Chapter 4.2 - Lattice processes Lecture notes

Odd Kolbjørnsen Geir Storvik

March 6, 2017

Previously

- Lattice models
- MRF - Markov random field
- Neighborhood (undirected graph)
- Clique
- Negpotential function
- Besag's lemma (conditional vs joint distribution)
- Hammersley- Clifford theorem
- Auto spatial models
- CAR model
- Latent Gaussian process
- Auto logistic model (Ising model)
- auto Poisson model

Today

- Gibbs distribution
- How to construct a CAR from scratch
- Examples of Models in INLA (disease mapping, etc)
- Examples of models outside INLA (Potts model)

Gibbs distribution/ Gibbs measure

From statistical mechanics:

$$
\operatorname{Pr}(\mathbf{y})=\frac{1}{Z(\beta)} \exp \{-\beta E(y)\}
$$

with $\beta=\frac{1}{T}$ inverse temperature; $E(y)$ potential function. $Z(\beta)$ partition function

Recall: Hammersley - Clifford theorem. On the graph (G) Graph $=$ Nodes (=Lattice) + Edges (=Neighbors)

$$
\operatorname{Pr}(\mathbf{y} \mid \boldsymbol{\theta})=\frac{1}{c(\boldsymbol{\theta})} \exp \{Q(\boldsymbol{y} ; \boldsymbol{\theta})\}=\frac{1}{c(\boldsymbol{\theta})} \exp \left\{\sum_{c \in C_{G}} \psi_{c}\left(y_{c}, \boldsymbol{\theta}\right)\right\}
$$

with C_{G} being the set of all cliques, $Q(\mathbf{0}, \boldsymbol{\theta})=0$, and $c(\boldsymbol{\theta})$ is a normalizing constant.

Gaussian CAR models

$$
\mathbf{Y} \sim \operatorname{MVN}(\mathbf{0}, \boldsymbol{\Sigma})=\operatorname{MVN}\left(\mathbf{0}, \mathbf{Q}^{-1}\right)
$$

- Conditional Gaussian distributions with

$$
\begin{aligned}
E\left[Y\left(s_{i}\right) \mid \mathbf{Y}_{-i}\right] & =\sum_{j \in \mathcal{N}\left(\mathbf{s}_{i}\right)} c_{i j} Y\left(\mathbf{s}_{j}\right) \\
\operatorname{var}\left[Y\left(s_{i}\right) \mid \mathbf{Y}_{-i}\right] & =\tau_{i}^{2}
\end{aligned}
$$

- If legal, $\mathbf{Q}=\mathbf{M}^{-1}[\mathbf{I}-\mathbf{C}]$ with $\mathbf{M}=\operatorname{diag}\left\{\tau_{i}^{2}\right\}$
- If $\mathbf{M}^{-1}(\mathbf{I}-\mathbf{C})$ is symmetric and positive definite, then
- $\mathbf{Q}=\mathbf{M}^{-1}(\mathbf{I}-\mathbf{C})$ is sparse if \mathbf{C} is sparse!
- \mathbf{M} always positive definite and symmetric
- $j \in \mathcal{N}\left(\mathbf{s}_{i}\right) \Leftrightarrow i \in \mathcal{N}\left(\mathbf{s}_{j}\right)$ imply $c_{i j}=0 \Leftrightarrow c_{j i}=0$
- Need $\tau_{i}^{-2} c_{i j}=\tau_{j}^{-2} c_{j i}$ for neighbors
- Also, the $c_{i j}$ can not be too large for getting positive definiteness.

Parameterizations of CAR models

$$
\mathbf{Y} \sim \operatorname{MVN}\left(\mathbf{0},\left(\mathbf{M}^{-1}[\mathbf{I}-\mathbf{C}]\right)^{-1}\right)=\operatorname{MVN}\left(\mathbf{0},[\mathbf{I}-\mathbf{C}]^{-1} \mathbf{M}\right)
$$

- $\mathbf{M}=\operatorname{diag}\left\{\tau_{i}^{2}\right\}, \tau_{i}>0 \quad \forall i$
- Often
- $\mathbf{C}=\phi \mathbf{H}, \mathbf{H}$ known and $/$ or
- $\mathbf{M}=\tau^{2} \boldsymbol{\Delta}, \boldsymbol{\Delta}$ known diagonal matrix.
- What requirements on (ϕ, τ) ?
- Note: Need $\mathbf{M}^{-1} \mathbf{C}$ symmetric:
- $\mathbf{Q}_{y}=\mathbf{M}^{-1}[\mathbf{I}-\mathbf{C}]=\mathbf{M}^{-1}-\mathbf{M}^{-1} \mathbf{C}, \mathbf{M}^{-1}$ automatically symmetric
- General: $\tau_{i}^{-2} C_{i j}=\tau_{j}^{-2} C_{j i}$
- $\mathbf{M}=\tau^{2} \boldsymbol{\Delta}, \mathbf{C}=\phi \mathbf{H} \Rightarrow \Delta_{i i}^{-1} h_{i j}=\Delta_{j j}^{-1} h_{j i}$
- Need also $\boldsymbol{\Sigma}_{Y}=(\mathbf{I}-\mathbf{C})^{-1} \mathbf{M}$ positive definite
- Equivalent to $\mathbf{Q}=\mathbf{M}^{-1}(\mathbf{I}-\mathbf{C})$ positive definite

CAR: Requirements for positive definite

- $\mathbf{Q}=\mathbf{M}^{-1}(\mathbf{I}-\mathbf{C})$ positive definite?

CAR: Requirements for positive definite

- $\mathbf{Q}=\mathbf{M}^{-1}(\mathbf{I}-\mathbf{C})$ positive definite?
- Since $\mathbf{M}^{1 / 2}$ is positive definite $\left(\tau_{i}>0\right)$,
- equivalent to that $\mathbf{M}^{-1 / 2}(\mathbf{I}-\mathbf{C}) \mathbf{M}^{1 / 2}=\mathbf{I}-\mathbf{M}^{1 / 2} \mathbf{C} \mathbf{M}^{-1 / 2}$ is positive definite

CAR: Requirements for positive definite

- $\mathbf{Q}=\mathbf{M}^{-1}(\mathbf{I}-\mathbf{C})$ positive definite?
- Since $\mathbf{M}^{1 / 2}$ is positive definite $\left(\tau_{i}>0\right)$,
- equivalent to that $\mathbf{M}^{-1 / 2}(\mathbf{I}-\mathbf{C}) \mathbf{M}^{1 / 2}=\mathbf{I}-\mathbf{M}^{1 / 2} \mathbf{C} \mathbf{M}^{-1 / 2}$ is positive definite
- \mathbf{A} symmetric ($\mathbf{A}=\mathbf{M}^{1 / 2} \mathbf{C} \mathbf{M}^{-1 / 2}$)
- spectral decomposition: $\mathbf{A}=\mathbf{T} \boldsymbol{\Lambda} \mathbf{T}^{T}$ where $\mathbf{T T}^{T}=\mathbf{I}$ and $\boldsymbol{\Lambda}$ contains eigenvalues.
- A is positive definite if all eigenvalues are positive.

CAR: Requirements for positive definite

- $\mathbf{Q}=\mathbf{M}^{-1}(\mathbf{I}-\mathbf{C})$ positive definite?
- Since $\mathbf{M}^{1 / 2}$ is positive definite $\left(\tau_{i}>0\right)$,
- equivalent to that $\mathbf{M}^{-1 / 2}(\mathbf{I}-\mathbf{C}) \mathbf{M}^{1 / 2}=\mathbf{I}-\mathbf{M}^{1 / 2} \mathbf{C} \mathbf{M}^{-1 / 2}$ is positive definite
- \mathbf{A} symmetric ($\mathbf{A}=\mathbf{M}^{1 / 2} \mathbf{C M} \mathbf{M}^{-1 / 2}$)
- spectral decomposition: $\mathbf{A}=\mathbf{T} \Lambda \mathbf{T}^{T}$ where $\mathbf{T T}^{T}=\mathbf{I}$ and $\boldsymbol{\Lambda}$ contains eigenvalues.
- A is positive definite if all eigenvalues are positive.
- $\mathbf{I}-\mathbf{A}=\mathbf{I}-\mathbf{T} \boldsymbol{\Lambda} \mathbf{T}^{T}=\mathbf{T} \mathbf{T}^{T}-\mathbf{T} \boldsymbol{\Lambda} \mathbf{T}^{T}=\mathbf{T}[\mathbf{I}-\mathbf{\Lambda}] \mathbf{T}^{T} \Rightarrow \mathbf{I}-\mathbf{\Lambda}$ contain eigenvalues of $\mathbf{I}-\mathbf{A}$.

CAR: Requirements for positive definite

- $\mathbf{Q}=\mathbf{M}^{-1}(\mathbf{I}-\mathbf{C})$ positive definite?
- Since $\mathbf{M}^{1 / 2}$ is positive definite $\left(\tau_{i}>0\right)$,
- equivalent to that $\mathbf{M}^{-1 / 2}(\mathbf{I}-\mathbf{C}) \mathbf{M}^{1 / 2}=\mathbf{I}-\mathbf{M}^{1 / 2} \mathbf{C} \mathbf{M}^{-1 / 2}$ is positive definite
- \mathbf{A} symmetric ($\mathbf{A}=\mathbf{M}^{1 / 2} \mathbf{C} \mathbf{M}^{-1 / 2}$)
- spectral decomposition: $\mathbf{A}=\mathbf{T} \Lambda \mathbf{T}^{T}$ where $\mathbf{T T}^{T}=\mathbf{I}$ and $\boldsymbol{\Lambda}$ contains eigenvalues.
- A is positive definite if all eigenvalues are positive.
- $\mathbf{I}-\mathbf{A}=\mathbf{I}-\mathbf{T} \mathbf{\Lambda} \mathbf{T}^{T}=\mathbf{T} \mathbf{T}^{T}-\mathbf{T} \mathbf{\Lambda} \mathbf{T}^{T}=\mathbf{T}[\mathbf{I}-\mathbf{\Lambda}] \mathbf{T}^{T} \Rightarrow \mathbf{I}-\mathbf{\Lambda}$ contain eigenvalues of $\mathbf{I}-\mathbf{A}$.
- If λ eigenvalue of $\mathbf{M}^{-1 / 2} \mathbf{C} \mathbf{M}^{1 / 2}$, then $1-\lambda$ eigenvalue of $\mathbf{I}-\mathbf{M}^{-1 / 2} \mathbf{C} \mathbf{M}^{1 / 2}$
- Positive definite if $1-\lambda>0$, or $\lambda<1$.

CAR: Requirements (cont)

- Assume $\mathbf{C}=\phi \mathbf{H}$, so $\mathbf{A}=\phi \mathbf{M}^{1 / 2} \mathbf{H M}^{-1 / 2}$
- $\tilde{\lambda}$ eigenvalue of $\mathbf{M}^{1 / 2} \mathbf{H} \mathbf{M}^{-1 / 2}$ gives $\lambda=\phi \tilde{\lambda}$ eigenvalue of \mathbf{A}.
- Need $\lambda<1$ or $\phi \tilde{\lambda}<1$.
- For $\tilde{\lambda}$ positive, need $\phi<\lambda^{-1}$
- For $\tilde{\lambda}$ negative, need $\phi>\lambda^{-1}$
- Let $\tilde{\lambda}_{(1)} \leq \tilde{\lambda}_{(2)} \leq \cdots \leq \tilde{\lambda}_{(n)}$ be ordered eigenvalues
- We have $\tilde{\lambda}_{(1)}<0, \tilde{\lambda}_{(n)}>0$ (not obvious!)
- Requirement: $\tilde{\lambda}_{(1)}^{-1}<\phi<\tilde{\lambda}_{(n)}^{-1}$

CAR: Requirements (cont)

- Assume $\mathbf{C}=\phi \mathbf{H}$, so $\mathbf{A}=\phi \mathbf{M}^{1 / 2} \mathbf{H M}^{-1 / 2}$
- $\tilde{\lambda}$ eigenvalue of $\mathbf{M}^{1 / 2} \mathbf{H} \mathbf{M}^{-1 / 2}$ gives $\lambda=\phi \tilde{\lambda}$ eigenvalue of \mathbf{A}.
- Need $\lambda<1$ or $\phi \tilde{\lambda}<1$.
- For $\tilde{\lambda}$ positive, need $\phi<\lambda^{-1}$
- For $\tilde{\lambda}$ negative, need $\phi>\lambda^{-1}$
- Let $\tilde{\lambda}_{(1)} \leq \tilde{\lambda}_{(2)} \leq \cdots \leq \tilde{\lambda}_{(n)}$ be ordered eigenvalues
- We have $\tilde{\lambda}_{(1)}<0, \tilde{\lambda}_{(n)}>0$ (not obvious!)
- Requirement: $\tilde{\lambda}_{(1)}^{-1}<\phi<\tilde{\lambda}_{(n)}^{-1}$
- If $\mathbf{M}=\tau^{2} \boldsymbol{\Delta}$,, τ just a scaling factor, same requirements

Inhomogeneous processes

- $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\delta}, \boldsymbol{\delta} \sim \operatorname{Gau}\left(\mathbf{0},(\mathbf{I}-\mathbf{C})^{-1} \mathbf{M}\right)$
- For $\mathbf{M}=\tau^{2} \boldsymbol{\Delta}$, with different diagonal elements, called inhomogeneous process.
- Define $\widetilde{\mathbf{Y}}=\boldsymbol{\Delta}^{-1 / 2} \mathbf{Y}, \widetilde{\mathbf{X}}=\boldsymbol{\Delta}^{-1 / 2} \mathbf{X}, \widetilde{\boldsymbol{\delta}}=\boldsymbol{\Delta}^{-1 / 2} \boldsymbol{\delta}$,
- Then $\widetilde{\mathbf{Y}}=\widetilde{\mathbf{X}} \boldsymbol{\beta}+\widetilde{\boldsymbol{\delta}}, \widetilde{\boldsymbol{\delta}} \sim \operatorname{Gau}\left(\mathbf{0}, \tau^{2}(\mathbf{I}-\widetilde{\mathbf{C}})^{-1}\right)$ $\widetilde{\mathbf{C}}=\boldsymbol{\Delta}^{-1 / 2} \mathbf{C} \boldsymbol{\Delta}^{1 / 2}$
- Note: $c_{i j}=0 \Leftrightarrow \tilde{c}_{i j}=0$
- For $\mathbf{C}=\phi \mathbf{H}: \widetilde{\mathbf{C}}=\phi \boldsymbol{\Delta}^{-1 / 2} \mathbf{H} \boldsymbol{\Delta}^{1 / 2}$

How to model C (or $\mathbf{H})$?

- Can show $\left[\operatorname{cor}\left(Y_{i}, Y_{j} \mid Y_{k}, k \neq i, j\right)\right]^{2}=c_{i j} c_{j i}$
- Need $0 \leq c_{i j} c_{j i} \leq 1$
- In general: $c_{i j}$ can depend on distance between \mathbf{s}_{i} and \mathbf{s}_{j}. (distance between center points)
- Regular lattice: $c_{i j}=0$ for
- $\left\|s_{i}-s_{j}\right\|>1$ (1. order)
- $\left\|s_{i}-s_{j}\right\|>\sqrt{2}$ (2. order)
- $\left\|s_{i}-s_{j}\right\|>2$ (3. order)
- Irregular lattice: $c_{i j}=0$ for
- i and j do not share border
- $\left\|s_{i}-s_{j}\right\|>$ threshold
- Size of $c_{i j}$: Depending on distance, number of neighbors

Special cases

Consider now $\mathbf{M}=\tau^{2} \boldsymbol{\Delta}, \mathbf{C}=\phi \mathbf{H}$
Define \mathbf{A} such that $a_{i j}=I(i$ and j are neighbors $)$.

- Homogeneous CAR (HCAR)

$\boldsymbol{\Delta}=\mathbf{I}, \mathbf{H}=\mathbf{A}$

Gives $\operatorname{cor}\left(Y_{i}, Y_{j} \mid Y_{k}, k \neq i, j\right)=\phi$
Need (at least) $\phi \in(0,1)$

- Weighted CAR (WCAR)
$\boldsymbol{\Delta}=\operatorname{diag}\left\{\left|N\left(\mathbf{s}_{i}\right)\right|^{-1}\right\}, h_{i j}=a_{i j}\left|N\left(\mathbf{s}_{i}\right)\right|^{-1}$
Gives $\operatorname{cor}\left(Y_{i}, Y_{j} \mid Y_{k}, k \neq i, j\right)=\phi\left|N\left(\mathbf{s}_{i}\right)\right|^{-1 / 2}\left|N\left(\mathbf{s}_{i}\right)\right|^{-1 / 2}$
Need (at least) $\phi \in\left(0, \min _{i j}\left|N\left(\mathbf{s}_{i}\right)\right|^{-1 / 2}\left|N\left(\mathbf{s}_{i}\right)\right|^{-1 / 2}\right)$
- Autocorrelated CAR (ACAR)
$\boldsymbol{\Delta}=\operatorname{diag}\left\{\left|N\left(\mathbf{s}_{i}\right)\right|^{-1}\right\}, h_{i j}=a_{i j}\left|N\left(\mathbf{s}_{i}\right)\right|^{-1 / 2}\left|N\left(\mathbf{s}_{j}\right)\right|^{1 / 2}$
Gives $\operatorname{cor}\left(Y_{i}, Y_{j} \mid Y_{k}, k \neq i, j\right)=\phi$
Need (at least) $\phi \in(0,1)$

CAR models vs geostatistical models

- $\mathbf{Y} \sim \operatorname{Gau}\left(\boldsymbol{\mu},(\mathbf{I}-\mathbf{C})^{-1} \mathbf{M}\right), \operatorname{Diag}(\mathbf{C})=\mathbf{0}$
- Most important MRF model, often $\boldsymbol{\mu}=\mathbf{X}^{\top} \boldsymbol{\beta}$
- Building block for more complex models
- Geostatistical model: $\mathbf{Y} \sim \operatorname{Gau}\left(\boldsymbol{\mu}_{Y}, \boldsymbol{\Sigma}_{Y}\right)$ $C_{Y}\left(\mathbf{s}_{j}-\mathbf{s}_{i}\right) \approx 0(=0), \quad$ for $\left\|\mathbf{s}_{j}-\mathbf{s}_{i}\right\|$ "large" $\boldsymbol{\Sigma}_{\boldsymbol{Y}}$ "sparse"
- MRF: $c_{i j} \approx 0(=0)$ for $\left\|\mathbf{s}_{j}-\mathbf{s}_{i}\right\|$ "large" $\boldsymbol{\Sigma}_{\boldsymbol{Y}}^{-1}$ "sparse"
- MRF to geostat: $\boldsymbol{\Sigma}_{Y}=(\mathbf{I}-\mathbf{C})^{-1} \mathbf{M}$
- geostat to MRF: $\mathbf{M}=\operatorname{Diag}\left(\boldsymbol{\Sigma}_{Y}^{-1}\right), \mathbf{C}=\mathbf{I}-\mathbf{M} \boldsymbol{\Sigma}_{Y}^{-1}$
- Differ in "sparsity"
- Differ in how to define dependence, distance versus neighborhood
- Which operations are simple? Building model vs Conditioning model.

Building model vs conditioning model

Model building: X, Y independent : $Z=X+Y$

$$
\begin{aligned}
C_{Z} & =C_{X}+C_{Y} \\
Q_{Z} & =Q_{X}-Q_{X}\left(Q_{X}+Q_{Y}\right)^{-1} Q_{X} \\
& =Q_{Y}-Q_{Y}\left(Q_{X}+Q_{Y}\right)^{-1} Q_{Y}
\end{aligned}
$$

Conditioning: X, Y independent: $Z=X+Y$
$C_{Y \mid Z}=C_{Y}-C_{Y}\left(C_{X}+C_{Y}\right)^{-1} C_{Y}$
$Q_{Y \mid Z}=Q_{Y}+Q_{X}$
$Q_{X \mid Z}=Q_{X}+Q_{Y}$

Example - Doctor-prescription

Data: Aaverage doctor-prescription amounts per consultation in cantons of the Midi-Pyrenees Department in southwest France.

- 268 cantons (32 "missing cantons" with no data)
- Response
- Z: Average prescription amount per consultation in 1999
- Several possible covariates
- X : X-coordinate of the centroid (in meters according to NTF)
- Y : Y-coordinate of the centroid (in meters according to NTF)
- X2: percentage of patients 70 or older
- X1: per-capita income
- E: number of consultations in 1999 (1270-1784977)

INLA

Syntax for WCAR (Besag) model:

```
formula = log(Z) ~ X2+Y+f(NO,model="besag",graph=Canton.graph)
```

res $=$ inla(formula,family="gaussian", data=dat)

Formula:

- Specifies $\log (Z)$ as response and $X 2$ and Y as covariates
- $f()$ specifies a random effect ($\boldsymbol{\delta}$ in our spatial model).

Can have different models. Here the Besag (WCAR) model is specified. Requires a neighborhood structure, given in the graph option

- The function inla requires
- The formulae
- A model for the response, given by family
- The data
- Several other options possible, default choices imply
- a Bayesian approach
- Default priors on hyperparameters

Spatial rates model

$$
\begin{aligned}
\Delta_{i i} & =M_{i}^{-1} \\
h_{i j} & = \begin{cases}\left(M_{i} / M_{j}\right)^{1 / 2}, & j \in N\left(\mathbf{s}_{i}\right) \\
0, & \text { elsewhere }\end{cases} \\
\mathbf{Q} & =\frac{1}{\tau^{2}} \boldsymbol{\Delta}^{-1}[\mathbf{I}-\phi \mathbf{H}]
\end{aligned}
$$

Gives

$$
\begin{array}{rlr}
\operatorname{var}\left(Y_{i} \mid Y_{k}, k \neq i\right) & =M_{i} & \\
\operatorname{cor}\left(Y_{i}, Y_{j} \mid Y_{k}, k \neq i, j\right) & =\phi \quad \text { similar to ACAR }
\end{array}
$$

In application: $M_{i}=E(i)$ (number of consultations)
Not directly available in INLA, but possible through transformation: $\widetilde{\boldsymbol{\delta}}=\boldsymbol{\Delta}^{-1 / 2} \boldsymbol{\delta} \sim \operatorname{Gau}\left(\mathbf{0}, \tau^{2}(\mathbf{I}-\phi \widetilde{\mathbf{H}})^{-1}\right)$

$$
\tilde{h}_{i j}= \begin{cases}M_{i} / M_{j}, & j \in N\left(\mathbf{s}_{i}\right) \\ 0, & \text { elsewhere }\end{cases}
$$

Spatial rates model in INLA

INLA generic1 model: $\mathbf{Q}=\xi\left(\mathbf{I}-\frac{\phi}{\lambda_{\max }} \widetilde{\mathbf{H}}\right)$, $\phi \in(0,1), \lambda_{\max }$ maximum eigenvalue of $\widetilde{\mathbf{H}}$. Our model:

$$
\begin{aligned}
\mathbf{Z} & =\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\delta}+\boldsymbol{\varepsilon} \\
& =\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\Delta}^{1 / 2} \widetilde{\boldsymbol{\delta}}+\boldsymbol{\varepsilon}
\end{aligned}
$$

Possible in INLA by

- specifying generic1 model for $\widetilde{\delta}$ and
- including $\boldsymbol{\Delta}^{1 / 2}$ as weights

Canton.R script

Model comparison

Model selection tools for Bayesian approaches:

- Marginal likelihood:

$$
p(\mathbf{z})=\int_{\boldsymbol{\theta}} \int_{\mathbf{y}} p(\mathbf{z} \mid \mathbf{y}, \boldsymbol{\theta}) p(\mathbf{y} \mid \boldsymbol{\theta}) p(\theta) d \mathbf{y} d \boldsymbol{\theta}
$$

Want it large!
Can be sensitive to $p(\boldsymbol{\theta})$.
In general difficult to compute, "easy" in INLA

- DIC: Bayesian alternative to AIC

Want it large!
Much used, but can give strange results

- Many other alternatives in the literature

Model selection - Doctors prescription

Marginal likelihood
> cbind(res.ind\$mlik,res.besag.b\$mlik,res.sr\$mlik)

	[,1]	[,2]	[,3]
log marg-likel (integration)	111.5341	-73.78425	112.4315
log marginal-likel (Gaussian)	112.4530	-73.99076	112.3778

DIC

> cbind(res.ind\$dic,res.besag.b\$dic,res.sr\$dic)

	$[, 1]$	$[, 2]$	$[, 3]$
dic	-298.1838	-317.3547	-297.5507
p.eff	3.878958	43.89627	4.195396
mean. deviance	-302.0628	-361.2509	-301.7461
deviance.mean	-305.9418	-405.1472	-305.9415

Spatial disease mapping

$$
\begin{aligned}
Z_{i} \mid Y_{i} & \stackrel{i n d}{\sim} \text { Poisson }\left(E_{i} \exp \left(Y_{i}\right)\right) \\
Z_{i} & =\text { Observed disease count } \\
E_{i} & =\text { Expected count }(\text { known }), \text { and } \\
Y_{i} & =\mathbf{x}_{i}^{T} \boldsymbol{\beta}+\delta_{i}+\varepsilon_{i} \\
\delta_{i} \mid \delta_{j \neq i} & \sim N\left(\left|N_{i}\right|^{-1} \sum_{j \in N_{i}} \delta_{j}, 1 /\left(\tau_{c}\left|N_{i}\right|\right)\right) \quad \text { WCAR/Besag model } \\
\varepsilon_{i} & \stackrel{i n d}{\sim} N\left(0,1 / \tau_{\varepsilon}\right)
\end{aligned}
$$

Usually include $\sum_{i} \delta_{i}=0$ to make model identifiable.
Note: Often $Z_{i} \mid Y_{i}$ is $\operatorname{Binomial}\left(N_{i}, p_{i}\left(Y_{i}\right)\right)$ but large N_{i} and small p_{i} make Poisson distribution more convenient to use.
Often: Considering standardized mortality ratio (SMR):

$$
S M R_{i} \equiv Z_{i} / E_{i}
$$

Scottish lip cancer data

Log SMR

\% employed in agr/fish/forest

$\square[0,1)$
ㅁ $[1,7)$
ㅁ $(7,10)$

- [10,16)

$Z_{i} \mid Y_{i} \sim \operatorname{Poisson}\left(E_{i} \exp \left(Y_{i}\right)\right)$
$Y_{i}=\beta_{0}+\beta_{1} x_{i} / 10+\delta_{i}+\varepsilon_{i}$
$x_{i}=$ Percentage of population enganged in agriculture/fishing/forestry

Disease mapping in INLA

```
library(INLA)
data(Scotland)
g = system.file("demodata/scotland.graph", package="INLA")
graph = inla.read.graph(g)
Scotland$Region2 = Scotland$Region
formula = Counts~ I(X/10) + f(Region,model="besag", graph=graph,
                                    f(Region2,model="iid")
mod.scotland = inla(formula,family="poisson",E=E,data=Scotland)
Script Scottish.R
```


Computation when INLA not is possible

Inla code:

- INLA: Possible for latent processes being linear and Gaussian
- Nonlinearity/non-Gaussian: Monte Carlo metods

Computation when INLA not is possible

Inla code:

- INLA: Possible for latent processes being linear and Gaussian
- Nonlinearity/non-Gaussian: Monte Carlo metods

Monte Carlo methods:

- Assume interest in $p(\mathbf{y} \mid \mathbf{z})$
- Assume possible to simulate $\mathbf{y}^{1}, \ldots, \mathbf{y}^{S}$ from $p(\mathbf{y} \mid \mathbf{z})$
- Can approximate $E[g(\mathbf{y}) \mid \mathbf{Z}=\mathbf{z}]$ by $S^{-1} \sum_{s=1}^{S} g\left(\mathbf{y}^{s}\right)$
- Problem: Difficult to simulate from $p(\mathbf{y} \mid \mathbf{z})$ directly

Computation when INLA not is possible

Inla code:

- INLA: Possible for latent processes being linear and Gaussian
- Nonlinearity/non-Gaussian: Monte Carlo metods Monte Carlo methods:
- Assume interest in $p(\mathbf{y} \mid \mathbf{z})$
- Assume possible to simulate $\mathbf{y}^{1}, \ldots, \mathbf{y}^{S}$ from $p(\mathbf{y} \mid \mathbf{z})$
- Can approximate $E[g(\mathbf{y}) \mid \mathbf{Z}=\mathbf{z}]$ by $S^{-1} \sum_{s=1}^{S} g\left(\mathbf{y}^{s}\right)$
- Problem: Difficult to simulate from $p(\mathbf{y} \mid \mathbf{z})$ directly

Markov chain Monte Carlo:

- $\mathbf{y}^{(s)}$ is generated only depending on $\mathbf{y}^{(s-1)}$ (Markov chain).
- As s increases, the distribution of $\mathbf{y}^{(s)}$ converges towards $p(\mathbf{y} \mid \mathbf{z})$
- Under some additional requirements, we also have that $(S-b)^{-1} \sum_{s=b+1}^{S} g\left(\mathbf{y}^{(s)}\right)$ converges towards $E[g(\mathbf{Y}) \mid \mathbf{Z}=\mathbf{z}]$.

Gibbs sampler

One of many many MCMC algorithms
Easy to implement, not always very efficient in spatial settings

Assume $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$

- For $s=1,2,3, \ldots, B$
- simulate $y_{1}^{s} \sim p\left(y_{1} \mid y_{2}^{s-1}, \ldots, y_{n}^{s-1}\right)$
- simulate $y_{2}^{s} \sim p\left(y_{2} \mid y_{1}^{s}, y_{3}^{s-1}, \ldots, y_{n}^{s-1}\right)$
-
- simulate $y_{n}^{s} \sim p\left(y_{n} \mid y_{1}^{s}, y_{2}^{s}, \ldots, y_{n-1}^{s}\right)$

Note

- Often use a permutation of the ordering in the updates
- Only univariate updates
- Only need conditional distributions, will typically not require the global normalization constant.

Potts model

Model defined on a discrete set of values $Y_{i} \in\{1, \ldots, K\}$. Defined trough the Gibbs distribution :

$$
\operatorname{Pr}(\mathbf{Y}=\mathbf{y}) \propto \exp \left\{\sum_{i=1}^{n} \alpha_{i, y_{i}}+\frac{1}{2} \beta \sum_{i} \sum_{j \in N_{i}} I\left(y_{i}=y_{j}\right)\right\}
$$

Conditional distribution:

$$
\operatorname{Pr}\left(Y_{i}=k \mid Y_{j}=y_{j}, j \neq i\right)=\frac{\exp \left\{\alpha_{i, k}+\beta \sum_{j \in N_{i}} I\left(y_{j}=k\right)\right\}}{\sum_{l=1}^{K} \exp \left\{\alpha_{i, l}+\beta \sum_{j \in N_{i}} I\left(y_{j}=I\right)\right\}}
$$

Simulations from Potts model, $\alpha_{i, k}=0, \beta=1$

MCMC: How many iterations

- Convergence often performed by eye (formal tests exist)
- Difficult to look at the whole process
- Usually considering summary statistics $g(\mathbf{y})$
- Potts model:

$$
\begin{aligned}
g_{k}(\mathbf{y}) & =\sum_{i} I\left(y_{i}=k\right) & k=1, \ldots, K \\
g_{K+1}(\mathbf{y}) & =\sum_{i \sim j} I\left(y_{i}=y_{j}\right) & i \sim j \text { means } i, j \text { are neighboors }
\end{aligned}
$$

g-functions for Potts model, per iteration 1-100

Note: Want

- Convergence, curve stabilize
- Small auto-correlation

g-functions for Potts model, per iteration

Note: Want

- Convergence, curve stabilize
- Small auto-correlation

ACF of g-functions for Potts model

Series g[, 1]

Series g[, K + 1]

Variance of MCMC

Assume $\mathbf{y}^{(s)} \approx p(\mathbf{y} \mid \mathbf{z})$

$$
\begin{aligned}
\hat{\theta} & =S^{-1} \sum_{s=1}^{S} g\left(\mathbf{y}^{(s)}\right) \\
\operatorname{Var}[\hat{\theta}] & =S^{-2}\left[\sum_{s=1}^{S} \operatorname{Var}\left[g\left(\mathbf{y}^{(s)}\right)\right]+2 \sum_{h=1}^{S-1} \sum_{s=1}^{S-h} \operatorname{Cov}\left[g\left(\mathbf{y}^{(s)}\right), g\left(\mathbf{y}^{(s+h)}\right)\right]\right. \\
& =S^{-2}\left[S \operatorname{Var}\left[g\left(\mathbf{y}^{(s)}\right)\right]+2 \sum_{h=1}^{S-1}(S-h) \operatorname{Cov}\left[g\left(\mathbf{y}^{(s)}\right), g\left(\mathbf{y}^{(s+h)}\right)\right]\right. \\
& =S^{-1} \operatorname{Var}\left[g\left(\mathbf{y}^{(s)}\right)\right]\left[1+2 \sum_{s=1}^{S-1}\left(1-\frac{h}{S}\right) \operatorname{Cor}\left[g\left(\mathbf{y}^{(s)}\right), g\left(\mathbf{y}^{(s+h)}\right)\right]\right]
\end{aligned}
$$

Note: Need $\sum_{s=1}^{S-1}\left(1-\frac{h}{S}\right) \operatorname{Cor}\left[g\left(\mathbf{y}^{(s)}\right), g\left(\mathbf{y}^{(s+h)}\right)\right] \xrightarrow{S \rightarrow \infty}$ Const

