Chapter 4.2 - Lattice processes Lecture notes

Odd Kolbjørnsen Geir Storvik

February 27, 2017

Last Time

- Precision matrices
- Lattice process
- AR(1) as lattice process
- MRF Markov random field
- Neighborhood
- Clique
- Undirected graph (MRF)
- Gaussian CAR Conditional auto regressive (intro)
- Besag's lemma (conditional vs joint distribution)

Today

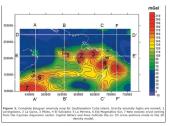
- Lattice model and other models
- Neighborhood
- Clique
- Negpotential function
- Hammersley- Clifford theorem
- Auto spatial models
 - CAR model
 - Latent Gaussian process
 - Auto logistic model (Ising model)
 - auto Poisson model

Next time:

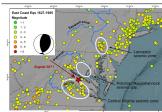
- How to construct CAR from scratch
- Examples of Models in INLA (disease mapping, etc)
- Examples of models outside INLA (Potts model)

Spatial processes

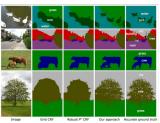
Smooth model



Event observations



Discrete Model (segmentation)



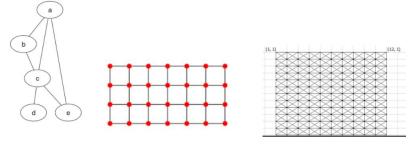
Spatial models

- Process model (What is modeled?)
 - Smooth phenomena (e.g. Gaussian models)
 - Discrete phenomena (e.g. Potts model)
 - Event models (e.g. Poisson process)
- Modeling approach (How is it modeled?)
 - Joint distribution (Continuous domain),
 e.g. Gaussian random field with a given Covariance function
 - Sequential approach (Directed acyclic graph)
 - e.g. Gaussian AR(1) model
 - Conditional approach/ Lattice model (Undirected graph)
 e.g. Gaussian Markov random fields on a lattice (Precission matrix)

Want to make a statistical model of the process which is 1) consistent, 2) models important features in a good way, 3) we can do inference in.

Lattice processes

- Aim: Construct model based on "local modeling" (Markov models)
- Neighbors are illustrated in undirected graphs



- Motivation:
 - Fast computations on large Gaussian models
 - Model non-Gaussian dependency in spatial models.
- Basic question. Does a joint distribution with the specified conditional distributions exist?

Making a joint distribution from the conditionals

 Last time: Besag's Lemma = First piece of the puzzle. Relation between the joint distribution and the conditional approach. (Assuming the joint distribution exist)

$$\frac{\Pr(\mathbf{y})}{\Pr(\mathbf{w})} = \prod_{i=1}^{n} \frac{\Pr(y_i|y_1, ..., y_{i-1}, w_{i+1}, ..., w_n)}{\Pr(w_i|y_1, ..., y_{i-1}, w_{i+1}, ..., w_n)}$$

• Now: Hammersley - Clifford theorem. On the graph (G) Graph = Nodes (=Lattice) + Edges (=Neighbors)

$$\Pr(\mathbf{y}|\boldsymbol{\theta}) = \frac{1}{c(\boldsymbol{\theta})} \exp \left\{ Q(\mathbf{y}; \boldsymbol{\theta}) \right\} = \frac{1}{c(\boldsymbol{\theta})} \exp \left\{ \sum_{c \in C_G} \psi_c(y_c, \boldsymbol{\theta}) \right\}$$

with C_G being the set of all cliques, $Q(\mathbf{0}, \theta) = 0$, and $c(\theta)$ is a normalizing constant.

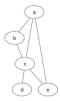
4□ > 4□ > 4 = > 4 = > = 99

Neighbor/Neighborhood

On a countable set of indexes, i=1,2,... (corresponding to the random variables on the lattice Y_i , i=1,2,...)

- i is not a neighbor to itself $i \notin \mathcal{N}(i)$
- ullet if j is a neighbor of i then i is a neighbor of j , $j \in \mathcal{N}(i) \Leftrightarrow i \in \mathcal{N}(j)$

A neighborhood system defines an undirected graph, where there is a line form each (node) to each of its neighbors.



The maximum number of edges for a finite set of n nodes are $\frac{n(n-1)}{2}$. often it is kn, with $k << \frac{n-1}{2}$

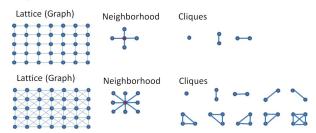
◆ロト ◆団 ト ◆ 重 ト ◆ 重 ・ 釣 へ ②

Cliques

- Clique: A set of locations (e.g. nodes, points in lattice) that consists either of a single site or a set of sites that are all neighbors to each other
- Example: $n = 3, \mathcal{N}(\mathbf{s}_1) = \{\mathbf{s}_2, \mathbf{s}_3\}, \mathcal{N}(\mathbf{s}_2) = \{\mathbf{s}_1\}, \mathcal{N}(\mathbf{s}_3) = \{\mathbf{s}_1\},$ Cliques: $\{\mathbf{s}_1\}, \{\mathbf{s}_2\}, \{\mathbf{s}_3\}, \{\mathbf{s}_1, \mathbf{s}_2\}, \{\mathbf{s}_1, \mathbf{s}_3\}$

Cliques

- Clique: A set of locations (e.g. nodes, points in lattice) that consists either of a single site or a set of sites that are all neighbors to each other
- Example: $n = 3, \mathcal{N}(\mathbf{s}_1) = \{\mathbf{s}_2, \mathbf{s}_3\}, \mathcal{N}(\mathbf{s}_2) = \{\mathbf{s}_1\}, \mathcal{N}(\mathbf{s}_3) = \{\mathbf{s}_1\},$ Cliques: $\{\mathbf{s}_1\}, \{\mathbf{s}_2\}, \{\mathbf{s}_3\}, \{\mathbf{s}_1, \mathbf{s}_2\}, \{\mathbf{s}_1, \mathbf{s}_3\}$
- Example: Lattice



Negpotential function

- Assume $P(\mathbf{0}) > 0$ (always possible by defining " $\mathbf{0}$ " appropriately)
- Define Negpotential function: $Q(y) \equiv \log{\{\Pr(y) / \Pr(0)\}}$

4□ > 4□ > 4 = > 4 = > = 99

Negpotential function

- Assume $P(\mathbf{0}) > 0$ (always possible by defining " $\mathbf{0}$ " appropriately)
- Define Negpotential function: $Q(y) \equiv \log{\{\Pr(y) / \Pr(0)\}}$
- and expand it as:

$$Q(\mathbf{y}) = \sum_{i} y_{i} G_{i}(y_{i}) + \sum_{ij} y_{i} y_{j} G_{ij}(y_{i}, y_{j}) + \sum_{ijk} y_{i} y_{j} y_{k} G_{ijk}(y_{i}, y_{j}, y_{k}) + \dots + y_{1} y_{2} \dots y_{m} G_{1,...,m}(y_{1}, ..., y_{m})$$

- 4 ロ b 4 個 b 4 差 b 4 差 b - 差 - 釣 Q C

Terms in Negpotential function - expansion

The *G*-functions are defined/constructed through

$$\mathbf{y} = (0, \dots, 0, y_i, 0, \dots, 0), y_i \neq 0$$

$$\Rightarrow G_i(y_i) = Q(0, \dots, 0, y_i, 0, \dots, 0)/y_i$$

$$\Rightarrow Q(0, \dots, 0, y_i, 0, \dots, 0) = y_i G_i(y_i)$$

$$\mathbf{y} = (0, \dots, 0, y_i, 0, \dots, 0, y_j, 0, \dots, 0), y_i, y_j \neq 0$$

$$\Rightarrow G_{i,j}(y_i, y_j) = [Q(0, \dots, 0, y_i, 0, \dots, 0, y_j, 0, \dots, 0) - y_i G_i(y_i) - y_j G_j(y_j)]/(y_i y_j)$$

$$\Rightarrow Q(0, \dots, 0, y_i, 0, \dots, 0, y_j, 0, \dots, 0) = y_i G_i(y_i) + y_j G_j(y_j) + y_i y_j G_{i,j}(y_i, y_j)$$

$$\vdots$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ からの

Hammersley-Clifford theorem

$$Q(\mathbf{y}) = \sum_{i} y_{i} G_{i}(y_{i}) + \sum_{ij} y_{i} y_{j} G_{ij}(y_{i}, y_{j}) + \sum_{ijk} y_{i} y_{j} y_{k} G_{ijk}(y_{i}, y_{j}, y_{k}) + \dots + y_{1} y_{2} \dots y_{m} G_{1,...,m}(y_{1}, ..., y_{m})$$

Hammersley-Clifford theorem

$$Q(\mathbf{y}) = \sum_{i} y_{i} G_{i}(y_{i}) + \sum_{ij} y_{i} y_{j} G_{ij}(y_{i}, y_{j}) + \sum_{ijk} y_{i} y_{j} y_{k} G_{ijk}(y_{i}, y_{j}, y_{k}) + \dots + y_{1} y_{2} \dots y_{m} G_{1,...,m}(y_{1}, ..., y_{m})$$

Theorem: If $\{i_1,i_2,...,i_k\}$ is not a clique, then $G_{i_1,i_2,...,i_k}(\cdot)\equiv 0$

Hammersley-Clifford theorem

$$Q(\mathbf{y}) = \sum_{i} y_{i} G_{i}(y_{i}) + \sum_{ij} y_{i} y_{j} G_{ij}(y_{i}, y_{j}) + \sum_{ijk} y_{i} y_{j} y_{k} G_{ijk}(y_{i}, y_{j}, y_{k}) + \dots + y_{1} y_{2} \dots y_{m} G_{1,...,m}(y_{1}, ..., y_{m})$$

Theorem: If $\{i_1,i_2,...,i_k\}$ is not a clique, then $G_{i_1,i_2,...,i_k}(\cdot)\equiv 0$

The hard thing here is to get all the definitions straight...

Hammersley-Clifford theorem proof

If a set is not a clique: Then there exist (at least) two indices not being neighbors in this set. Assume these are $i_1 = i$ and $i_2 = l$. Define $\mathbf{y}_i = (y_1, ..., y_{i-1}, 0, y_{i+1}, ..., y_m)$.

$$\frac{\Pr(\mathbf{y})}{\Pr(\mathbf{y}_i)} = \frac{\Pr(y_i|\mathbf{y}_{-i})}{\Pr(0|\mathbf{y}_{-i})}$$
 do not depend on y_i

$$\frac{\Pr(\mathbf{y})}{\Pr(\mathbf{y}_i)} = \exp(Q(\mathbf{y}) - Q(\mathbf{y}_i))$$

so $Q(\mathbf{y}) - Q(\mathbf{y}_i)$ do not depend on y_i , since this was the way we constructed it by the way we picked indices

$$Q(\mathbf{y}) - Q(\mathbf{y}_i) = y_i G_i(y_i) + \sum_{j \neq i} y_i y_j G_{i,j}(y_i, y_j) + \sum_{j,k \neq i} y_i y_j y_k G_{i,j,k}(y_i, y_j, y_k) + \cdots$$

• The sum only include terms where y_i is included since the others cancel out in the subtraction

$$Q(\mathbf{y}) - Q(\mathbf{y}_{i}) = y_{i}G_{i}(y_{i}) + \sum_{j \neq i} y_{i}y_{j}G_{i,j}(y_{i}, y_{j}) + \sum_{j,k \neq i} y_{i}y_{j}y_{k}G_{i,j,k}(y_{i}, y_{j}, y_{k}) + \cdots$$

- The sum only include terms where y_i is included since the others cancel out in the subtraction
- Putting $y_i = 0, j \neq i, I$ we get:
 - $y_i y_l G_{i,l}(y_i, y_l) = 0$ since this is only term depending on y_l

$$Q(\mathbf{y}) - Q(\mathbf{y}_{i}) = y_{i}G_{i}(y_{i}) + \sum_{j \neq i} y_{i}y_{j}G_{i,j}(y_{i}, y_{j}) + \sum_{j,k \neq i} y_{i}y_{j}y_{k}G_{i,j,k}(y_{i}, y_{j}, y_{k}) + \cdots$$

- The sum only include terms where y_i is included since the others cancel out in the subtraction
- Putting $y_i = 0, j \neq i, I$ we get:
 - $y_i y_l G_{i,l}(y_i, y_l) = 0$ since this is only term depending on y_l
 - For $y_l = 0$, $y_i y_l G_{i,l}(y_i, y_l) = 0$ for any y_i

$$Q(\mathbf{y}) - Q(\mathbf{y}_{i}) = y_{i}G_{i}(y_{i}) + \sum_{j \neq i} y_{i}y_{j}G_{i,j}(y_{i}, y_{j}) + \sum_{j,k \neq i} y_{i}y_{j}y_{k}G_{i,j,k}(y_{i}, y_{j}, y_{k}) + \cdots$$

- The sum only include terms where y_i is included since the others cancel out in the subtraction
- Putting $y_i = 0, j \neq i, I$ we get:
 - $y_i y_l G_{i,l}(y_i, y_l) = 0$ since this is only term depending on y_l
 - For $y_i = 0$, $y_i y_i G_{i,l}(y_i, y_l) = 0$ for any y_i
 - Imply $y_i y_l G_{i,l}(y_i, y_l) = 0$ also for $y_l \neq 0$ and any y_i (since $l \notin \mathcal{N}(i)$)

4□ > 4□ > 4 = > 4 = > = 99

$$Q(\mathbf{y}) - Q(\mathbf{y}_{i}) = y_{i}G_{i}(y_{i}) + \sum_{j \neq i} y_{i}y_{j}G_{i,j}(y_{i}, y_{j}) + \sum_{j,k \neq i} y_{i}y_{j}y_{k}G_{i,j,k}(y_{i}, y_{j}, y_{k}) + \cdots$$

- The sum only include terms where y_i is included since the others cancel out in the subtraction
- Putting $y_i = 0, j \neq i, I$ we get:
 - $y_i y_l G_{i,l}(y_i, y_l) = 0$ since this is only term depending on y_l
 - For $y_i = 0$, $y_i y_i G_{i,l}(y_i, y_l) = 0$ for any y_i
 - Imply $y_i y_l G_{i,l}(y_i, y_l) = 0$ also for $y_l \neq 0$ and any y_i (since $l \notin \mathcal{N}(i)$)
 - Imply $G_{i,l}(y_i, y_l) = 0$

4 D > 4 D > 4 E > 4 E > E 9 Q C

Higher order

$$Q(\mathbf{y}) - Q(\mathbf{y}_{i}) = y_{i}G_{i}(y_{i}) + \sum_{j \neq i} y_{i}y_{j}G_{i,j}(y_{i}, y_{j}) + \sum_{j,k \neq i} y_{i}y_{j}y_{k}G_{i,j,k}(y_{i}, y_{j}, y_{k}) + \cdots$$

- Showed for all second order effects
- Similarly for triplets: Putting $y_j = 0, j \neq i, k, l$
- Using that $G_{i,l}(y_i, y_l) = 0$ for the non neighboring pair.
- ...
- implies $G_{i,k,l}(y_i, y_k, y_l) = 0$
- Iterating argument expanding to higher order 4th, 5th,... using at all of orders below are zero.
- Imply all G's containing i, l are zero.

Existence of simultaneous distribution

Besag's lemma, Hammersley-Clifford: Results assuming simultaneous distribution exist.

Assume conditional distributions and

The G-functions are invariant under permutation

$$\bigcirc$$
 $\sum_{\mathbf{t}\in\Omega}\exp\{Q(\mathbf{t})\}<\infty$

Then simultaneous distribution exist.

Condition 1 can be relaxed, see eq (4.116) in the book

4□ > 4圖 > 4 분 > 4 분 > 분 9 < 0</p>

Auto-spatial models

Auto-spatial models: Only second order terms

$$Q(\mathbf{y}) = \sum_{i} y_i G_i(y_i) + \sum_{ij} y_i y_j G_{ij}(y_i, y_j)$$

- The CAR model
- Latent Gaussian processes
- auto Poisson model

Note: $\{i, j, k\}$ might be a clique but still $G_{ijk}(y_i, y_j, y_k) = 0$.

CAR model, $\mu = 0$

$$\begin{split} \log P(\mathbf{y}) &= -\frac{m}{2} \log(2\pi) - \frac{1}{2} \log |\mathbf{\Sigma}| - \frac{1}{2} \mathbf{y}^T \mathbf{\Sigma}^{-1} \mathbf{y} \\ &= -\frac{m}{2} \log(2\pi) + \frac{1}{2} \log |\mathbf{Q}| - \frac{1}{2} \mathbf{y}^T \mathbf{Q} \mathbf{y} \\ &= -\frac{m}{2} \log(2\pi) + \frac{1}{2} \log |\mathbf{Q}| - \frac{1}{2} \sum_{ij} y_i Q_{ij} y_j \\ &= -\frac{m}{2} \log(2\pi) + \frac{1}{2} \log |\mathbf{Q}| - \frac{1}{2} \sum_{i} y_i^2 Q_{ii} - \frac{1}{2} \sum_{i} \sum_{j \in \mathcal{N}_i} y_i Q_{ij} y_j \end{split}$$

giving

$$\log P(\mathbf{0}) = -\frac{m}{2} \log(2\pi) + \frac{1}{2} \log |\mathbf{Q}|$$

$$Q(\mathbf{y}) = -\frac{1}{2} \sum_{i} y_{i}^{2} Q_{ii} - \frac{1}{2} \sum_{i} \sum_{j \in \mathcal{N}_{i}} y_{i} Q_{ij} y_{j}$$

$$G_{i}(y_{i}) = -\frac{1}{2} y_{i} Q_{ii} \quad G_{ij}(y_{i}, y_{j}) = -\frac{1}{2} Q_{ij}, \quad G_{ijk}(y_{i}, y_{j}, y_{k}) = 0$$

- 4 ロ ト 4 個 ト 4 重 ト 4 重 ト 9 Q C

CAR model, $\mu=0$

$$P(\mathbf{y}) = P(\mathbf{0})e^{\mathbf{Q}(\mathbf{y})}$$

$$Q(\mathbf{y}) = -\frac{1}{2}\sum_{i} y_i^2 Q_{ii} - \frac{1}{2}\sum_{i \neq j} y_i Q_{ij} y_j$$

$$= -\frac{1}{2}\sum_{i} y_i^2 Q_{ii} - \frac{1}{2}\sum_{i} \sum_{i \in \mathcal{N}_i} y_i Q_{ij} y_j$$

Assume $Q_{ij} = 0$. Then

- $Q_{ii} = 0$
- $i \notin \mathcal{N}_i$ and $j \notin \mathcal{N}_i$
- If \mathcal{N}_i are small for all i, then **Q** is sparse

Latent Gaussian processes

Assume

$$\mathbf{y} \sim \mathsf{MVN}(\mathbf{0}, \mathbf{Q}^{-1})$$
 \mathbf{Q} sparse $z_i | \mathbf{y} \sim f(z_i | y_i),$ Cond. independent

Then

$$p(\mathbf{y}|\mathbf{z}) \propto p(\mathbf{y})p(\mathbf{z}|\mathbf{y}) = p(\mathbf{y}) \prod_{i} p(z_{i}|\mathbf{y}_{i})$$

$$\log p(\mathbf{y}|\mathbf{z}) = \text{Const} - \frac{m}{2} \log(2\pi) + \frac{1}{2} \log |\mathbf{Q}| - \frac{1}{2} \sum_{ij} y_{i} Q_{ij} y_{j} + \sum_{i} \log f(z_{i}|y_{i})$$

$$Q(\mathbf{y}) = \log p(\mathbf{y}|\mathbf{z}) - \log p(\mathbf{0}|\mathbf{z})$$

$$= -\frac{1}{2} \sum_{ij} y_{i} Q_{ij} y_{j} + \sum_{i} \log f(z_{i}|y_{i}) - \sum_{i} \log f(z_{i}|0)$$

$$= -\frac{1}{2} \sum_{i} y_{i}^{2} Q_{ii} + \sum_{i} \log f(z_{i}|y_{i}) - \sum_{i} \log f(z_{i}|0) - \frac{1}{2} \sum_{ij,i\neq j} y_{i} Q_{ij} y_{j}$$

$$y_i G_i(y_i) = -\frac{1}{2} y_i Q_{ii} y_i + \log f(z_i|y_i) - \log f(z_i|0)$$
 $G_{ij}(y_i) = -\frac{1}{2} Q_{ij}$

Finding G functions and simultaneous distribution

Assume simultaneous distribution exist For MRF

$$P(y_i|\mathbf{y}_{-i}) = \frac{P(\mathbf{y})}{P(\mathbf{y}_{-i})} \propto P(\mathbf{y}) \propto \exp(Q(\mathbf{y}))$$
$$\propto \exp\{y_i G_i(y_i) + y_i \sum_i y_j G_{ij}(y_i, y_j) + \cdots\}$$

Assume conditional distributions are specified.

Put
$$y_j = 0, j \neq i$$
 for finding $G_i(y_i)$
Put $y_k = 0, k \neq i, j$ for finding $G_{ij}(y_i, y_j)$
etc

$$P(\mathbf{y}) \propto \exp(Q(\mathbf{y}))$$

←□ → ←□ → ← □ → ← □ → へ ○ ←

Auto logistic

For auto-logistic, $y_i \in \{0, 1\}$

$$Pr(y_i|\mathbf{y}_{-i}) = \frac{\exp\{\alpha_i y_i + \sum_{j \neq i} \theta_{ij} y_i y_j\}}{1 + \exp\{\alpha_i + \sum_{j \neq i} \theta_{ij} y_i y_j\}}$$

$$\propto \exp\{\alpha_i y_i + \sum_{j \neq i} \theta_{ij} y_i y_j\}$$

$$G_i(y_i) = \alpha_i$$

$$G_{ij}(y_i, y_j) = \theta_{ij}$$

$$Q(\mathbf{y}) = \sum_i \alpha_i y_i + \sum_{i,j,i \neq j} y_i y_j \theta_{ij}$$

$$P(\mathbf{y}) \propto \exp\{\sum_i \alpha_i y_i + \sum_{i,j,i \neq i} y_i y_j \theta_{ij}\}$$

On regular lattice: Ising model

- $i = (u, v), \mathcal{N}_i = \{(u, v 1), (u, v + 1), (u 1, v), (u + 1, v)\}$
- $\theta_{ij} = 0$ for non-neighbors

- < □ > < □ > < □ > < Ē > < Ē > Ē Ŷ Q ()

Auto Poisson

For auto-Poisson (misprint in eq (4.114) in the book)

$$P(y_i|y_{-i}) = \text{Poisson}(\exp\{\alpha_i + \sum_{j=1}^m \theta_{ij}y_j\})$$

$$= \text{Poisson}(\exp\{\alpha_i + \sum_{j\in\mathcal{N}_i} \theta_{ij}y_j\})$$

$$= \exp\{y_i(\alpha_i + \sum_{j\in\mathcal{N}_i} \theta_{ij}y_j) - \log y_i! - e^{\alpha_i + \sum_{j\in\mathcal{N}_i} \theta_{ij}y_j}\}$$

$$\propto \exp\{y_i\alpha_i - \log y_i! + y_i \sum_{j\in\mathcal{N}_i} \theta_{ij}y_j\}$$

$$G_i(y_i) = \alpha_i - y_i^{-1} \log y_i!$$

$$G_{ij}(y_i, y_j) = \theta_{ij}$$

$$Q(\mathbf{y}) = \sum_i (\alpha_i y_i - \log y_i!) + \sum_{i,j} y_i y_j \theta_{ij}$$

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - り Q ()

Auto models - general

Exponential family:

$$f_Y(y|\theta) = \exp\{(y\tilde{\theta} - a(\theta))/\phi + \log c(y;\phi)\}$$

Auto models - general

Exponential family:

$$f_Y(y|\theta) = \exp\{(y\tilde{\theta} - a(\theta))/\phi + \log c(y;\phi)\}$$

Auto models (a bit more general in the book)

$$[Y_i|\mathbf{Y}_{-i}] \equiv \exp(A_i(\mathbf{Y}_{-i})(Y_i - B_i) + C_i(Y_i) + D_i(\mathbf{Y}_{-i}))$$

$$\tilde{\theta} = A_i(\mathbf{Y}_{-i}) = \alpha_i + \sum_{j \neq i} \theta_{ij}(Y_j - B_j)$$

$$Q(\mathbf{y}) = \sum_i [\alpha_i(y_i - B_i) + C_i(y_i)] + \sum_{i < j} \theta_{ij}(y_i - B_i)(y_j - B_j)$$

- auto Gaussian (CAR)
- auto gamma model
- Winsorized auto Poisson model
- auto beta model

Auto models - general

Exponential family:

$$f_Y(y|\theta) = \exp\{(y\tilde{\theta} - a(\theta))/\phi + \log c(y;\phi)\}$$

Auto models (in the book)

$$[Y_{i}|\mathbf{Y}_{-i}] \equiv \exp(A_{i}(\mathbf{Y}_{-i})(B_{i}(Y_{i})) + C_{i}(Y_{i}) + D_{i}(\mathbf{Y}_{-i}))$$

$$\tilde{\theta} = A_{i}(\mathbf{Y}_{-i}) = \alpha_{i} + \sum_{j \neq i} \theta_{ij}(B_{j}(Y_{j}) - B_{j}(0))$$

$$Q(\mathbf{y}) = \sum_{i} [\alpha_{i}(B_{i}(y_{i}) - B_{i}(0)) + C_{i}(y_{i})]$$

$$+ \sum_{i < j} \theta_{ij}(B_{i}(y_{i}) - B_{i}(0))(B_{j}(y_{j}) - B_{j}(0))$$

- auto Gaussian (CAR)
- auto gamma model
- Winsorized auto Poisson model (truncated at $y_i > t_i$)
- auto beta model

