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Desired background

General knowledge of quantitative
methods/modelling

General knowledge of mathematics
(matrix/vector calculations)

Probability theory

— Expectations/Covariance matrices
— Conditional densities/probabilities
— Bayes theorem

(Linear) Regression
Maximum likelihood

Knowledge of common distributions (normal,
binomial, Poisson, Gamma, t)




* Course made by:
— Geir Storvik

e Lectured by

— Odd Kolbjgrnsen

* Book by:

— Noel Cressie
— Christopher K. Wikle
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Wiley Series in Probability and Statistics

Statistics for

SPATIO-TEMPORAL

Noel Cressie + Christopher K. Wikle


http://www.google.no/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=0ahUKEwjjtrfk2sTRAhWMWywKHXtuDz8QjRwIBw&url=http://niasra.uow.edu.au/cei/people/UOW202822.html&psig=AFQjCNHSxG0L3lwv6V_TWZNEBTJJx36XqQ&ust=1484588906072737

Course form

Lectures
Weekly exercises
Compulsory project (Given in May)

- Grading

Written exam (30.May 9:00-13:00) |

Monday:
14:15 — 16:00 Lectures
16.15 — 17:00 Last week Exercise Q&A
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Environmental statistics
(Wide definition)

Meteorology (temperature, wind, humidity)
Climate (CO2, Temperature)
Pollution (ozone, sulfur, )

Biological data (species, plants, Sustainable
population management )

Human data (Mortality, Disease surveillance )



John Snow on Cholera




1854 London outbreak of Cholera

First use of spatial statistics in medicine. Disease surveillance


http://www.google.no/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj7_-TVk7DRAhUCiSwKHRY9CTQQjRwIBw&url=http://blog.rtwilson.com/john-snows-cholera-data-in-more-formats/&bvm=bv.142059868,d.bGg&psig=AFQjCNH532fZ7jNXD_ds6vbNQQ4rfn3qLQ&ust=1483882483909477

Environmental statistics

Variability in space and time
Correlation in data

Aim to infer cause- effect relationship
Need where and when!

— Recording of where and when is a
powerful tool for obtaining covariates



Figure 1. Average Global Sea Surface Temperature, 1880-2015
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This graph shows how the average surface temperature of the world’s oceans has changed since
1880. This graph uses the 1971 to 2000 average as a baseline for depicting change. Choosing a
different baseline period would not change the shape of the data over time. The shaded band
shows the range of uncertainty in the data, based on the number of measurements collected and
the precision of the methods used.

Data source: NOAA, 20165
Web update: August 2016

https://www.youtube.com/watch?v=e0vj-0imOLw

Change of support:

- Measure at locations
(~0.01m?)

Average over globe™
(361 132 000 km?)
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Spatial statistics

* "Predict region of boreal forest (taiga) from
satellite data.

* Explanatory variables:

— Wetness index <. e

— Vegetation index
— Temperature
— Greenness index
* Boreality index
— Number of boreal spices / total number of spices


https://no.wikipedia.org/wiki/Fil:Taiga.png

Spatial data - Example

Typical question
@ Do an explanatory variable influence a response?

e Example:

@ Response: Number of species that belong to a set of boreal species
divided by the total number of species at a site.
o Explanatory variable: Index of wetness
Possible approach

@ Linear regression

an

@ Assumes independence in ,,
residuals. Realistic here? § s o e
ARG &t

> summary (Im(Bor"Wet, data=Boreality )
Coefficients: Sonigi

Estimate Std. Error t value Pr(>|t])
(Intercept) 18.4880 0.3787 48.82 <2e—16 x*x
Wet 165.8036 10.5991 15.64 <2e—16 *k*kx



Residuals

‘0

Spatial correlation

-2.607
-0.694
-0.04
0.567
5.049

* Bubble plot of residuals

* Clustering of high and
low values

— Spatial correlation in the
residual process

— Missing explanatory
variable with spatial
characteristics



Spatial correlation - Covariance function

Covariance function for process {Y(s),s € R?}:

Cov[Y (s +h), Y(s)] = Cy(h)

Plot of estimate (Boreal data)
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Spatial correlation - Variogram function

Alternative: Variogram function for process {Y(s).s € R?}:

v(h) =0.5Var[Y (s + h) — Y(s)]
=0.5{Var[Y (s + h)] + Var[Y(s)] — 2Cov[Y (s + h), Y(s)]}

h large

~ 0.5{Var[Y(s + h)] + Var[Y(s)]
=Var[Y(s)] if stationarity

Note: Cov[Y(s+ h), Y(s)] = Cy(h) =~(0) — v(h)
Plot of estimate (Boreal data)
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What should we do
with the boreal data?

 What goes wrong if we assumes
independence?
— Too certain on a large scale
» Data redundancy (information content repeated)

— Too uncertain on a short scale
 Local refinement due to correlation (interpolation)



Correlation - does it matter?

Simulation example: X; and Y; are independent, i = 1., ..., n:
Model

Y;|X; = X1 ~ N(_,So + B1xi. 02)

Assume 5; = 0.
Wald test on Hy : 31 = 0 should reject hypothesis a fraction of 100a%.
Repeated experiment 1000

@ All x's and y's independent: Rejection 48 times

@ Dependence:

X =ax;_1 + ih a=20.9
Yf :bY;'—l+5f b=20.9

Rejection 530 times!

@ Dependence: Effective number of observations much lower



Modelling temporal dependence

Assume Y7, ..., Y, time series
Simple model

Y1 ~N(p,0%/(1 = a%))
Yi :lu"}_a(yt—l —'LL)—f—(St: Of ~ N(O 0_2): t=2,..,

Autoregressive model of order 1, AR(1).
o Y;:~ N(u,o?/(1— a°) for all t!
@ Independence if a =0

Simulation example, 1000 simulations, o« = 0.05:

@ Ignoring dependence: Rejected 530 times
e Correction for dependence using AR(1) model: Rejected 56 times.



AR(1) - alternative formulation

Yi ~N(p, 0% /(1 — a%))
Yr =M -+ B(yt_l — ,[L) -+ (5“ (Sr ~ N(O 0'2)

imply Y = (Y1, ..., Y,) is multivariate Gaussian where

E[Yt = M
var[Y{] = 0% /(1 — a°)
COI’[Y& YH—T: =a = CY(T)

Can write

Y ~N(ul,X)
Zn :Var[Yt]
iir =CoV[Y:. Yiyr] = Xycor[ Yy, Yiis]



AR(1) - extensions

The alternative formulation

Y NN(;LL Z)
Zn :(72/(]_ — 32)
Et,H—T =2 ya = erCY(’T)

allow for extensions:

@ Including covariates
Y ~N(X83, %)

@ Other correlation structures structures
Et.t—i—‘r — zrrCY(’T)

@ Higher dimensional processes



Spatial processes

Assume now {Y(s),s € R?} is a spatial process
Let Y = (Y(s1),..., Y(sn))
Assume Y ~ N(X3,X) where

cor[Y(si), Y(s;j)] = Cy(|si —sjl)

Example boreal species:
e Using Cy(|s; —sj|) = exp(—|si — sj|/0)
@ Estimation of (4
Estimate Std.Error t-value P-value

Independence 165.804 10.60 15.64 0
Spatial dependence 75.432 13.54 557 4.05e-08




Theoretical considerations for spatial processes

Assume now {Y(s),s € R?} is a spatial process
Let Y = (Y(s1),.... Y(sn))
Assume Y ~ N(X3,X) where

cor[Y(si). Y(sj)] = Cv(|si —sj|)

Problems:
@ Multivariate Gaussian process for a finite number of positions
@ Want a simultaneous distribution for a continuous set of variables

@ Possible to define distribution for {Y(s),s € R?} through all
possible Y7

@ What restrictions are needed on Cy(-)?



Regional data

Often, Y(s) not available, but rather a summary for a region is given
Regional data require special models

Main idea: Neighbor regions have similar features

Main approach: Markov models (extensions of models from
STK2130)



Spatio-temporal Data
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Invasive spread of
Furasian Collared Dove
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North American Breeding Bird Survey data on the Eurasian Collared
Dove (Streptopelia decaocto) for the years 1986 - 2008.



Spatio-temporal processes

Can in principle do the same as for spatial processes:
Let Y = (Y(s1,t1),..., Y(sp, tn))
Assume Y ~ N(X3,X) where

cor[Y(si. ti), Y(sj, tj)] = Cy(|si —sj|, |ti — tj|)

As for time-series, there is an alternative in writing the model as a
dynamical process:

Yi(s) = Me(s, Yeo1(+)) + 0e(s)

M can be based on
@ statistical properties in data and/or

@ physical knowledge of the process (e.g differential equations)



Observation errors

Typically {Y (s, t)}, the physical /biological process of interest, is not
directly observed but

Zt:Yt+€f; EtNN(O,(Tgl)

Further, there are unknown parameters involved
Hierarchical structure
Op

|

Oy — Y — Z



If Y =y is directly observed, likelihood

-
L(Owm) = F(ylOm) = ] | F(yely<e: Om)

t=1

Typically multivariate Gaussian densities
(but more complicated if non-linearities are included)
Z observed data, Y latent structure, likelihood

L(Q/\/I,QD) :f(Z‘QM?QD) = /f(z\y;HD)f(y\BM)dy
y

High-dimensional integral
Dynamic modelling: Allow for sequential calculation of likelihood.



(Bayesian) Hierarchical modelling

Hierarchical model

Variable Densities Notation in book

Data model: yA p(Z|Y,0) [Z|Y,0]
Process model: Y p(Y|0) [Y|6]
Parameter: 6

Simultaneous model: p(y, z|0)
Marginal model: p(z|0) = f p(z,y|0)dy

Bayesian approach: Include model on 8

Variable Densities Notation in book

Data model: Z p(Z|Y,0) [Z|Y,0]
Process model: Y p(Y|6) 1Y |6]
Parameter model: 6 p(60) 6]

Simultaneous model: p(y z,0)
Marginal model: p(z fgf p(z,y|0)dydo



Spatio-temporal data and uncertainties

Space-Time: The next Frontier
Time-data give possibilities for causation

Spatio-temporal data contain many sources of uncertainty

Statistics: Science of Uncertainty!

e Uncertainty in data
e Uncertainty in models



Prelim/Jan

January-Mach

Course @ a slide

e Statistics preliminaries
(Chapter 2)

 Temporal processes
(Chapter 3)
— Deterministic models
— Stochastic models
— Spectral representation

* Spatial processes

— Geostatistical processes,
sec4.1

— Lattice processes, sec 4.2
— Point processes, sec 4.3

e Spatio-temporal processes

— Exploratory methods
(Chapter 5)

— Models (Chapter 6)

— Hierarchical models
(Chapters 7 and 8)

AeA-yoen

* Focuson
— Modeling
— Analysis in practice (using R)
— Theoretical aspects



Computations

* |nference for space time-processes difficult due to
— Complex models
— Latent processes (likelihood not directly specified)
— Huge amounts of data
* Possibilities
— Use available software
e Typically for specific models

— Monte Carlo methods
* Preferred method in the book, described in sec 2.3

— Using integrated nested Laplace approximation (INLA)
* Flexible software for latent Gaussian processes
* Will be used throughout the course

— Computation within R



Begin @ the end

Summary of STK4150/9150

Geir Storvik

May 12, 2015




Spatio-temporal processes

Aims
@ Prediction/forecasting
@ Learning about the processes

Challenges

LOOK INSIDE
. Value of Information in the Earth

| Sciences
Integrating Spatial Modeling and Decision
Analysis

@ Complex dependence structures

@ Huge amounts of data

AUTHORS:

Jo Eidsvik, Norwegian University of Science and Technology,
Trondheim

Tapan Mukerji, Stanford University, California

Debarun Bhattacharjya, IBM T. J. Watson Research Center, New
York

DATE PUBLISHED: November 2015

AVAILABILITY: In stock

FORMAT: Hardback

ISBN: 9781107040267




The importance of taking dependence into account

Spatio-temporal data often contain dependence

lgnoring dependence can give wrong results (too small uncertainty
measures)

Inclusion of dependence complicates

e Modeling
o Inference/computation

Inclusion of covariates can reduce dependence

Dependence can improve prediction /forecasting



Exploratory data analysis (EDA)

e Always do EDA!

@ Various tools:
o Direct plots of data/animations
e Autocorrelation function (time series)
e Variograms (spatial data)
e Moran's |, STI (tests for dependence, spatial /spatio-temporal)
o Empirical orthogonal functions (spatio-temporal)



Time series

e Differential equations (deterministic/stochastic)
Yy = M(Ye1) + We

o ARMA mOdels Yt — Z';():]. ak Yf—k —|— Z?:O /8[ Wf—l
@ Most useful: AR(1). NB: Sparse precision matrix

@ Non-linear models - related to differential equations (?)



Spatial processes

@ Geostatistical modeling - covariance functions

e Need non-negative definite covariance matrix for any finite collection

of spatial points
e Challenge to construct legal covariance functions

e Stationarity/isotrophy simplifies modeling and inference
e Prediction through kriging
o x1|xa ~ N(ptq + Z12X5," (x2 — p), X11 — X12X,,' X01)
e CAR/MRF-models - sparse precision matrices
o p(Y(si)|Y=i)=p(Y(si)|Y(s).j € Ni)
e Simplifies modeling/inference

@ Hierarchical modeling allow for non-Gaussian observations



Spatio-temporal processes

@ Possible to define time as extra “spatial” dimension
e More difficult to construct valid covariance functions
@ Advantages in modeling time dynamically

e Partial differential equations - stochastic versions
o Time series approaches Y; = M(Y:_1) + W,



Spatio-temporal processes - simplifications

@ Spatio-temporal data involve a huge number of
observations/variables

e Difficult to model, difficult to process
@ Need simplifications

o Additive models Y:(s) = X:(s)" B + ar + (s) + £«(s)

e Separable covariance functions

e Dimension reductions: Y; = ®«; with dynamics in lower
dimensional «:.



Hierarchical modeling

@ Distinguish between

e process model
@ observation model

@ Advantages

e Simpler modeling
e Allow for non-Gaussian observations

@ Can include model for parameters in a Bayesian framework



Computational tools

e Kalman filtering (linear Gaussian models)
o MCMC

e INLA

o (Particle filters)

e (EM algorithm)



Challenges

e Efficient generic tools for models outside the INLA framework
@ Tools for model selection

@ More integration of physical and statistical models



