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Previously
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Lattice models

MRF — Markov random field

Neighborhood (undirected graph)

Clique

Negpotential function

Besag's lemma (conditional vs joint distribution)
Hammersley- Clifford theorem

Auto spatial models

CAR model

o Latent Gaussian process

o Auto logistic model (Ising model)
e auto Poisson model



Gibbs distribution
How to construct a CAR from scratch

Examples of Models in INLA (disease mapping, etc)

Examples of models outside INLA (Potts model)
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Gibbs distribution/ Gibbs measure

From statistical mechanics:

Pr(y) = ﬁ exp {—BE(y)}

with 3 = + inverse temperature; E(y) potential function.
Z(3) partition function

Recall: Hammersley - Clifford theorem. On the graph (G)
Graph = Nodes (=Lattice) + Edges (=Neighbors)

Pr(y|0) =

c(lo) exp {Q(y; 0)} = % exp{ > wc(ycﬂ)}

ceCe

with Cg being the set of all cliques, Q(0,0) =0, and ¢(0) is a
normalizing constant.
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Gaussian CAR models

Y ~ MVN(0, %) = MVN(0,Q 1)

o Conditional Gaussian distributions with

EYS)IY-1= Y Y(s)

JEN(si)
var[Y(s;)|Y -] :T,-2

If legal, Q = M~1[I — C] with M = diag{T,?}

If M~1(1 — C) is symmetric and positive definite, then

Q = M~1(1 - C) is sparse if C is sparse!

@ M always positive definite and symmetric

e jeN(s)) < ieN(sj) implyc;=0<¢; =0

@ Need T’-72C,'j = 7’_,-72Cj,' for neighbors

@ Also, the ¢jj can not be too large for getting positive definiteness.
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Parameterizations of CAR models

Y ~ MVN(0, (M~1[I = C])~1) = MVN(0, [I — C]"'M)

M = diag{7?},7 >0 Vi
Often

o C = ¢H, H known and/or
o M =172A, A known diagonal matrix.

What requirements on (¢, 7)?

Note: Need M~1C symmetric:
e Q,=M!I-Cl=M"1—-M"IC, M~ automatically symmetric
o General: 772C; = ijij,-
e M=7>A,C=¢H = A hj = A h;

Need also £y = (I — C)"'M positive definite

Equivalent to Q = M~1(1 — C) positive definite
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CAR: Requirements for positive definite

e Q = M~(1 — C) positive definite?

STKA4150 - Intro 7



CAR: Requirements for positive definite

e Q = M~(1 — C) positive definite?

o Since M/2 is positive definite (7; > 0),

@ equivalent to that M~1/2(1 — C)M'/2 = | — MY/2CM~1/2 is positive
definite
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CAR: Requirements for positive definite

Q = M~1(1 - C) positive definite?
Since M'/2 is positive definite (7; > 0),
equivalent to that M~1/2(1 — C)M'/2 = | — MY/2CM~1/2 is positive
definite
A symmetric (A = MY/2CM~1/2)
o spectral decomposition: A = TAT” where TT” = | and A contains

eigenvalues.
e A is positive definite if all eigenvalues are positive.
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CAR: Requirements for positive definite

Q = M~ I(1 — C) positive definite?

o Since M/2 is positive definite (7; > 0),
@ equivalent to that M~1/2(1 — C)M'/2 = | — MY/2CM~1/2 is positive
definite
o A symmetric (A = MY/2CM~1/2)
o spectral decomposition: A = TAT” where TT” = | and A contains
eigenvalues.
e A is positive definite if all eigenvalues are positive.
ol —A=1-TAT" =TT —TAT” = T[I - A]T” =1 — A contain

eigenvalues of | — A.
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CAR: Requirements for positive definite
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Q = M~ I(1 — C) positive definite?
Since M'/2 is positive definite (7; > 0),
equivalent to that M~1/2(1 — C)M'/2 = | — MY/2CM~1/2 is positive
definite
A symmetric (A = MY/2CM~1/2)
o spectral decomposition: A = TAT” where TT” = | and A contains
eigenvalues.
e A is positive definite if all eigenvalues are positive.
ol —A=1-TAT" =TT —TAT” = T[I - A]T” =1 — A contain
eigenvalues of | — A.
If X eigenvalue of M—1/2CM/2 then 1 — )\ eigenvalue of
I — M-/2CMY/2
Positive definite if 1 — A >0, or A < 1.



CAR: Requirements (cont)

Assume C = ¢H, so A = ¢gMY/2ZHM~1/2

X eigenvalue of MY2HM~1/2 gives A\ = ¢\ eigenvalue of A.
Need A < 1 or ¢ < 1.

For A positive, need ¢ < A71

For A negative, need ¢ > \~1

Let 5\(1) < 5\(2) <AL 5\(,7) be ordered eigenvalues

We have 5\(1) <0, ;\(,,) > 0 (not obvious!)

Requirement: 5\(_5 <P < 5\(_":;
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CAR: Requirements (cont)
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Assume C = ¢H, so A = ¢gMY/2ZHM~1/2

X eigenvalue of MY2HM~1/2 gives A\ = ¢\ eigenvalue of A.
Need A < 1 or ¢ < 1.

For A positive, need ¢ < A71

For A negative, need ¢ > \~1

Let 5\(1) < 5\(2) <AL 5\(,7) be ordered eigenvalues

We have 5\(1) <0, ;\(,,) > 0 (not obvious!)

Requirement: 5\(_5 <P < 5\(_":;

If M = 72A,, 7 just a scaling factor, same requirements



Inhomogeneous processes

Y = X3+ 6, 6 ~ Gau(0, (I — C)~1M)

e For M = 72A, with different diagonal elements, called
inhomogeneous process.

Define ¥ = A2y X = A~1/2X § = A~1/2g,
Then Y = )N(,B 16,6~ Gau(0, 72(1 — E)—l)

C - A Y2cal/?

@ Note: ¢;=0&¢;=0

For C = ¢H: C = A~ Y/?HAY?
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How
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to model C (or H)?

o Can show [cor(Y;, Y| Yk, k # i, /)] = cjcji
@ Need 0 < ¢jic;; <1
@ In general: ¢; can depend on distance between s; and s;.
(distance between center points)
@ Regular lattice: ¢; = 0 for
o ||si —sj|| > 1 (1. order)

o ||si —sj|| > V2 (2. order)
° Hs,- — st > 2 (3. order)

o lIrregular lattice: ¢;; = 0 for

e i and j do not share border
o ||si — sj|| > threshold

@ Size of ¢;: Depending on distance, number of neighbors



Special cases

Consider now M = 72A, C = ¢H
Define A such that a;; = /(i and j are neighbors).
e Homogeneous CAR (HCAR)
A—ILH=A
Gives cor(Y;, Yj|Yi, k #i,j) = ¢
Need (at least) ¢ € (0,1)
o Weighted CAR (WCAR)
A = diag{|N(s;)| "}, h; = a;|N(s;)| ™"
Gives cor(Y;, V)| Y, k # i,J) = ¢|N(s;)|~*/?|N(s;)| 1/
Need (at least) ¢ € (0, min; |N(s;)|~Y/2|N(s;)|~/2)
o Autocorrelated CAR (ACAR)
A = diag{|N(s;)| "1}, hy = a5|N(s;)| /2| N(s;)[ /2
Gives cor(Y;, Yj|Yi, k # i,j) = ¢
Need (at least) ¢ € (0,1)
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CAR models vs geostatistical models
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e 6 o6 o

Y ~ Gau(p, (I — C)~1M), Diag(C) =0

Most important MRF model, often u = X3
Building block for more complex models
Geostatistical model: Y ~ Gau(py,Xy)

Cy(sj —si) = 0(=0), for||s; —si|| “large”

2y “sparse”

MRF: ¢;j =~ 0(= 0) for ||s; — s;i|| “large”

Z;l “sparse”

MRF to geostat:Xy = (1 — C)~IM

geostat to MRF: M = Diag(X,'),C =1 - MX}
Differ in “sparsity”

Differ in how to define dependence, distance versus neighborhood

Which operations are simple? Building model vs Conditioning model.



Building model vs conditioning model

Model building: XY independent : Z=X+Y
Cz=Cx+ Cy
Qz = Qx — Qx(Qx + Qy) 1 Qx

= Qy — Qv(Qx + Qv) Qv

Conditioning: XY independent : Z =X +Y
Cyiz=Cy — Cy(CGi+ Cy) 1 Cy

Qy|z = Qv + Qx

Qx|z = Qx + Qv
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Example - Doctor-prescription

Data: Aaverage doctor-prescription amounts per consultation in cantons
of the Midi-Pyrenees Department in southwest France.
@ 268 cantons (32 “missing cantons” with no data)
@ Response
o Z: Average prescription amount per consultation in 1999
@ Several possible covariates

e X: X-coordinate of the centroid (in meters according to NTF)
e Y: Y-coordinate of the centroid (in meters according to NTF)
e X2: percentage of patients 70 or older

e X1: per-capita income

o E: number of consultations in 1999 (1270-1784977)
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INLA

Syntax for WCAR (Besag) model:

formula = log(Z) ~ X2+Y+f(NO,model="besag",graph=Canton.graph)

res = inla(formula,family="gaussian",data=dat)

Formula:
@ Specifies log(Z) as response and X2 and Y as covariates

e £ () specifies a random effect (& in our spatial model).
Can have different models. Here the Besag (WCAR) model is
specified. Requires a neighborhood structure, given in the graph
option

@ The function inla requires

The formulae

A model for the response, given by family

The data

)
]
]
o Several other options possible, default choices imply

@ a Bayesian approach
@ Default priors on hyperparameters
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Spatial rates model

Ay =M1
b (M;/ M2, j e N(si)
Y 0, elsewhere
1
=—AI—¢H
Q==A7"1 - H]
Gives

var(Yi|Yi, k £ 1) =
cor(Yi, Yi|Yi, k #i,j) = similar to ACAR

In application: M; = E(i) (number of consultations)

Not directly available in INLA, but possible through transformation:

8 =A"Y25 ~ Gau(0,72(1 — pH) 1)

- {M,-/M,-, j € N(s))
hj =

0, elsewhere

STKA4150 - Intro
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Spatial rates model in INLA

INLA genericl model: Q = &(1 —

H)
@ € (0,1), Anax maximum eigenvalue of H.
Our model:

Amax

Z=XB+d+¢
=XB+ AY?5 1 ¢
Possible in INLA by
@ specifying genericl model for & and
@ including A2 a5 weights
Canton.R script
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Model comparison

Model selection tools for Bayesian approaches:
e Marginal likelihood:

p(z) = /0 / p(zly. 0)p(y|8)p(6)dyde

Want it large!

Can be sensitive to p(8).

In general difficult to compute, “easy” in INLA
@ DIC: Bayesian alternative to AIC

Want it large!

Much used, but can give strange results

@ Many other alternatives in the literature
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Model selection - Doctors prescription

Marginal likelihood

> cbind(res.ind$mlik,res.besag.b$mlik,res.sr$mlik)

[,1] [,2] [,3]
log marg-likel (integration) 111.5341 -73.78425 112.4315
log marginal-likel (Gaussian) 112.4530 -73.99076 112.3778
DIC
> cbind(res.ind$dic,res.besag.b$dic,res.sr$dic)

[,1] [,2] [,3]

dic -298.1838  -317.3547  -297.5507
p.eff 3.878958 43.89627 4.195396

mean.deviance -302.0628 -361.2509 -301.7461
deviance.mean -305.9418  -405.1472 -305.9415
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Spatial disease mapping

Zi|Y; if'gPoisson(E,- exp(Y:))

Z; =Observed disease count

E; =Expected count (known), and
Y =x/B+6; +¢
80z ~N(ING D 65,1/ (7| Ni)) WCAR/Besag model
JEN;
ind
g; ~N(0,1/7.)

Usually include Z,"Si = 0 to make model identifiable.

Note: Often Z;|Y; is Binomial(N;, pi(Y;)) but large N; and small p; make
Poisson distribution more convenient to use.

Often: Considering standardized mortality ratio (SMR):

SMR, = Z,'/E,'
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Scottish lip cancer data

% employed in agr/fish/forest

Z;|Y; ~Poisson(E; exp(Y;))
Yi =60 + B1xi/10 + 6; + ¢;
x; =Percentage of population enganged in agriculture/fishing/forestry
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Disease mapping in INLA

library (INLA)

data(Scotland)

g = system.file("demodata/scotland.graph", package="INLA")

graph = inla.read.graph(g)

Scotland$Region2 = Scotland$Region

formula = Counts™ I(X/10) + f(Region,model="besag", graph=graph,
f (Region2,model="1iid")

mod.scotland = inla(formula,family="poisson",E=E,data=Scotland)

Script Scottish.R
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Computation when INLA not is possible

Inla code:
@ INLA: Possible for latent processes being linear and Gaussian

@ Nonlinearity/non-Gaussian: Monte Carlo metods
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Computation when INLA not is possible

Inla code:
@ INLA: Possible for latent processes being linear and Gaussian
o Nonlinearity/non-Gaussian: Monte Carlo metods
Monte Carlo methods:
@ Assume interest in p(y|z)
o Assume possible to simulate y?, ..., y° from p(y|z)
o Can approximate E[g(y)|Z =2] by S™2 32, g(y®)
@ Problem: Difficult to simulate from p(y|z) directly
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Computation when INLA not is possible

Inla code:
@ INLA: Possible for latent processes being linear and Gaussian
o Nonlinearity/non-Gaussian: Monte Carlo metods
Monte Carlo methods:
@ Assume interest in p(y|z)
o Assume possible to simulate y?, ..., y° from p(y|z)
o Can approximate E[g(y)|Z =2] by S™2 32, g(y®)
@ Problem: Difficult to simulate from p(y|z) directly
Markov chain Monte Carlo:
o y(*) is generated only depending on y(*=%) (Markov chain).
o As s increases, the distribution of y(*) converges towards p(y|z)

@ Under some additional requirements, we also have that
(S—b)1 Zf:bﬂ g(y®)) converges towards E[g(Y)|Z = z].
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Gibbs sampler

One of many many MCMC algorithms
Easy to implement, not always very efficient in spatial settings

Assume y = (y1, ..., ¥n)
@ Fors=1,23,...B

o simulate y§ ~ p(y1lys™ ..., ya™h)
o simulate y5 ~ p(y2lyf,ys o ysh)

o
o simulate y; ~ p(ya|yi, Y3, .-, Yo-1)
Note

@ Often use a permutation of the ordering in the updates
@ Only univariate updates

@ Only need conditional distributions, will typically not require the
global normalization constant.
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Potts model

Model defined on a discrete set of values Y; € {1, ..., K}.
Defined trough the Gibbs distribution :

Pr(Y =y) exp{Z Qjy, + %52 Z Iy = y;)}

i jEN;

Conditional distribution:
exp{ajx + BZJGN,. I(y; = k)}

Pr(Yi =klY; =y #i) = =x
iy exp{ai + B3 ey 1y =1}
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Simulations from Potts model, ajx =0, 8 =1

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

20 21 22

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
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MCMC: How many iterations

@ Convergence often performed by eye
(formal tests exist)

o Difficult to look at the whole process
@ Usually considering summary statistics g(y)
@ Potts model:

g(y) :Z Iyi=k) k=1,..K

1
grx+1(y) :Z I(yi = yj) i ~ j means i,/ are neighboors

i~j
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g-functions for Potts model, per iteration 1-100

gl1:100, 1:K]
150 250 350 450

g[1:100, K + 1]
500 700 900
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matrix(rep(1:100, K), ncol = K)

100

1:100

Qg
%Ezmm
qﬁo‘b@amc;f%““&n% i O%%%%ﬁcfbmmo&w%%
o
5 Note: Want
o Convergence,

o aye

\ \ T w I ‘ curve stabilize
0 20 40 60 80 100

@ Small
auto-correlation
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g-functions

for Potts model, per iteration

400
|

gl, 1:K]
250
|

100
|

matrix(rep(1:M, K), ncol = K)

al, K+ 1]

500 700 900
1
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200

400

600

800

1000

Note: Want

o Convergence,
curve stabilize

@ Small
auto-correlation
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ACF

ACF
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of g-functions for Potts model

0.8

04
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Series g[, 1]
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Series g[, K +1]
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Variance of MCMC

Assume y(©) ~ p(y|2)

S
§=5"> gy"¥)
s=1

N S S5—-1S5—-h
Var[d] :572[2 Var[g(y®))] + 2 Z Z Covig(y ()]
s=1 h=1 s=1

—S2[SVar[g(y' ]+2Z — h)Cov[g(y™)), g(y )]

5-1
=5""arlg(y)][1 +2) (1 - &)Corlg(y®), e(y*"")]

s=1

Note: Need S22 (1 — £)Corlg(y®), g(yt+)] °=5 52 Const
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