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Previously

Lattice models

MRF – Markov random field

Neighborhood (undirected graph)

Clique

Negpotential function

Besag’s lemma (conditional vs joint distribution)

Hammersley- Clifford theorem

Auto spatial models

CAR model
Latent Gaussian process
Auto logistic model (Ising model)
auto Poisson model
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Today

Gibbs distribution

How to construct a CAR from scratch

Examples of Models in INLA (disease mapping, etc)

Examples of models outside INLA (Potts model)
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Gibbs distribution/ Gibbs measure

From statistical mechanics:

Pr(y) =
1

Z (β)
exp {−βE (y)}

with β = 1
T inverse temperature; E (y) potential function.

Z (β) partition function

Recall: Hammersley - Clifford theorem. On the graph (G )
Graph = Nodes (=Lattice) + Edges (=Neighbors)

Pr(y|θ) =
1

c(θ)
exp {Q(y ;θ)} =

1

c(θ)
exp

{∑
c∈CG

ψc(yc ,θ)

}

with CG being the set of all cliques, Q(0,θ) = 0, and c(θ) is a
normalizing constant.
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Gaussian CAR models

Y ∼ MVN(0,Σ) = MVN(0,Q−1)

Conditional Gaussian distributions with

E [Y (si )|Y−i ] =
∑

j∈N (si )

cijY (sj)

var[Y (si )|Y−i ] =τ 2i

If legal, Q = M−1[I− C] with M = diag{τ 2i }
If M−1(I− C) is symmetric and positive definite, then

Q = M−1(I− C) is sparse if C is sparse!

M always positive definite and symmetric

j ∈ N (si )⇔ i ∈ N (sj) imply cij = 0⇔ cji = 0

Need τ−2i cij = τ−2j cji for neighbors

Also, the cij can not be too large for getting positive definiteness.
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Parameterizations of CAR models

Y ∼ MVN(0, (M−1[I− C])−1) = MVN(0, [I− C]−1M)

M = diag{τ 2i }, τi > 0 ∀i
Often

C = φH, H known and/or
M = τ 2∆, ∆ known diagonal matrix.

What requirements on (φ, τ)?

Note: Need M−1C symmetric:

Qy = M−1[I− C] = M−1 −M−1C, M−1 automatically symmetric
General: τ−2

i Cij = τ−2
j Cji

M = τ 2∆,C = φH ⇒ ∆−1
ii hij = ∆−1

jj hji

Need also ΣY = (I− C)−1M positive definite

Equivalent to Q = M−1(I− C) positive definite
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CAR: Requirements for positive definite

Q = M−1(I− C) positive definite?

Since M1/2 is positive definite (τi > 0),

equivalent to that M−1/2(I−C)M1/2 = I−M1/2CM−1/2 is positive
definite

A symmetric (A = M1/2CM−1/2)

spectral decomposition: A = TΛTT where TTT = I and Λ contains
eigenvalues.
A is positive definite if all eigenvalues are positive.
I− A = I− TΛTT = TTT − TΛTT = T[I− Λ]TT ⇒ I− Λ contain
eigenvalues of I− A.

If λ eigenvalue of M−1/2CM1/2, then 1− λ eigenvalue of
I−M−1/2CM1/2

Positive definite if 1− λ > 0, or λ < 1.
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CAR: Requirements (cont)

Assume C = φH, so A = φM1/2HM−1/2

λ̃ eigenvalue of M1/2HM−1/2 gives λ = φλ̃ eigenvalue of A.

Need λ < 1 or φλ̃ < 1.

For λ̃ positive, need φ < λ−1

For λ̃ negative, need φ > λ−1

Let λ̃(1) ≤ λ̃(2) ≤ · · · ≤ λ̃(n) be ordered eigenvalues

We have λ̃(1) < 0, λ̃(n) > 0 (not obvious!)

Requirement: λ̃−1(1) < φ < λ̃−1(n)

If M = τ 2∆,, τ just a scaling factor, same requirements
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Inhomogeneous processes

Y = Xβ + δ, δ ∼ Gau(0, (I− C)−1M)

For M = τ 2∆, with different diagonal elements, called
inhomogeneous process.

Define Ỹ = ∆−1/2Y, X̃ = ∆−1/2X, δ̃ = ∆−1/2δ,

Then Ỹ = X̃β + δ̃, δ̃ ∼ Gau(0, τ 2(I− C̃)−1)

C̃ = ∆−1/2C∆1/2

Note: cij = 0⇔ c̃ij = 0

For C = φH: C̃ = φ∆−1/2H∆1/2
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How to model C (or H)?

Can show [cor(Yi ,Yj |Yk , k 6= i , j)]2 = cijcji

Need 0 ≤ cijcji ≤ 1

In general: cij can depend on distance between si and sj .
(distance between center points)

Regular lattice: cij = 0 for

||si − sj || > 1 (1. order)
||si − sj || >

√
2 (2. order)

||si − sj || > 2 (3. order)

Irregular lattice: cij = 0 for

i and j do not share border
||si − sj || > threshold

Size of cij : Depending on distance, number of neighbors
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Special cases

Consider now M = τ 2∆,C = φH
Define A such that aij = I (i and j are neighbors).

Homogeneous CAR (HCAR)
∆ = I,H = A
Gives cor(Yi ,Yj |Yk , k 6= i , j) = φ
Need (at least) φ ∈ (0, 1)

Weighted CAR (WCAR)
∆ = diag{|N(si )|−1}, hij = aij |N(si )|−1
Gives cor(Yi ,Yj |Yk , k 6= i , j) = φ|N(si )|−1/2|N(si )|−1/2
Need (at least) φ ∈ (0,minij |N(si )|−1/2|N(si )|−1/2)

Autocorrelated CAR (ACAR)
∆ = diag{|N(si )|−1}, hij = aij |N(si )|−1/2|N(sj)|1/2
Gives cor(Yi ,Yj |Yk , k 6= i , j) = φ
Need (at least) φ ∈ (0, 1)
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CAR models vs geostatistical models

Y ∼ Gau(µ, (I− C)−1M), Diag(C) = 0

Most important MRF model, often µ = XTβ

Building block for more complex models

Geostatistical model: Y ∼ Gau(µY ,ΣY )
CY (sj − si ) ≈ 0(= 0), for ||sj − si || “large”
ΣY “sparse”

MRF: cij ≈ 0(= 0) for ||sj − si || “large”
Σ−1Y “sparse”

MRF to geostat:ΣY = (I− C)−1M

geostat to MRF: M = Diag(Σ−1Y ),C = I−MΣ−1Y

Differ in “sparsity”

Differ in how to define dependence, distance versus neighborhood

Which operations are simple? Building model vs Conditioning model.
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Building model vs conditioning model

Model building: X,Y independent : Z = X + Y
CZ = CX + CY

QZ = QX − QX (QX + QY )−1QX

= QY − QY (QX + QY )−1QY

Conditioning: X,Y independent : Z = X + Y
CY |Z = CY − CY (Cx + CY )−1CY

QY |Z = QY + QX

QX |Z = QX + QY
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Example - Doctor-prescription

Data: Aaverage doctor-prescription amounts per consultation in cantons
of the Midi-Pyrenees Department in southwest France.

268 cantons (32 “missing cantons” with no data)

Response

Z : Average prescription amount per consultation in 1999

Several possible covariates

X : X-coordinate of the centroid (in meters according to NTF)
Y : Y-coordinate of the centroid (in meters according to NTF)
X2: percentage of patients 70 or older
X1: per-capita income
E : number of consultations in 1999 (1270-1784977)
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INLA

Syntax for WCAR (Besag) model:

formula = log(Z) ~ X2+Y+f(NO,model="besag",graph=Canton.graph)

res = inla(formula,family="gaussian",data=dat)

Formula:

Specifies log(Z) as response and X2 and Y as covariates

f() specifies a random effect (δ in our spatial model).
Can have different models. Here the Besag (WCAR) model is
specified. Requires a neighborhood structure, given in the graph

option

The function inla requires

The formulae
A model for the response, given by family

The data
Several other options possible, default choices imply

a Bayesian approach
Default priors on hyperparameters
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Spatial rates model

∆ii =M−1i

hij =

{
(Mi/Mj)

1/2, j ∈ N(si )

0, elsewhere

Q =
1

τ 2
∆−1[I− φH]

Gives

var(Yi |Yk , k 6= i) =Mi

cor(Yi ,Yj |Yk , k 6= i , j) =φ similar to ACAR

In application: Mi = E (i) (number of consultations)
Not directly available in INLA, but possible through transformation:
δ̃ = ∆−1/2δ ∼ Gau(0, τ 2(I− φH̃)−1)

h̃ij =

{
Mi/Mj , j ∈ N(si )

0, elsewhere
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Spatial rates model in INLA

INLA generic1 model: Q = ξ(I− φ
λmax

H̃),

φ ∈ (0, 1), λmax maximum eigenvalue of H̃.
Our model:

Z =Xβ + δ + ε

=Xβ + ∆1/2δ̃ + ε

Possible in INLA by

specifying generic1 model for δ̃ and

including ∆1/2 as weights

Canton.R script
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Model comparison

Model selection tools for Bayesian approaches:

Marginal likelihood:

p(z) =

∫
θ

∫
y

p(z|y,θ)p(y|θ)p(θ)dydθ

Want it large!
Can be sensitive to p(θ).
In general difficult to compute, “easy” in INLA

DIC: Bayesian alternative to AIC
Want it large!
Much used, but can give strange results

Many other alternatives in the literature
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Model selection - Doctors prescription

Marginal likelihood

> cbind(res.ind$mlik,res.besag.b$mlik,res.sr$mlik)

[,1] [,2] [,3]

log marg-likel (integration) 111.5341 -73.78425 112.4315

log marginal-likel (Gaussian) 112.4530 -73.99076 112.3778

DIC

> cbind(res.ind$dic,res.besag.b$dic,res.sr$dic)

[,1] [,2] [,3]

dic -298.1838 -317.3547 -297.5507

p.eff 3.878958 43.89627 4.195396

mean.deviance -302.0628 -361.2509 -301.7461

deviance.mean -305.9418 -405.1472 -305.9415
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Spatial disease mapping

Zi |Yi
ind∼Poisson(Ei exp(Yi ))

Zi =Observed disease count

Ei =Expected count (known), and

Yi =xTi β + δi + εi

δi |δj 6=i ∼N(|Ni |−1
∑
j∈Ni

δj , 1/(τc |Ni |)) WCAR/Besag model

εi
ind∼N(0, 1/τε)

Usually include
∑

i δi = 0 to make model identifiable.
Note: Often Zi |Yi is Binomial(Ni , pi (Yi )) but large Ni and small pi make
Poisson distribution more convenient to use.
Often: Considering standardized mortality ratio (SMR):

SMRi ≡ Zi/Ei
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Scottish lip cancer data

Zi |Yi ∼Poisson(Ei exp(Yi ))

Yi =β0 + β1xi/10 + δi + εi

xi =Percentage of population enganged in agriculture/fishing/forestry
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Disease mapping in INLA

library(INLA)

data(Scotland)

g = system.file("demodata/scotland.graph", package="INLA")

graph = inla.read.graph(g)

Scotland$Region2 = Scotland$Region

formula = Counts~ I(X/10) + f(Region,model="besag", graph=graph,param=c(0.5,0.0005)) +

f(Region2,model="iid")

mod.scotland = inla(formula,family="poisson",E=E,data=Scotland)

Script Scottish.R
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Computation when INLA not is possible

Inla code:

INLA: Possible for latent processes being linear and Gaussian

Nonlinearity/non-Gaussian: Monte Carlo metods

Monte Carlo methods:

Assume interest in p(y|z)

Assume possible to simulate y1, ..., yS from p(y|z)

Can approximate E [g(y)|Z = z] by S−1
∑S

s=1 g(ys)

Problem: Difficult to simulate from p(y|z) directly

Markov chain Monte Carlo:

y(s) is generated only depending on y(s−1) (Markov chain).

As s increases, the distribution of y(s) converges towards p(y|z)

Under some additional requirements, we also have that
(S − b)−1

∑S
s=b+1 g(y(s)) converges towards E [g(Y)|Z = z].
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Gibbs sampler

One of many many MCMC algorithms
Easy to implement, not always very efficient in spatial settings

Assume y = (y1, ..., yn)

For s = 1, 2, 3, ...,B

simulate y s
1 ∼ p(y1|y s−1

2 , ..., y s−1
n )

simulate y s
2 ∼ p(y2|y s

1 , y
s−1
3 , ..., y s−1

n )
...
simulate y s

n ∼ p(yn|y s
1 , y

s
2 , ..., y

s
n−1)

Note

Often use a permutation of the ordering in the updates

Only univariate updates

Only need conditional distributions, will typically not require the
global normalization constant.
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Potts model

Model defined on a discrete set of values Yi ∈ {1, ...,K}.
Defined trough the Gibbs distribution :

Pr(Y = y) ∝ exp{
n∑

i=1

αi,yi + 1
2β

∑
i

∑
j∈Ni

I (yi = yj)}

Conditional distribution:

Pr(Yi = k|Yj = yj , j 6= i) =
exp{αi,k + β

∑
j∈Ni

I (yj = k)}∑K
l=1 exp{αi,l + β

∑
j∈Ni

I (yj = l)}
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Simulations from Potts model, αi ,k = 0, β = 1
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MCMC: How many iterations

Convergence often performed by eye
(formal tests exist)

Difficult to look at the whole process

Usually considering summary statistics g(y)

Potts model:

gk(y) =
∑
i

I (yi = k) k = 1, ...,K

gK+1(y) =
∑
i∼j

I (yi = yj) i ∼ j means i , j are neighboors
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g -functions for Potts model, per iteration 1-100

Note: Want

Convergence,
curve stabilize

Small
auto-correlation
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ACF of g -functions for Potts model
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Variance of MCMC

Assume y(s) ≈ p(y|z)

θ̂ =S−1
S∑

s=1

g(y(s))

Var[θ̂] =S−2[
S∑

s=1

Var[g(y(s))] + 2
S−1∑
h=1

S−h∑
s=1

Cov[g(y(s)), g(y(s+h))]

=S−2[SVar[g(y(s))] + 2
S−1∑
h=1

(S − h)Cov[g(y(s)), g(y(s+h))]

=S−1Var[g(y(s))][1 + 2
S−1∑
s=1

(1− h
S )Cor[g(y(s)), g(y(s+h))]]

Note: Need
∑S−1

s=1 (1− h
S )Cor[g(y(s)), g(y(s+h))]

S→∞→ Const
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