
Exercise 1 (Solution to exercise 2)
(a). We have

vTZ = vTY + vTη

Here vTY is normal since Y is multivariate normal (from exercise 1). Further, vTη
is a linear combination of independent normals, so is normal. Finally, from the model
assumptions, vTY and vTη are indpendent giving that vTZ is a linear combination
of independent normals, which then is normal itself. Since this is true for all v, we
have that Z is normal.

(b). We have that

E[Zt] = E[E[Zt|Yt]] = E[Yt] = 0

where the last equality is from exercise 1 using that µ = 0 in this case.

(c). We have that

cov(Zt, Zt+τ ) =E[cov(Zt, Zt+τ )|Yt, Yt+τ ] + cov(E[Zt|Yt, Yt+τ ], E[Zt+τ |Yt, Yt+τ ])
=E[cov(ηt, ηt+τ )|Yt, Yt+τ ] + cov(Yt, Yt+τ )

=τ 2I(τ = 0) + cov(Yt, Yt+τ )

where the first term is obtained by the properties of the ηt’s.

(d). We have that

f(z; θ) = f(z1; θ)
n∏
t=2

f(zt|z1, ..., zt−1; θ)

Now Z is multivariate Gaussian. This imply that any subset of Z is (multivariate)
Gaussian. That again imply that Z1 is Gaussian. Further (Z1, Z2) is Gaussian which
imply that Z2|Z1 is Gaussian and similarly Zt|Z1, ..., Zt−1 is Gaussian. The result
then follows.

(e). We have that

ẑt ≡E[Zt|Z1, ..., Zt−1] = E[E[Zt|Z1, ..., Zt−1, Yt]] = E[Yt|Z1, ..., Zt−1] ≡ ŷt|t−1

Further,

ST ≡var(Zt|Z1, ..., Zt−1)

=var(E[Zt|Z1, ..., Zt−1, Yt]) + E[var(Zt|Z1, ..., Zt−1, Yt)]

=var(Yt|Z1, ..., Zt−1) + E[τ 2|Z1, ..., Zt−1]

≡Pt|t−1 + τ 2
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(f). With a similar argument as in (a) we also have that the combined vector (Y,Z) is
multivariate normal and therefore the conditional distribution in question is normal.
The conditional means and variances are given directly from the definition. We
further have that

cov(Yt, Zt|Z1, ..., Zt−1) =cov(E[Yt|Z1, ..., Zt−1, Yt], E[Zt|Z1, ..., Zt−1, Yt])+

E[cov(Yt, Zt|Z1, ..., Zt−1, Yt)

=cov(Yt, Yt|Z1, ..., Zt−1) + 0 = Pt|t−1

where the zero is obtained by that given Yt Yt itself is a constant and have zero
variance. Based on this we have (using the rules for conditional normals)

ŷt|t ≡E(Yt|Z1, ..., Zt−1, Zt)

=E[Yt|Z1, ..., Zt−1] +
cov[Yt, Zt|Z1, ..., Zt−1]

var[Zt|Z1, ..., Zt−1]
(Zt − E[Zt|Z1, ..., Zt−1])

=ŷt|t−1 +
Pt|t−1

St
(Zt − ẑt) = ŷt|t−1 +Kt(Zt − ẑt)

Pt|t =var(Yt|Z1, ..., Zt)

=var(Yt|Z1, ..., Zt−1)−
[cov[Yt, Zt|Z1, ..., Zt−1)]

2

var[Zt|Z1, ..., Zt−1]

=Pt|t−1 −
P 2
t|t−1

St
= Pt|t−1[1−Kt]

(g). We have that

ŷt+1|t =E(Yt+1|Z1, ..., Zt)

=E[E(Yt+1|Z1, ..., Zt, Yt)]

=E[αYt|Z1, ..., Zt)] ≡ αŷt|t

Pt+1|t =var(Yt+1|Z1, ..., Zt)

=E[var(Yt+1|Z1, ..., Zt, Yt) + var(E[Yt+1|Z1, ..., Zt, Yt])

=E[σ2] + var(αYt|Z1, ..., Zt)

=σ2 + α2Pt|t

(h). If Zt is missing, then conditioning on Z1, ..., Zt−1 is equivalent to conditioning on
Z1, ..., Zt since Zt contain no information. Thereby the result

(i). From the three equations we can calculate ẑt and St recursively and thereby all
the quantities involved for calculating the likelihood is available. Further, at each
timestep we can multiply the previous value of the likelihood by φ(zt; ẑt, St) making
also the calculation of the likelihood recursively.
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(j). The predictions seems to follow the observations but are closer to zero due to that
the model has a prior prediction of zero on the process. When missing observations,
the variance increases.

(k). The maximum value is about 0.895, not far from the true value. Note the smooth
and unimodal behaviour of the likelihood function.

(l). The estimate of the observation error is far too small. This is reflected in that the
predictions now follow the observations much closer. Further, the effect of missing
observations is now much clearer in a larger increase in variance.
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