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Precision matrices

Lattice process

AR(1) as lattice process
MRF — Markov random field
Neighborhood

Clique

Undirected graph (MRF)

Gaussian CAR — Conditional auto regressive (intro)

Besag's lemma (conditional vs joint distribution)
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Today

Lattice model and other models
Neighborhood

Clique

Negpotential function
Hammersley- Clifford theorem

Auto spatial models

o CAR model
o Latent Gaussian process
o Auto logistic model (Ising model)
e auto Poisson model
Next time:
@ How to construct CAR from scratch
e Examples of Models in INLA (disease mapping, etc)

e Examples of models outside INLA (Potts model)
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Spatial processes

Smooth model Discrete Model (segmentation)

STKA4150 - Intro A



Spatial models

@ Process model (What is modeled?)
e Smooth phenomena (e.g. Gaussian models)
o Discrete phenomena (e.g. Potts model)
o Event models (e.g. Poisson process)
@ Modeling approach (How is it modeled?)
e Joint distribution (Continuous domain),
e.g. Gaussian random field with a given Covariance function
o Sequential approach ( Directed acyclic graph)
e.g. Gaussian AR(1) model
e Conditional approach/ Lattice model (Undirected graph)
e.g. Gaussian Markov random fields on a lattice (Precission matrix)

Want to make a statistical model of the process which is 1) consistent,
2) models important features in a good way, 3) we can do inference in.
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Lattice processes

@ Aim: Construct model based on "local modeling” (Markov models)

@ Neighbors are illustrated in undirected graphs

N
Ca)
/T
/0
S /\ [\
( ) |
NGy \ (w1 12,1)
\\ [l ey RN
c \‘ ‘
s >,L
i B
9 e/

@ Motivation:
o Fast computations on large Gaussian models
o Model non-Gaussian dependency in spatial models.

@ Basic question. Does a joint distribution with the specified
conditional distributions exist?
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Making a joint distribution from the conditionals

@ Last time : Besag's Lemma = First piece of the puzzle. Relation
between the joint distribution and the conditional approach.
(Assuming the joint distribution exist)

Pr(Y) _ - Pr(yi|y1a~'~,yi—17WI'+17"'7Wn)
Pr(w) - Pr(wilys, ... yie1, wia, ..., wh)

e Now: Hammersley - Clifford theorem. On the graph (G)
Graph = Nodes (=Lattice) + Edges (=Neighbors)

Pr(y16) = g7 P {QUi0)} = g5 exp{ 3 m(yc,e)}
ceCq

with Cg being the set of all cliques, Q(0,6) =0, and ¢(0) is a
normalizing constant.
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Neighbor/Neighborhood

On a countable set of indexes, i=1,2,...
(corresponding to the random variables on the lattice Y;, i =1,2,...)

@ / is not a neighbor to itself i ¢ N (/)
e if j is a neighbor of i then i is a neighbor of j , j € N(i) & i € N(j)

A neighborhood system defines an undirected graph, where there is a line
form each (node) to each of its neighbors.

The maximum number of edges for a finite set of n nodes are "(";1).

often it is kn, with k << "51
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@ Clique: A set of locations (e.g. nodes, points in lattice) that consists
either of a single site or a set of sites that are all neighbors to each
other

e Example: n =3, N(s1) = {s2,83}, N(s2) = {s1}, N(s3) = {s1},
Cliques: {s1}, {s2}, {s3}, {s1,s2}, {s1,s3}
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Cliques
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@ Clique: A set of locations (e.g. nodes, points in lattice) that consists
either of a single site or a set of sites that are all neighbors to each
other

o Example: n = 3,N(s1) = {s2,83}, N(s2) = {s1},N(s3) = {s1},
Cliques: {s1},{s2}, {s3}, {s1,s2}, {s1,s3}
@ Example: Lattice
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Negpotential function

@ Assume P(0) > 0 (always possible by defining "0" appropriately)
e Define Negpotential function: Q(y) = log{Pr(y)/Pr(0)}
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Negpotential function

@ Assume P(0) > 0 (always possible by defining "0" appropriately)
e Define Negpotential function: Q(y) = log{Pr(y)/Pr(0)}

@ and expand it as:

Zy, (i) + Y yiviGii(yi i)+

ij

ZYi)/ij Giik(Vis Y yk) + -+ vy YmGm(Ves s Yim)
ijk
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Terms in Negpotential function - expansion

The G-functions are defined/constructed through

y =(0,...,0,¥,0,...,0),y; #0
= Gi(y;) = Q(0,...,0,¥,0,...,0)/y;
= Q(0,...,0,y,0,...,0) = y; Gi(y;) (*)

y =(0,...,0,¥,0,...,0,¥,0,--- ,0),y;,y; #0

= G; j(yi,y) = [Q(0, ..., 0,¥,0,...,0,5,0,-- - ,0) = yi Gi(y;) — y; G;(¥;))]/ (viyj)
= Q(0,...,0,y,0,...,0,y;,0,- - - ,0) = y; Gi(yi) + ¥; Gj(v;) + vi¥; Gi j(¥i> ¥j)
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Hammersley-Clifford theorem

Qly) = Zy,' Gi(yi) + Z Yiy;i Gii(yi, yj)+

y

> yiyivk G (Vi i yi) + -+ yaya s YmGrm(Y1, -oes Ym)
ijk
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Hammersley-Clifford theorem

Y) =D _viGi(yi) + > yiyiGilyi.yi)+

y

> yiyivk G (Vi i yi) + -+ yaya s YmGrm(Y1, -oes Ym)
ijk

Theorem: If {i1, iz, ..., i} is not a clique, then G; ;, ;. (-)=0
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Hammersley-Clifford theorem

QY) =>_viGi(yi) + Y yiviGiyi, vi)+
i i
> yiyivk G (Vi i yi) + -+ yaya s YmGrm(Y1, -oes Ym)
ijk

Theorem: If {i1, iz, ..., i} is not a clique, then G; ;, ;. (-)=0

The hard thing here is to get all the definitions straight...
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Hammersley-Clifford theorem proof

If a set is not a clique: Then there exist (at least) two indices not being
neighbors in this set. Assume these are i =i and i, = /.

Define yi = (V1, -+, ¥i=1, 0, ¥it1s -5 Yim)-

Pr(y) :Pr(Yi|y7i)
Pr(y:)  Pr(Oly-:)

ok —esp(Qly) - Q)

so Q(y) — Q(y;) do not depend on y;, since this was the way we
constructed it by the way we picked indices

do not depend on y;
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Proof (cont)

Qy) — Qi) =yiGilyi) + > yiiGij(vi yj)+
J#i

Z YiYiyeGijw(Yis Yis yi) + -+
Jik#i

@ The sum only include terms where y; is included since the others
cancel out in the subtraction
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Proof (cont)

Qy) — Qi) =yiGilyi) + > yiiGij(vi yj)+
J#i
Z YiYiyeGijw(Yis Yis yi) + -+
JokF#i

@ The sum only include terms where y; is included since the others
cancel out in the subtraction
e Putting y; =0,/ # i, we get:
o YiyiGi(yi, 1) = 0 since this is only term depending on y,
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Proof (cont)

Qy) — Qi) =yiGilyi) + > yiiGij(vi yj)+
J#i
Z YiYiyeGijw(Yis Yis yi) + -+
JokF#i

@ The sum only include terms where y; is included since the others
cancel out in the subtraction
e Putting y; =0,/ # i, we get:
o YiyiGi(yi, 1) = 0 since this is only term depending on y,
o For y; =0,yiviGii(yi,yi) = 0 for any y;
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Proof (cont)

Qy) — Qi) =yiGilyi) + > yiiGij(vi yj)+
J#i
Z YiYiyeGijw(Yis Yis yi) + -+
JokF#i

@ The sum only include terms where y; is included since the others
cancel out in the subtraction
e Putting y; =0,/ # i, we get:
o YiyiGi(yi, 1) = 0 since this is only term depending on y,

o For y; =0,yiviGii(yi,yi) = 0 for any y;
o Imply yiyiGii(yi,yi) = 0 also for y; # 0 and any y; ( since | ¢ N(i))
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Proof (cont)

Qy) — Qi) =yiGilyi) + > yiiGij(vi yj)+
J#i
Z YiYiyeGijw(Yis Yis yi) + -+
JokF#i

@ The sum only include terms where y; is included since the others
cancel out in the subtraction

e Putting y; =0,/ # i, we get:

yiv1Gii(yi, y1) = 0 since this is only term depending on y;

o For y; =0,yiviGii(yi,yi) = 0 for any y;

o Imply yiyiGii(yi,yi) = 0 also for y; # 0 and any y; ( since | ¢ N(i))

o Imply Gi(yi,y1) =0
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Higher order

STKA4150 - Intro

Qy) — Qi) =yiGilyi) + > yiiGij(vi )+
J#i

> viyivi Gy vi yi) + -+
Pyt

Showed for all second order effects
Similarly for triplets: Putting y; =0,/ # i, k,/

implies G,‘,k7l(}/i7}/k7y/) =0

of orders below are zero.

Imply all G's containing i,/ are zero.

Using that G; (y;,y1) = 0 for the non neighboring pair.

Iterating argument expanding to higher order 4th, 5th,...

using at all

bl



Existence of simultaneous distribution

Besag's lemma, Hammersley-Clifford: Results assuming simultaneous
distribution exist.

Assume conditional distributions and
Q Q=0 xQ x- - xQ
@ The G-functions are invariant under permutation

Q > exp{Q(t)} < oo

Then simultaneous distribution exist.

Condition 1 can be relaxed, see eq (4.116) in the book
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Auto-spatial models

@ Auto-spatial models: Only second order terms

Qly) = Zyz‘ Gi(yi) + Z iy Gii(vis ¥;)

y

o The CAR model
o Latent Gaussian processes
e auto Poisson model

Note: {i,j, k} might be a clique but still Gj(y;,y;, yx) = 0.
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CAR model, u =

m 1 1 _
log P(y) = — - log(2m) — S log |T| - Sy =1y
1 1
=— g log(2m) +  log|Q| — Sy Qy
m 1 1
=— — log(2m) + = log [Q] — = Y yiQyy;
2 2 2
ij
m 1 1
=— - log(2m) + Zlog|Q — 2 >y Qi — Z > iy
i i jJEN;
giving
log P(0) = Iog(27r) + = Iog Q|
Q(y -3 ZY, Qu Z Z leij
i jGN
Gi(yi) =— EY;QH Gii(yi,yj) = _EQU’ Gii(yi> ¥js yk) =0
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CAR model, u =0

P(y) =P(0)e%)

1 1
Qly) =— 5 ZY,?Q,'; —3 ZYIQU}/j
i 2

1 1
=- 52)’?0;/ - EZ ZYiQij}/j

i JEN;

Assume Q; = 0. Then
e Qi=0
o i¢Njand j &N,

o If N are small for all i, then Q is sparse
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Latent Gaussian processes

Assume
y ~ MVN(O, Qfl) Q sparse
zily ~ f(zily:), Cond. independent
Then

p(ylz) <p(y)p(zly) = p(y HP zly;)

1
log p(y|z) =Const — = 2 log(2m) + 5 log\QI ~3 > " yiQiyi+ ) _log f(zily:)
i i

Q(y) =log p(y|z) — log p(0|2)

- %ZYIQWJ + Z log f(zily;) — Z|0g f(z0)
—_— ny, Qii +Z|ogf(z,|y,) — Zlogf zi|0) — = Z viQiy;

U i#j

YiGi(yi) = — Ey’ Qiiyi + log f(zi|y:) — log f(z10)

1
Gi(yi) = = 5 Qs
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Finding G functions and simultaneous distribution

Assume simultaneous distribution exist
For MRF

__P(y)
P(y-i)

ocexp{yiGi(yi) +vi Y yiGi(yiny)) + -+ }
j

P(yily-i) oc P(y) oc exp(Q(y))

Assume conditional distributions are specified.
Put y; =0, # i for finding G;(y;)

Put y, = 0, k # i,j for finding Gj(yi, yj)

etc

P(y) o< exp(Q(y))
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Auto logistic

For auto-logistic, y; € {0,1}
exp{aiyi + Zj;éi Oiyiyi}
1+ exp{ai + Zj;éi 0iy; }

ocexp{aiyi + Y Oiyiy}
#i

Pr(yily-i) =

Gi(yi) =ai
ij(yf,yj) =0;

Za,y,—l— Z yiy;0i

iJ,i#j

P(y) ocexp{zay, + > viyis}

P57

On regular lattice: Ising model
o i=(u,v),Ni={(u,v—-1),(u,v+1),(u—1,v),(u+1,v)}

@ 0; = 0 for non-neighbors
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Auto Poisson

For auto-Poisson (misprint in eq (4.114) in the book)

P(yi|y—i) =Poisson(exp{ai + Zeuyj}) 0; =0,j € N;

j=1
=Poisson(exp{a; + Y _ 0;})
JEN;
=exp{yi(a; + Z 0iiy;) — log yi! — eitXjen; HUYJ}
JEN;

ocexp{yici —logyi! +yi »_ Oy}
JEN;

Gi(yi) =ai — y; *log y;!
Qly) = Z(a;yf —logyi!) + Zyingij

i iJ
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Auto models - general

Exponential family:

fr (v10) = exp{(yf — a(6))/ + log c(y: ¢)}
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Auto models - general

Exponential family:

fr (v10) = exp{(yf — a(6))/ + log c(y: ¢)}

Auto models (a bit more general in the book)
[YiY_i] =exp(Ai(Y_i)(Yi — Bi) + Gi(Y:) + Di(Y_)))
0 =A(Y-i) =i+ 0;(Y; - B))
J#i

Z[a, yi = B) + Gl + D 05(vi = B)(y; — B))

i<j

@ auto Gaussian (CAR)

@ auto gamma model

o Winsorized auto Poisson model
@ auto beta model
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Auto models - general

Exponential family:

fy (v16) = exp{(yf — a())/¢ + log c(v: 6)}
Auto models ( in the book)

[\/;IY_;]Eexp(A'(Y-f)(B( ))+C( )+D(Y i)
0=A(Y_)=ai+> 0B B;(0))

J#i

:Z[a,-(B,-(y,-) - Bi(0)) + Gi(yi)]
+ > 05(Bi(yi) — Bi(0))(B;(y;) — B;(0))

i<j

@ auto Gaussian (CAR)
@ auto gamma model
o Winsorized auto Poisson model (truncated at y; > t;)

@ auto beta model
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