that we
can write

CY = CY,t ⊗CY,s

where CY,s is an m × m matrix equal to the covariance matrix for {Y (sj, v), j =
1, ...,m} for a fixed v while CY,t is a t× t matrix equal to the correlation matrix for
{Y (s, v), v = 1, ..., t} for a fixed s.

Here ⊗ denotes the Kronecker product which means that each element of CY,t is
multiplied by CY,s.

(c). Show that CY becomes non-negative definite if both CY,t and CY,s are non-negative
definite.

(d). Why do we need to use the correlation matrix in time and not the covariance matrix?

(e). Show that

C−1
Y,t ⊗C−1

Y,s

is the inverse of CY .

(f). Show that c0 = cov[Y (s0, t+ 1),Y] is given by

c0 = c0,t ⊗ c0,s

where c0,s = cov[Y (s0, t),Yt] and c0,t = (C
(1)
Y (t), C

(1)
Y (t− 1), ..., C

(1)
Y (1)).

(g). Show that

E[Y (so, t+ 1) =cT0 C−1
Y Y

=[cT0,tC
−1
Y,t]⊗ [cT0,sC

−1
Y,s]Y

=
t∑

v=1

bv[c
T
0,sC

−1
Y,s]Yv

where bv is the vth element of cT0,tC
−1
Y,t.

(h). Consider the special case (exercise 26) where

C
(t)
Y (τ) = a|τ |

Show that

CY,t =



1 a a2 a3 · · · at−2 at−1

a 1 a a2 · · · at−3 at−2

a2 a 1 a · · · at−4 at−3

...
...

...
...

. . .
...

...
at−2 at−3 at−4 at−5 · · · 1 a
at−1 at−2 at−3 at−4 · · · a 1


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and

C−1
Y,t =

1

1− a2



1 −a 0 0 · · · 0 0
−a 1 + a2 −a 0 · · · 0 0
0 −a 1 + a2 −a · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 + a2 −a
0 0 0 0 · · · −a 1


(i). Show that bv as defined in (g) is equal to zero for all v except for v = t. Based on

the model in exercise 26, argue why this is reasonable.

Exercise 29 (Discretization of SPDE)
Consider an extension of the diffusion-injection model given by

∂Y (s; t)

∂t
= β

∂2Y (s; t)

∂s2
+ γ

∂Y (s; t)

∂s
− αY (s; t) + δ(s; t)

(a). Using a similar discretization as in the lecture notes, including the approximation

∂Y (s; t)

∂s
≈ Y (s+ ∆s; t)− Y (s; t)

∆s

,

write a discrete approximation of the model relating Y (s, t+ ∆t) to {Y (·, t)}.

(b). Now consider an alternative approximation

∂Y (s; t)

∂s
≈ 1

2

Y (s+ ∆s; t)− Y (s; t)

∆s

+
1

2

Y (s; t)− Y (s−∆s; t)

∆s

and again write a discrete approximation of the model relating Y (s, t + ∆t) to
{Y (·, t)}.

(c). Discuss the differences between these two approximations.

Exercise 30 (Vector autoregressive models as CAR models)
Consider a process {Yt(s)} defined on a 1-dimensional grid of integer locations s ∈ {1, ...,m}
and over a discrete time set t ∈ {1, ..., T}. Define Yt = (Yt(1), ..., Yt(m))′. Assume that

Yt = MYt−1 + ηt, ηt
ind∼ N(0,Ση)

and further that Y0 = 0.

(a). Assume first that M = I and Ση = σ2
ηI. Find [Yt(s)|Yv(x), (v, x) 6= (t, s)] and use this

to describe the process as a CAR model with corresponding neighborhood system.
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(b). Now extend the model to assume Qη = Σ−1
η has a sparse structure where the (i, j)

element of Qη is zero if |i− j| > 1. Again describe the process as a CAR model with
corresponding neighborhood system.

(c). Extend the model further to assume

Mij 6=0 if |j − i| ≤ 1

Mij =0 if |j − i| > 1

Again describe the process as a CAR model with corresponding neighborhood system.

Exercise 31
Define Yt = (Yt(s1), ..., Yt(sn))T . Consider a model

Yt =aYt−1 + δt

where δt = (δt(s1), ..., δt(sn))T ∼ N(0,Σδ) and independent in time.

(a). Assuming Σδ given and that ΣY = Var[Yt] for all t. Find ΣY in this case.

(b). Show that the model above is a special case of

Yt = MYt−1 + δt (*)

and that ΣY is the solution of the equation

vec(ΣY ) = {I−M⊗M}−1vec(Σδ) (**)

(c). Consider now a model

Yt(si) =aiYt−1(si) + δt(si)

Find ΣY in this case.

(d). Also in this extended model, show that it is a special case of (*) and that the ΣY

you found is a solution of (**).

Hint: Consider the case n = 2 first.

(e). Consider now a general model of the form (*). In the case of n = 2, show that a
time-stationary covariance matrix must satisfy (**).

Exercise 32 (Spatio-temporal modelling using INLA)
We will in this exercise (due to computational burden) consider a subset of the sea surface
temperature data, using only the first 5 time points and a 30 × 30 grid. The data is
available at the course home-page in the file SST sub.dat where each column correspond
to a time point. Each row corresponds to a spatial point where first the 30 point in
longitude direction is given for the first latitude level, then for the second latitude level
and so on. It can be read into R by
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SST = matrix(scan("SST_sub.dat"),ncol=5,byrow=T)

nx=30;ny=30;nT=dim(SST)[2]

For the spatial part we will consider a CAR model, and for that you also need the file
SST.graph which give you the spatial graph. It can be read into R by

library(INLA)

g = inla.read.graph("SST.graph")

This exercise contain a lot of R commands. They are directly available at the script
INLA SST.R. Note that some of the commands will be time-consuming.

(a). Consider first a simple spatial model ignoring temporal dependence:

Y (s, t) = µ+ β0(s) + β1(s) + ε(s, t)

where {β0(s)} is a spatial process with a CAR structure, {β1(s)} is a spatial process
with iid components and ε(s, t) are iid additional noise terms. This model can be
analysed by the following commands

Y = as.vector(as.matrix(SST)) #Vector of responses

SPnode1 = rep(1:(nx*ny),nT) #Index for spatial nodes

SPnode2 = rep(1:(nx*ny),nT) #Copy of index for spatial nodes

d = data.frame(Y=Y,SPnode1=SPnode1,SPnode2=SPnode2)

g = inla.read.graph("SST.graph")

formula1 = Y~f(SPnode1,model="iid")+

f(SPnode2,model="besag",graph=g)

mod1 = inla(formula1,data=d)

Try out these commands. How large are the variances for the different components
involved?

(b). An extension of the previous model is to include temporal components:

Y (s, t) = µ+ β0(s) + β1(s) + γ0(t) + γ1(t) + ε(s, t)

where now {γ0(t)} is a random walk process (a one dimensional CAR model) while
{γ0(t)} is an iid process. This model can be analysed by the following additional
commands

d$Tnode1 = rep(1:nT,each=nx*ny) #Index for temporal nodes

d$Tnode2 = rep(1:nT,each=nx*ny) #Copy of index for temporal nodes

formula2 = Y~f(SPnode1,model="iid")+

f(SPnode2,model="besag",graph=g)+

f(Tnode1,model="iid")+f(Tnode2,model="rw1")

mod2 = inla(formula2,data=d)
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Again look at the sizes of the variances of the different components and comment.

Finally, we will look at a model where an interaction term between space and time is
included:

Y (s, t) = µ+ β0(s) + β1(s) + γ0(t) + γ1(t) + δ(s, t) + ε(s, t)

We will assume a separable covariance structure for {δ(s, t)}. Assuming Q(s) is the precision
matrix for {β0(s)} and Q(t) is the precision matrix for {γ0(t)}, we will assume that the
precision matrix for {δ(s, t)} is Q = Q(t) ⊗ Q(s) (actually we are here talking about the
covariance matrices for the points that we have observations, not for the whole process).

Now, for the models we have assumed for the pure spatial and pure temporal compo-
nents above, we have Q(s) = τ (s)R(s) and Q(t) = τ (t)R(t) and R(s) and R(t) are known
matrices.

(c). Show that Q = τR where R is a known matrix.

The spatial matrix R(s) can be calculated by the commands

g = inla.read.graph("SST.graph")

Rspat = diag(g$nnbs)

for(i in 1:g$n)

Rspat[i,g$nbs[[i]]] = -1

while R(t) can be calculated directly by

Rtemp = diag(c(1,rep(2,nT-2),1))

Rtemp[1,2] = -1

for(i in 2:(nT-1))

Rtemp[i,c(i-1,i+1)] = -1

Rtemp[nT,nT-1] = -1

(d). What is the neighborhood structure corresponding to R(t)?

Finally we can analyse the full model by the commands

Rspat.temp = kronecker(Rtemp,Rspat)

d$STnode = 1:(nx*ny*nT)

formula3 = Y~f(SPnode1,model="iid")+

f(SPnode2,model="besag",graph.file="SST.graph")+

f(Tnode1,model="iid")+f(Tnode2,model="rw1")+

f(STnode,model="generic0",Cmatrix=Rspat.temp,constr=TRUE)

mod3 = inla(formula3,data=d)

(e). Perform the commands above. Again look at the sizes of the variances and comment
on the results.
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Exercise 33 (INLA and missing data)
We will again consider the data in the previous exercise, but now we will see how INLA
can handle missing data.

We can randomly insert missing data in the respond variable by the following commands

n = dim(d)[1]

nmiss = 450

ind = sample(1:n,niss)

dmiss = d

dmiss$Y[ind] = NA

(a). Try out the first model from exercise 32 using dmiss as input data. Compare the
results with the ones obtained by using the full data set

(b). Increase the number of missing data to 2250 and repeat the previous point. Again
compare your results.

(c). Also look at the computation times used when missing data are included. Try to
explain the increase in computation time.

Exercise 34 (Ireland wind data)
Haslett and Raftery (1989) analysed a dataset

Exercise 35 (Air quality data)
The file Piemonte data byday.csv contain data on PM10 (particulate matter with an aerody-
namic diameter of less than 10 µm) daily observed over a period from 01/10/05 to 31/03/06
at 24 stations in the North-Italian region Piemonte. This is a dataset taken from Cameletti
et al. [2011] which we will analyse using spatio-temporal models later. Here we will con-
centrate on models where the spatial correlation is ignored. In order to make the response
approximately Gaussian distributed, we will consider log(PM10).

8 covariates are available: daily mean wind speed (WS, m/s), daily maximum mixing
height (HMIX, m), daily precipitation (P, mm), daily mean temperature (TEMP, ◦K),
daily emissions (EMI, g/s), altitude (A, m) and spatial geographic coordinates (UTMX and
UTMY, in km). In addition we will make use of a time index (Time, a numerical value
going from 1 to 182).

The dataset can be read into R by the commands

d <-read.table("Piemonte_data_byday.csv",header=TRUE,sep=",")

d$Time = rep(1:182,each=24)

d$logPM10 = log(d$PM10)

(a). Consider first a simple regression model

yt(si) =µ+ xt(si)β + εt(si)

where xt(si) is the vector of covariates at time t and station i, Time excluded.
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Fit such a model using ordinarly least squares and use different tools for checking
whether the residuals are uncorrelated.

Hint: Possible commands are

fit = lm(logPM10~A+UTMX+UTMY+WS+TEMP+HMIX+PREC+EMI,data=d)

acf(resid(fit)[d$Station==1],na.action=na.omit)

(b). Include now Time as a covariate. Look at the acf curve for the first station in this
case. Does it look like some of the autocorrelation is removed?

(c). Include now Time as a categorical covariate by the command

d$Time = as.factor(d$Time)

options(contrasts=c("contr.sum","contr.sum"))

fit3=lm(logPM10~A+UTMX+UTMY+WS+TEMP+HMIX+PREC+EMI+Time,data=d)

Again look at the autocorrelation function. How do the autocorrelationfunction look
in this case?

(d). The model above can be written as

yt(si) =µ+ xt(si)β + αt + εt(si)

where αt are parameters, one for each time point. The command

options(contrasts=c("contr.sum","contr.sum"))

above make a constraint
∑

t αt = 0 in order to make all the parameters identifiable.

Find the estimates of αt for all t (note that you have to calculate the last one using the
constraint above) and plot this as a function of time. Also look at the autocorrelation
function of the estimates.

(e). An alternative to consider the αt’s to be fixed parameters, is to consider them as

random variables. A particular choice is to assume αt
iid∼ N(0, σ2

α). Fit such a model
with INLA using the commands

library(INLA)

formula = logPM10~A+UTMX+UTMY+WS+TEMP+HMIX+PREC+EMI+f(Time,model="iid")

fit4=inla(formula,data=d,control.inla=list(int.strategy="eb"))

The “estimates” of the α’s are in this case available in the object

fit4$summary.random$Time[,2]
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Why do I write “estimates” in this case?

Compare these estimates with the one obtained by considering the α’s as fixed pa-
rameters. In particular, look at the square sum of the two types of estimates. Why do
you think the square sum of the estimates based on the α’s being treated as random
are smaller?

(f). For the model where the αt’s are treated as random, calculate the covariance structure
for {Yt(si)}.

(g). Now consider an extension where the αt’s are considered to follow an AR(1) process.
Such a model can be fitted into INLA through the commands

formula2 = logPM10~A+UTMX+UTMY+WS+TEMP+HMIX+PREC+EMI+f(Time,model="ar1")

fit5=inla(formula2,data=d,control.inla=list(int.strategy="eb"))

What is the estimate of the autoregressive parameter in this case?

Compare the “estimates” of the αt’s for this model with the ones obtained using the
iid assumption.

(h). Calculate the covariance structure for {Yt(si)} for the extended model.

Exercise 36 (Air quality data (cont))
Consider again the data from exercise 35. We will now extend the model by taking spatial
dependence into account as well. In that case we need to read in the spatial coordinates for
the data, which can be done with the following commands (including plotting the spatial
points as well as the border of the region:

coordinates <-read.table("coordinates.csv",header=TRUE,sep=",")

borders = read.table("Cameletti/Piemonte_borders.csv",header=TRUE,sep=",")

plot(borders, lwd=3,type="l")

points(coordinates$UTMX, coordinFFates$UTMY, pch=20, cex=2, col=2)

In order to avoid some numerical problems, we will also reduce the dataset to the first 50
days:

d = d[d$Time<=50,]

Consider first a model of the form

yt(s) =µ+ xt(s)β + αt + δ(s) + εt(s)

where now {δ(si)} is a zero-mean Gaussian spatial process. Further, we will in the begin-
ning only use A as a covariate.

(a). Assume first that {δ(s)} has an independence structure. Such a model can be fitted
by INLA with the commands
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ind = rep(1:nstations,ndays)

formula = logPM10 ~ A + f(Time,model="ar1") +f(ind,model="iid")

res = inla(formula,data=d,control.inla=list(int.strategy="eb"))

Fit this model and extract the predictions of the δ’s.

Use different methods to explore whether there are any spatial structure in the δ’s.

(Hint: You can use the variogram approach or using Moran’s I, both discussed in
Chapter 4. For the latter you can look at the STI-calculations for the SST data,
noting that Moran’s I is a spatial version of STI.)

(b). Assume now that {δ(s)} has an exponential covariance structure, that is

Cov[δ(s), δ(s+ h)] = σ2
β exp(−||h||/θ)

INLA does not have this covariance function available directly. Assume however that
θ is known. Show that the precision matrix for δ = (δ(s1), ..., δ(sn)) can be written
as τC where C is a known matrix. This situation is covered by the generic0 model
in INLA. Such a model can be fitted by the commands

dis = as.matrix(dist(coordinates[,c("UTMX","UTMY")],upper=TRUE,diag=TRUE))

theta = 7

Sigma.delta = exp(-dis/theta)

C0 = solve(Sigma.delta)

formula2=logPM10~A+f(Time,model="ar1")+f(ind,model="generic0",Cmatrix=C0)

res2 = inla(formula2,data=d,control.inla=list(int.strategy="eb"))

for θ = 7. Perform these commands as well.

A possible measure for comparing models is the marginal (log) likelihood which is
given by res2$mlik for the second model. Which model gives the best fit?

Also try out different θ. Use the best one in the following.

(c). A further extension of the model is to assume

yt(s) =µ+ xt(s)β + δt(s) + εt(s)

where now {δt(s)} is a spatio-temporal process following the dynamic model

δt(s) = ρδt−1(s) + ηt(s)

Such a model can be fitted in INLA using the commands

formula3 = logPM10 ~ A + f(Time,model="ar1") +

f(ind,model="generic0",Cmatrix=C0,group=Time,control.group=list(model="ar1"))

res3 = inla(formula3,data=d,control.inla=list(int.strategy="eb"))

res3$mlik
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Compare this model with the ones you have obtained earlier.

(d). Now repeat the points above including the covariates WS,HMIX,P,TEMP,EMI.

Why is it not necessary to include UTMX,UTMY ?

Why does it seem like the spatial structure becomes less important now?

(e). Summarize your findings.

Note: In Cameletti et al. [2011] an alternative approach utilizing the computational ad-
vantages of CAR models is used. We will however not consider that further here.

Exercise 37 (A hierarchical spatio-temporal model for air quality data)
In this exercise we will look at a dataset of particulate matter concentration in the North-
Italian region Piemonte. In particular, we will be interested in PM10 (particulate matter
with an aerodynamic diameter of less than 10 µm) dayly observed over a period from
01/10/05 to 31/03/06. 8 covariates are available: daily mean wind speed (WS, m/s), daily
maximum mixing height (HMIX, m), daily precipitation (P, mm), daily mean temperature
(TEMP, ◦K), daily emissions (EMI, g/s), altitude (A, m) and spatial geographic coordinates
(UTMX and UTMY, in km).

(a). First read the data in by the commands

d <-read.table("Piemonte_data_byday.csv",header=TRUE,sep=",")

d$logPM10 = log(d$PM10)

coordinates <-read.table("coordinates.csv",header=TRUE,sep=",")

borders = read.table("Piemonte_borders.csv",header=TRUE,sep=",")

and plot the spatial points by the commands

plot(borders, lwd=3,type="l")

points(coordinates$UTMX, coordinates$UTMY, pch=20, cex=2, col=2)

(b). Consider first a simple regression model where

yt(s) =xt(s)β + εt(s)

where yt(s) is log(PM10), {εt(s)} are iid noise variables following a N(0, σ2) distri-
bution while xt(s) is the vector of covariates.

Fit such a model using ordinarly least squares and use different tools for checking
whether the residuals are uncorrelated.
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(c). Consider now an extended model

yt(s) =xt(s)β + ξt(s) + εt(s)

ξt(s) =aξy(s− 1) + ωt(s)

where xt(s) is a p-dimensional vector of covariates and where

Cov[ωt(si), ωt′(sj)] =

{
0 if t 6= t′

σ2
ωC(||si − sj||) if t = t′

where C(·) is a known function.

Calculate Cξ(H, τ) = Cov[ξt(s), ξt+τ (s + h) and show that the covariance function is
separable.

(d). Propose a reasonable estimator for a based on the residuals from (b) and calculate
the estimate. Use this value for a in the following.

(e). Show that for given a, the precision matrix Q for {ξt(si), i = 1, ...,m, t = 1, , , T} is
given by τ ×Q0 where Q is a known matrix.

(f). Assume know C(h) = exp(−||h||/θ).

Exercise 38
In this exercise we will consider the meuse dataset which gives locations and topsoil heavy
metal concentrations, along with a number of soil and landscape variablesat the observation
locations, collected in a flood plain of the river Meuse, near the village of Stein (NL). Heavy
metal concentrations are from composite samples of an area of approximately 15 m x 15
m.

Consider a model

Zi = µ+ αi + εi, i = 1, ...,m,

where α = (α1, ..., αI) is multivariate normal with expectation vector equal to zero and
with a covariance matrix given by σ2

αC while varepsiloni is a vector of iid random variables
normally distributed with expectation zero and variance σ2

ε .

(a). Estimate the variogram for the data and use this to argue why a model including
correlations between the αi’s is reasonable to consider.

(b). Fit a Matern variogram to the data using θ2 = κ = 0.5. Do the fit look reasonable?

Exercise 39 (Monte Carlo ML and geoRglm)
(Part of this exercise is a copy of what we went through in the lecture March 5.)

Assume the model

Z(s) =XT
s β + η(s) (1)

Ẑ(si) ∼g(·|Z(si)), i = 1, ..., n (2)
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where {η(s)} is a Gaussian process with mean zero, constant variance σ2 and correlation

function c(||h||;θ) = Corr[η(s), η(s + h); θ]. We further assume that all Ẑ(s) are indepen-
dent given the Z(s)′s. Our aim is to estimate the parameters ψ = (β, σ2,θ) based on

observations Ẑ = (Ẑ(s1), ..., Ẑ(sn))T .

Define Z = (Z(s1), ..., Z(sn))T , f1(Z;ψ) to be the distribution for Z and f2|1(Ẑ|Z) to

be the conditional distribution for Ẑ given Z. Note that the observation distribution is as-
sumed to be completely known (i.e. no unknown parameters are involved). We furthermore

will use f2(Ẑ;ψ) to be the marginal distribution for Ẑ.

(a). Show that the likelihood function L(ψ) is given by

L(ψ) = f2(Ẑ;ψ) =

∫
Z

f2|1(Ẑ|Z)f1(Z)dZ

(b). Define f̃(Z, Ẑ) = f̃1(Z)f2|1(Ẑ|Z)) where f̃1(Z) is an arbitrary fixed density for Z.
Show that

L(ψ) =

∫
Z

f2|1(Ẑ|Z)f1(Z;ψ)dZ

=

∫
Z

f2|1(Ẑ|Z)
f1(Z;ψ)

f̃1(Z)
f̃1(Z)dZ

=

∫
Z

f̃1|2(Z|Ẑ)f̃2(Ẑ)
f1(Z;ψ)

f̃1(Z)
dZ

=f̃2(Ẑ)

∫
Z

f̃1|2(Z|Ẑ)
f1(Z;ψ)

f̃1(Z)
dZ

where

f̃2(Ẑ) =

∫
Z

f̃1(Z)f2|1(Ẑ|Z)dZ

and

f̃1|2(Z|Ẑ) =
f̃1(Z)f2|1(Ẑ|Z)

f̃2(Ẑ)

Give an interpretation of f̃2(Ẑ) and f̃1|2(Z|Ẑ) and use this to argue how to use Monte
Carlo approximations in order to optimize L(ψ).

(c). One possible choice is to use f̃1(Z) = f1(Z|ψ0), i.e. the model with a fixed set of
parameters. Assume now that we want to compare different models through the AIC
criterion

AIC = −2 logL(ψ̂ML) + 2|ψ|
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where ψ̂ML is the maximum likelihood estimate under the given model while |ψ| is
the number of parameters involved. Argue why such a choice of f̃1(Z) within each
model to be considered may be problematic and that a common f̃1(Z) for all models
to be considered is preferable.

(d). For the rongelap data considered in the lecture, repeat the analysis using a Poisson
distribution for the data with the intensity given by κ(s) = exp(Z(s)) or equivalently
Z(s) = log κ(s).

Christensen(2004) “Monte Carlo Maximum Likelihood in Model-Based Geostatistics” con-
sidered more general models given by the Box-Cox transformation

Z(s) =

{
(κ(s)λ − 1)/λ if λ > 0

log κ(s) if λ = 0

and argued that λ = 1 gives a better model for the rongelap data.

(e). In order for comparison of models, the call to prepare.likfit.glsm need the extra
option use.intensity = TRUE, i.e. the call should now be

mcmcobj <- prepare.likfit.glsm(MCmle.input.fixed, use.intensity = TRUE)

which then can be followed by a call to likfit.glsm given by

lik.expon.boxcox.1 <- likfit.glsm(mcmcobj, ini.phi=10, fix.nugget.rel=TRUE,

lambda=1,cov.model="exponential")

Perform these commands and use the AIC criterion to compare the two models.

(f). An alternative to specify a value on λ is to estimate it. Look at the help page for
the likfit.glsm routine and now estimate λ as well. Compare the model you now
get with the previous ones. Which one do you prefer?

Exercise 40 (The Potts model)
Assume X1, ..., Xn are random variables over a lattice indexed by i, ..., n. Assume Xi ∈
{1, ..., K}, i.e. Xi is a categorical variable. Assume the probability for a particular config-
uration x = (x1, ..., xn) is given by

Pr(X = x) = C exp{
n∑
i=1

αi,xi + 1
2
β
∑
i

∑
j∈Ni

I(xi = xj)}

where Ni is the set of neighbor points to i while I(·) is the indicator function and C is a
proportionality constant. This is called the Potts model within statistical mechanics, but
is widely used in other fields such as image analysis.
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(a). Write down a formula for C. How many terms needs to be added if n = 1002 and
K = 4?

(b). Consider the case where β = 0, what kind of interpretation can you have on αi,k, i =
1, ..., n, k = 1, ..., K?

(c). Assuming now β > 0, what kind of interpretation do you have on this parameter?

(d). Show that

Pr(xi = k|xj, j 6= i) =
exp{αi,k + β

∑
j∈Ni

I(xj = k)}∑
l exp{αi,l + β

∑
j∈Ni

I(xj = l)}

Direct calculations from the Potts models is usually intractable, and Monte Carlo methods
are usually applied instead.

Simulation from a Potts model can be performed by a Markov Chain Monte Carlo
algorithm which is an iterative algorithm sampling Xs+1 conditional on Xs in such a way
that Xs is approximately distributed according to the Potts model when s is large. In par-
ticular, a Gibbs sampler algorithm, corresponding to sampling Xs+1

i from the conditional
distribution derived above, can easily be implemented. We will not go into the details of
this here, but rather use a library in R which performs the necessary calculations for us.
This library is a bit limited though, in that is assumes

βi,j = β and αi,k = αk.

We can obtain a sample from this special Potts model by the following R commands:

library(potts)

K = 4

nrow = 100

ncol = 100

alpha = rep(0,K)

beta = 1.0

theta = c(alpha, beta)

x = matrix(1, nrow = nrow, ncol = ncol)

foo = packPotts(x, k)

out = potts(foo, theta, nbatch = 10)

image(out$final)

Here alpha is a vector of length K (the number of categories) while beta is a scalar.
Markov Chain Monte Carlo methods should be used with care, since they might fail to

converge. A usual way to check this is to look at trace plots of g(Xs) for some function(s)
g(·) and see if it both has stabilized and is varying reasonable. Many choices of g(·) are
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possible in the potts routine, see the help function on how to do this. By default, the
functions

gk(x) =
n∑
i=1

I(xi = k), k = 1, ..., K

and

gK+1(x) =
∑
i

∑
j∈Ni

I(xi = xj)

are considered and the latter can be plotted by the command

plot.ts(out$batch[,K+1])

(e). Try out the commands above for different values of β. Try in particular β = 0
and some values above 2. Look particularly at the gK+1 function and explore if
convergence seems to be reached for the different values of β.

Assume now that X = (X1, ..., Xn) is not directly observed, but that it is indirectly observed
through some variables Y1, ..., Yn who are conditionally (on X) independent and where we
assume that

Yi|Xi = k ∼ fk(·)

with fk some known distribution.

(f). Show that

Pr(x|y) = C̃ exp{
n∑
i=1

α̃i,xi + 1
2
β
∑
i

∑
j∈Ni

I(xi = xj)}

for some appropriate choices of α̃i,k and where C̃ is a new proportionality constant.

Even if we assume αi,k = αk, will we now be able to use the potts library?

Exercise 41 (Potts model (cont))
Assume again the Potts model

Pr(X = x) = C exp{
n∑
i=1

αi,xi + 1
2
β
∑
i

∑
j∈Ni

I(xi = xj)}

where Xi ∈ {1, ..., K} and n = n1 × n2 corresponding to a n1 × n2 grid of points (so i is
actually a two-dimensional index). The Gibbs sampler, which is a special case of a Markov
chain Monte Carlo algorithm, is an iterative process for which Xs+1 at iteration s + 1 is
generated by the following updates:
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• For i = 1, ..., n simulate Xs+1
i from the conditional distribution of Xi given that for

j 6= i

Xj =

{
Xs+1
j if j < i

Xs
j if j > i.

Here some ordering of the variables are needed, but this can be arbitrary. Note that the
conditional distributions are easy to sample from. For s large, Xs will approximately
follow the Potts model. On the course web page (under “exercises”) an R-function which
performs such simulations is given. This routine runs burnin+nMCMC iterations where the
first burnin Xs’s are discarded while the last nMCMC Xs’s are stored.

(a). Have a look on the code and see if you can understand the essentials.

(b). Simulate X for n1 = n2 = 20, K = 3, β = 0.9 and αi,k = 0 and with the default
values for burnin and nMCMC.

Pick out the values of g(Xs) for g(X) =
∑

i I(Xi = k). Make a time-series plot of
the values and also a table of the realizations.

Do similarly for g(Xs) =
∑

i∼j I(Xi = Xj). Compare the values you get with what
you would expect if β = 0.

In the following we will use X = Xburnin+nMCMC, i.e. the last simulated value of X.
Assume now that Y1, ..., Yn are conditionally (on X) independent and

Yi|Xi ∼ N(µk, σ
2)

(c). Simulate the Yi’s conditional on the Xi’s with µk = k and σ = 0.5.

Our aim now will be to reconstruct X based on the Yi’s.

(d). One possible prediction of Xi is

X̂naive
i = argmaxk Pr(Xi = k|Yi).

Assuming Pr(Xi = k) = K−1, show that

argmaxk Pr(Xi = k|Yi) = argmaxkfk(Yi)

Calculate X̂naive
i for all i and also calculate the error rate for this predictor,

errnaive = n−1
∑
i

I(X̂naive
i = Xi).
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An alternative to the naive predictor above is to put

X̂mode = argmaxx Pr(X = x|Y).

Such a mode is in practice difficult to find, but an approximation can be obtained by the
Iterated Conditional Mode (ICM) algorithm (Besag, 1986, On the statistical analysis of
dirty pictures). This is an iterative algorithm where at each iteration

X̂s+1
i = argmaxk Pr(Xi = k|Yi, Xj = Xs

j , j 6= i).

and the routine is continued until no more changes are made.

(e). Discuss the strengths and the weaknesses for the ICM algorithm.

(f). Also an ICM function is available at the webpage. Try this out and compare the
error rate now with the one obtained from the naive predictor.

Yet another predictor can be obtained by

X̂marg.mode
i = argmaxxi Pr(Xi = xi|Y).

(g). Explain how the marginal distribution Pr(Xi = xi|Y) can be estimated through the

Gibbs sampler routine. Perform the necessary simulations and calculate X̂marg.mode
i

for each i. Again calculate the error rate and compare with the previous results.

(h). Plot the images predicted using the different methods and compare.

Exercise 42 (Estimation using sparse matrices)
(a). Simulate an AR(1) model using n = 1000, µ = 0, a = 0.95 and σ = 1.

(b). Write a routine for calculating the likelihood using the spare matrix formulation from
the previous exercise.

(c). Find maximum likelihood estimates by numerical optimization of the likelihood func-
tion. Compare your results with that obtained from the routine arima in R.

Exercise 43 (Estimation in Gaussian random fields)
In this exercise we will try to reproduce some of the results obtained in Section 4.3 of
Smith: Environmental statistics. The data are available from the course web page (the
yield data) which can be read into R by

yield = matrix(scan("yield.dat"),ncol=25)

Assume we have a Gaussian random field model with

Xi,j|Xi′,j′ , (i
′, j′) 6= (i, j) ∼ N(α + β1(Xi−1,j +Xi+1,j) + β2(Xi,j−1 +Xi,j+1), σ2)

Define X1 = {Xi,j : |i− j| even } and X2 = {Xi,j : |i− j| odd }.
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(a). Argue that the coding methods based on maximizing p(X1|X2) with respect to the
unknown parameters can be performed by ordinary linear regression.

(b). Make a matrix containing X1 as the first column and the corresponding elements
Xi−1,j + Xi+1,j and Xi,j−1 + Xi,j+1 as the second and third columns and use this
matrix to estimate beta1, β2 in addition to α and σ2. Compare the results with those
obtained by Smith.

Note that you probably will not get exactly the same results, due to how edge-effects
are handled. Here you can treat the covariates as missing when (i, j) is on the border.

Also perform the analysis when switching X1 and X2.

(c). Argue why also estimated based on the by the pseudolikelihood can be performed by
ordinary linear regression. Do this and compare the results with the ones obtained
by the coding method. Discuss approaches for obtaining standard errors in this case
(you do not need to try this out).

Exercise 44 (Extreme values of ozone)
In this exercise we will look at extreme values for Ozone. One the course web-page, hourly
ozone measurements from Birkenes over the period 1990-2008 is available and can be read
into R with the command

ozoneB = read.table("ozoneBirkenes.dat",header=T)

Yearly maxima, which will be of our main interest here can be calculated by the command

M = as.vector(by(ozoneB$Val,ozoneB$year,max,na.rm=T))

where M becomes a vector containing the yearly maxima.

(a). A common assumption is that yearly maxima are iid variables. Given that is actually
is a time-series over years, auto-correlations are possible.

Convince yourself on that independence indeed is plausible in this case by comparing
an AR(1) model with an AR(0) model using the AIC criterion.

Hint: Use the arima(M,c(p,0,0)) command for fitting an AR model of order p.

(b). The R library evd contains a routine fgev which can be used for fitting the GEV
distribution to data.

Perform such a fitting on the ozone data, both estimating the shape parameter ξ
and putting the shape parameter to zero (the latter can be obtained by including the
option shape=0 to the fgev call.

The output from fgev include a deviance measure which is equal to −2 ∗ loglik (up
to an additive constant). Use the AIC criterion in order to decide whether ξ 6= 0 is
reasonable or not.
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(c). For your fitted model, specify the value xN such that

1−H(xN ; µ̂, ψ̂, ξ̂) =
1

N
.

Construct standard errors and confidence intervals for xN using parametric boot-
strapping. (Hint: Simulation from a GEV model can be performed by the rgev

routine).

Discuss the meaning of xN .

Exercise 45 (Extreme values of ozone and the Poisson-GPD model)
Continuing on the data from the previous exercise, we will now consider fitting models to
exceedances above u = 120 using the Poisson-GPD model. Within the R-library evd there
is a routine fpot that performs the fitting for us.

(a). Take a look on the fpot help page in order to understand the main issues. In
particular, look at the cmax option and the corresponding routine clusters.

(b). For the ozone data set, play around with the fpot routine. Also plot the results and
try to understand the outputs.

Exercise 46 (Spatio-temporal processes)
(a). Assume

Z(t,x) = S(x) + T (t) + ε(t,x)

where the tree terms on the right hand side are assumed independent. Further, all
ε(t,x) are independent in time with expectation zero and covariance function Cε(v).
{S(x)} is a pure spatial process, stationary with covariance function CS(v) while
{T (t)} is an AR(1) model given by

T (t) = aT (t− 1) + η(t)

with initial conditions such that the process becomes stationary and η(t) are iid, zero
mean and constant variance σ2

T .

Calculate the covariance cov[Z(t,x), Z(t + s,x + v)] and show that it is stationary
both in space and time.

(b). Consider now an alternative model

Z(t,x) = S(x) + k[Z(t− 1,x)− S(x)] + cε(t,x)

with the individual components having the same properties as above.

Express cov[Z(t,x), Z(t,x + v)] by cov[Z(t − 1,x), Z(t − 1,x + v)]. Assuming sta-
tionarity in time, i.e. cov[Z(t,x), Z(t,x + v)] = C(0,v), derive an expression for
C(0,v).

Also derive C(s,v) = cov[Z(t,x), Z(t+ s,x + v)] for general s (start with s = 1 and
do the calculations recursively).

Can you find values of k and c such that you end up with the model given in (a)?
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(c). Now assume x is defined on a regular grid and consider the model

Z(t,xi) = S(xi) + k1[Z(t− 1,xi)−S(xi)] + k2

∑
j∼i

[Z(t− 1,xj)−S(xj)] + cε(t,xi)

where j ∼ i means that j is one of the four closest neighbors of i.

Assuming E[Z(0,xi) = µ for all xi, what is the expectation of E[Z(t,xi) for a general
t?

Assuming cov[Z(0,xi),Z(0,xj)] = C0(||xj − xi||), try to derive an expression for
var[Z(1,xi), Z(1,xj)]. Is the variance at time 1 also constant in space?

(d). Consider now a continuous version of the previous model:

Z(t,x) = S(x) +

∫
v

[Z(t− 1,x + v)− S(x + v)]k(v)dv + ε(t,xi)

where k(·) is a kernel function assumed to be integrable.

Assume E[Z(0,x) = µ for all x and cov[Z(0,x),Z(0,x + v)] = C0(||v||).
What requirements are needed on k(·) in order for E[Z(t,x) = µ for all t?

Derive an expression for var[Z(1, x)] as a function of CS, C0 and σ2 = var[ε(t,xi)].

Hint: It might be easier to consider Z̃(t,x) = Z(t,x)− S(x).

Discuss verbally what kind of requirements are needed in order for the variance not
to increase in time.

Exercise 47 (Doctor-Prescription Amounts per Consultation)
Following the description in sec 4.2.6 in the text book, assume the hierarchical model

Z(si)|Y (si), σ
2
ε ∼ind.Gau(Y (si), σ

2
ε)

Y =Xβ + δ

where δ is multivariate Gaussian. At the course web-page there is a script for doing analysis
of these data using the “Besag” model in INLA, that is

δi|δ−i ∼ N(
1

ni

∑
j∈Ni

δj,
σ2

ni
)

where ni = |Ni| is the number of neighbors of i.

(a). Try out both Bayesian and empirical Bayesian estimation using INLA. Compare the
estimates and comment on differences.
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In the textbook an alternative model is used, taking into account that each observation
are based on different amounts of data. This model is not directly available in INLA, but
we will see that we can make proper transformations in order to obtain the model anyway.
We will first consider this in a general setting. Assume therefore the CAR model

δ ∼ MVN(0, [I−C]−1M)

where C = φH and M = σ2∆ and where H is a known sparse matrix and ∆ is a known
diagonal matrix.

(b). Show that the precision matrix for Y is equal to 1
σ2 ∆

−1[I− φH].

(c). Define Ỹ = ∆−1/2Y. Show that

E[Ỹ] = X̃β

where X̃ is specified through X and ∆.

(d). Find the covariance matrix Σ̃ for Ỹ and use this to show that the corresponding

precision matrix Q̃ is of the form

Q̃ =
1

σ2
[I− φH̃]

where H̃ is a sparse matrix with the same non-zero elements as H.

(e). Assume first that φ = 0 and also σ2
ε = 0.

INLA has a model called generic0 which assumes the precision matrix Q ∝ C.
Show that this is the case for φ = 0, σ2

ε = 0. Use the commands in the script (the
ones resulting in res0 ) to fit this model. Compare the estimates of the parameters
with those obtained from the Besag model.

(f). Using the transformed variables Ỹ, X̃, show that this correspond to the δi’s being
iid. Use the commands resulting in res0.2 to fit this alternative. Again compare
with previous results.

(g). Now consider the spatial case but still with σ2
ε = 0. INLA has a model called

generic0 which assumes the precision matrix Q ∝ I − φC. Use the commands
resulting in res2 to fit this model. Again compare with the previous results.

(h). Finally consider the general case. Use the commands resulting in res3 to fit this
model. Again compare with the previous results.

Exercise 48 (Separable covariance functions)
Assume a separable covariance function

cov[Y (s; t), Y (x; r)] = C(s, t,x, r) = C(s)(s,x) · C(t)(t, r)
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We will show that if C(s)(s,x) is a legal covariance function in space and C(t)(t, r) is a
legal covariance function in time, then their product become a legal covariance function in
space-time.

(a). Assume first Y = {Y (si, tj), i = 1, ...,m, j = 1, ..., n}. Show that the covariance
matrix ΣY of Y can be written as Σ(s)⊗Σ(t) where Σ(s) is defined through C(s)(s,x)
and Σ(t) is defined through C(t)(t, r). Here ⊗ is the kroenecker product, i.e.

A⊗B =


A11B A12B · · · A1nB
A21B A22B · · · A2nB

...
An1B An2B · · · AnnB


(b). Show that ΣY becomes non-negative definite.

(c). Use this to show that the covariance matrix for any collection of variables {Y (sk, tk), k =
1, , , ., N} becomes non-negative definite.

Exercise 49 (MRF’s for “geostatistical” data)
This exercise is now a part of the project for v13

The file Piemonte data byday.csv contain data on PM10 (particulate matter with an
aerodynamic diameter of less than 10 µm) daily observed over a period from 01/10/05 to
31/03/06 at 42 stations in the North-Italian region Piemonte.

This is a dataset taken from Cameletti et al. [2011] which we will analyse using spatio-
temporal models later. Here we will only use data from one day (day 110) and concentrating
on the spatial structure In order to make the response approximately Gaussian distributed,
we will consider log(PM10).

The dataset can be read into R by the commands

d <-read.table("Piemonte_data_byday.csv",header=TRUE,sep=",")

d$Time = rep(1:182,each=24)

d1 = d[d$Time==110,]

d1$logPM10 = log(d1$PM10)

d1 now also contain several covariates, but we will ignore these in this exercise. We also
need the spatial coordinates which are available by

coordinates <-read.table("Cameletti/coordinates.csv",header=TRUE,sep=",")

borders = read.table("Cameletti/Piemonte_borders.csv",header=TRUE,sep=",")

It might also be a good idea to remove those NA’s:

coord = coord[!is.na(d1$PM10),]

d1 = d1[!is.na(d1$PM10),]

53



(a). Do different types of exploratory analyses to evaluate the spatial structure of the
data

(b). Fit an exponential covariance function to the data. Do the fit look reasonable?
There is also a second dataset available, which can be used for evaluation.
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