Chapter 4.2 - Lattice processes Lecture notes

Odd Kolbjørnsen Geir Storvik

March 6, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

STK4150 - Intro

Previously

- Lattice models
- MRF Markov random field
- Neighborhood (undirected graph)
- Clique
- Negpotential function
- Besag's lemma (conditional vs joint distribution)
- Hammersley- Clifford theorem
- Auto spatial models
 - CAR model
 - Latent Gaussian process
 - Auto logistic model (Ising model)
 - auto Poisson model

- Gibbs distribution
- How to construct a CAR from scratch
- Examples of Models in INLA (disease mapping, etc)
- Examples of models outside INLA (Potts model)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○○○○

From statistical mechanics:

$$\Pr(\mathbf{y}) = \frac{1}{Z(\beta)} \exp\{-\beta E(\mathbf{y})\}$$

with $\beta = \frac{1}{T}$ inverse temperature; E(y) potential function. $Z(\beta)$ partition function

Recall: Hammersley - Clifford theorem. On the graph (G)Graph = Nodes (=Lattice) + Edges (=Neighbors)

$$\Pr(\mathbf{y}|\boldsymbol{\theta}) = \frac{1}{c(\boldsymbol{\theta})} \exp\left\{Q(\mathbf{y};\boldsymbol{\theta})\right\} = \frac{1}{c(\boldsymbol{\theta})} \exp\left\{\sum_{c \in C_G} \psi_c(y_c,\boldsymbol{\theta})\right\}$$

with C_G being the set of all cliques, $Q(\mathbf{0}, \theta) = 0$, and $c(\theta)$ is a normalizing constant.

$$\mathbf{Y} \sim \mathsf{MVN}(\mathbf{0}, \mathbf{\Sigma}) = \mathsf{MVN}(\mathbf{0}, \mathbf{Q}^{-1})$$

• Conditional Gaussian distributions with

$$E[Y(s_i)|\mathbf{Y}_{-i}] = \sum_{j \in \mathcal{N}(\mathbf{s}_i)} c_{ij} Y(\mathbf{s}_j)$$
$$var[Y(s_i)|\mathbf{Y}_{-i}] = \tau_i^2$$

- If legal, $\mathbf{Q} = \mathbf{M}^{-1}[\mathbf{I} \mathbf{C}]$ with $\mathbf{M} = \text{diag}\{\tau_i^2\}$
- If M⁻¹(I C) is symmetric and positive definite, then
- $\mathbf{Q} = \mathbf{M}^{-1}(\mathbf{I} \mathbf{C})$ is sparse if \mathbf{C} is sparse!
- M always positive definite and symmetric
- $j \in \mathcal{N}(\mathbf{s}_i) \Leftrightarrow i \in \mathcal{N}(\mathbf{s}_j)$ imply $c_{ij} = 0 \Leftrightarrow c_{ji} = 0$
- Need $\tau_i^{-2}c_{ij} = \tau_j^{-2}c_{ji}$ for neighbors
- Also, the c_{ij} can not be too large for getting positive definiteness.

 $\mathbf{Y} \sim \mathsf{MVN}(\mathbf{0}, (\mathbf{M}^{-1}[\mathbf{I}-\mathbf{C}])^{-1}) = \mathsf{MVN}(\mathbf{0}, [\mathbf{I}-\mathbf{C}]^{-1}\mathbf{M})$

•
$$\mathbf{M} = \text{diag}\{\tau_i^2\}, \tau_i > 0 \quad \forall i$$

Often

- $\mathbf{C} = \phi \mathbf{H}$, \mathbf{H} known and/or
- $\mathbf{M} = \tau^2 \mathbf{\Delta}$, $\mathbf{\Delta}$ known diagonal matrix.
- What requirements on (ϕ, τ) ?
- Note: Need **M**⁻¹**C** symmetric:
 - $\mathbf{Q}_y = \mathbf{M}^{-1}[\mathbf{I} \mathbf{C}] = \mathbf{M}^{-1} \mathbf{M}^{-1}\mathbf{C}$, \mathbf{M}^{-1} automatically symmetric
 - General: $\tau_i^{-2}C_{ij} = \tau_i^{-2}C_{ji}$

•
$$\mathbf{M} = \tau^2 \mathbf{\Delta}, \mathbf{C} = \phi \mathbf{H} \Rightarrow \Delta_{ii}^{-1} h_{ij} = \Delta_{jj}^{-1} h_{ji}$$

- Need also $\Sigma_Y = (I C)^{-1}M$ positive definite
- Equivalent to $\mathbf{Q} = \mathbf{M}^{-1}(\mathbf{I} \mathbf{C})$ positive definite

• $\mathbf{Q} = \mathbf{M}^{-1}(\mathbf{I} - \mathbf{C})$ positive definite?

・ロト・日本・日本・日本・日本・日本

- $\mathbf{Q} = \mathbf{M}^{-1}(\mathbf{I} \mathbf{C})$ positive definite?
- Since $\mathbf{M}^{1/2}$ is positive definite ($\tau_i > 0$),
- equivalent to that $M^{-1/2}(\mathbf{I}-\mathbf{C})M^{1/2}=\mathbf{I}-\mathbf{M}^{1/2}\mathbf{C}\mathbf{M}^{-1/2}$ is positive definite

- $\mathbf{Q} = \mathbf{M}^{-1}(\mathbf{I} \mathbf{C})$ positive definite?
- Since $\mathbf{M}^{1/2}$ is positive definite ($\tau_i > 0$),
- equivalent to that $M^{-1/2}(\mathbf{I}-\mathbf{C})M^{1/2}=\mathbf{I}-\mathbf{M}^{1/2}\mathbf{C}\mathbf{M}^{-1/2}$ is positive definite
- A symmetric ($\mathbf{A} = \mathbf{M}^{1/2}\mathbf{C}\mathbf{M}^{-1/2}$)
 - spectral decomposition: A = TΛT^T where TT^T = I and Λ contains eigenvalues.
 - A is positive definite if all eigenvalues are positive.

- $\mathbf{Q} = \mathbf{M}^{-1}(\mathbf{I} \mathbf{C})$ positive definite?
- Since $\mathbf{M}^{1/2}$ is positive definite $(\tau_i > 0)$,
- equivalent to that $M^{-1/2}(\mathbf{I}-\mathbf{C})M^{1/2}=\mathbf{I}-\mathbf{M}^{1/2}\mathbf{C}\mathbf{M}^{-1/2}$ is positive definite
- A symmetric ($\mathbf{A} = \mathbf{M}^{1/2}\mathbf{C}\mathbf{M}^{-1/2}$)
 - spectral decomposition: $\mathbf{A} = \mathbf{T} \mathbf{\Lambda} \mathbf{T}^T$ where $\mathbf{T} \mathbf{T}^T = \mathbf{I}$ and $\mathbf{\Lambda}$ contains eigenvalues.
 - A is positive definite if all eigenvalues are positive.
 - $\mathbf{I} \mathbf{A} = \mathbf{I} \mathbf{T} \mathbf{\Lambda} \mathbf{T}^{T} = \mathbf{T} \mathbf{T}^{T} \mathbf{T} \mathbf{\Lambda} \mathbf{T}^{T} = \mathbf{T} [\mathbf{I} \mathbf{\Lambda}] \mathbf{T}^{T} \Rightarrow \mathbf{I} \mathbf{\Lambda}$ contain eigenvalues of $\mathbf{I} \mathbf{A}$.

- $\mathbf{Q} = \mathbf{M}^{-1}(\mathbf{I} \mathbf{C})$ positive definite?
- Since $\mathbf{M}^{1/2}$ is positive definite $(\tau_i > 0)$,
- equivalent to that $M^{-1/2}(\mathbf{I}-\mathbf{C})M^{1/2}=\mathbf{I}-\mathbf{M}^{1/2}\mathbf{C}\mathbf{M}^{-1/2}$ is positive definite
- A symmetric ($\mathbf{A} = \mathbf{M}^{1/2}\mathbf{C}\mathbf{M}^{-1/2}$)
 - spectral decomposition: A = TΛT^T where TT^T = I and Λ contains eigenvalues.
 - A is positive definite if all eigenvalues are positive.
 - $\mathbf{I} \mathbf{A} = \mathbf{I} \mathbf{T} \mathbf{\Lambda} \mathbf{T}^{T} = \mathbf{T} \mathbf{T}^{T} \mathbf{T} \mathbf{\Lambda} \mathbf{T}^{T} = \mathbf{T} [\mathbf{I} \mathbf{\Lambda}] \mathbf{T}^{T} \Rightarrow \mathbf{I} \mathbf{\Lambda}$ contain eigenvalues of $\mathbf{I} \mathbf{A}$.
- If λ eigenvalue of $M^{-1/2}CM^{1/2}$, then 1λ eigenvalue of $I M^{-1/2}CM^{1/2}$
- Positive definite if $1 \lambda > 0$, or $\lambda < 1$.

CAR: Requirements (cont)

- Assume $\mathbf{C} = \phi \mathbf{H}$, so $\mathbf{A} = \phi \mathbf{M}^{1/2} \mathbf{H} \mathbf{M}^{-1/2}$
- $\tilde{\lambda}$ eigenvalue of $M^{1/2}HM^{-1/2}$ gives $\lambda = \phi \tilde{\lambda}$ eigenvalue of **A**.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

- Need $\lambda < 1$ or $\phi \tilde{\lambda} < 1$.
- For $\tilde{\lambda}$ positive, need $\phi < \lambda^{-1}$
- For $\tilde{\lambda}$ negative, need $\phi>\lambda^{-1}$
- Let $\tilde{\lambda}_{(1)} \leq \tilde{\lambda}_{(2)} \leq \cdots \leq \tilde{\lambda}_{(n)}$ be ordered eigenvalues
- We have $ilde{\lambda}_{(1)} <$ 0, $ilde{\lambda}_{(n)} >$ 0 (not obvious!)
- Requirement: $\tilde{\lambda}_{(1)}^{-1} < \phi < \tilde{\lambda}_{(n)}^{-1}$

CAR: Requirements (cont)

- Assume $\mathbf{C} = \phi \mathbf{H}$, so $\mathbf{A} = \phi \mathbf{M}^{1/2} \mathbf{H} \mathbf{M}^{-1/2}$
- $\tilde{\lambda}$ eigenvalue of $M^{1/2}HM^{-1/2}$ gives $\lambda = \phi \tilde{\lambda}$ eigenvalue of **A**.
- Need $\lambda < 1$ or $\phi \tilde{\lambda} < 1$.
- For $\tilde{\lambda}$ positive, need $\phi < \lambda^{-1}$
- For $\tilde{\lambda}$ negative, need $\phi>\lambda^{-1}$
- Let $\tilde{\lambda}_{(1)} \leq \tilde{\lambda}_{(2)} \leq \cdots \leq \tilde{\lambda}_{(n)}$ be ordered eigenvalues
- We have $ilde{\lambda}_{(1)} <$ 0, $ilde{\lambda}_{(n)} >$ 0 (not obvious!)
- Requirement: $\tilde{\lambda}_{(1)}^{-1} < \phi < \tilde{\lambda}_{(n)}^{-1}$
- If $\mathbf{M} = \tau^2 \mathbf{\Delta}_{,,\tau}$ just a scaling factor, same requirements

•
$$\mathbf{Y} = \mathbf{X}oldsymbol{eta} + oldsymbol{\delta}$$
, $oldsymbol{\delta} \sim \mathsf{Gau}(\mathbf{0}, (\mathbf{I} - \mathbf{C})^{-1}\mathbf{M})$

- For M = τ²Δ, with different diagonal elements, called inhomogeneous process.
- Define $\widetilde{\mathbf{Y}} = \mathbf{\Delta}^{-1/2} \mathbf{Y}$, $\widetilde{\mathbf{X}} = \mathbf{\Delta}^{-1/2} \mathbf{X}$, $\widetilde{\delta} = \mathbf{\Delta}^{-1/2} \delta$,
- Then $\widetilde{\mathbf{Y}} = \widetilde{\mathbf{X}}\beta + \widetilde{\delta}$, $\widetilde{\delta} \sim \operatorname{Gau}(\mathbf{0}, \tau^2(\mathbf{I} \widetilde{\mathbf{C}})^{-1})$ $\widetilde{\mathbf{C}} = \mathbf{\Delta}^{-1/2}\mathbf{C}\mathbf{\Delta}^{1/2}$

• Note:
$$c_{ij} = 0 \Leftrightarrow \tilde{c}_{ij} = 0$$

• For $\mathbf{C} = \phi \mathbf{H}$: $\widetilde{\mathbf{C}} = \phi \mathbf{\Delta}^{-1/2} \mathbf{H} \mathbf{\Delta}^{1/2}$

How to model C (or H)?

- Can show $[cor(Y_i, Y_j | Y_k, k \neq i, j)]^2 = c_{ij}c_{ji}$
- Need $0 \le c_{ij}c_{ji} \le 1$
- In general: c_{ij} can depend on distance between s_i and s_j. (distance between center points)
- Regular lattice: $c_{ij} = 0$ for
 - $||s_i s_j|| > 1$ (1. order)
 - $||s_i s_j|| > \sqrt{2}$ (2. order)
 - $||s_i s_j|| > 2$ (3. order)
- Irregular lattice: $c_{ij} = 0$ for
 - *i* and *j* do not share border
 - $||s_i s_j|| >$ threshold
- Size of cij: Depending on distance, number of neighbors

Special cases

Consider now $\mathbf{M} = \tau^2 \mathbf{\Delta}, \mathbf{C} = \phi \mathbf{H}$ Define **A** such that $a_{ii} = I(i \text{ and } j \text{ are neighbors})$. Homogeneous CAR (HCAR) $\Delta = I, H = A$ Gives cor($Y_i, Y_i | Y_k, k \neq i, j$) = ϕ Need (at least) $\phi \in (0, 1)$ Weighted CAR (WCAR) $\Delta = \text{diag}\{|N(\mathbf{s}_i)|^{-1}\}, h_{ii} = a_{ii}|N(\mathbf{s}_i)|^{-1}$ Gives cor($Y_i, Y_i | Y_k, k \neq i, j$) = $\phi | N(\mathbf{s}_i) |^{-1/2} | N(\mathbf{s}_i) |^{-1/2}$ Need (at least) $\phi \in (0, \min_{ii} |N(\mathbf{s}_i)|^{-1/2} |N(\mathbf{s}_i)|^{-1/2})$ Autocorrelated CAR (ACAR) $\Delta = \text{diag}\{|N(\mathbf{s}_i)|^{-1}\}, h_{ii} = a_{ii}|N(\mathbf{s}_i)|^{-1/2}|N(\mathbf{s}_i)|^{1/2}$ Gives cor($Y_i, Y_i | Y_k, k \neq i, j$) = ϕ

Need (at least) $\phi \in (0,1)$

CAR models vs geostatistical models

- $\mathbf{Y} \sim \mathsf{Gau}(\boldsymbol{\mu}, (\mathbf{I} \mathbf{C})^{-1}\mathbf{M})$, $\mathsf{Diag}(\mathbf{C}) = \mathbf{0}$
- Most important MRF model, often $\boldsymbol{\mu} = \boldsymbol{\mathsf{X}}^{\mathsf{T}} \boldsymbol{eta}$
- Building block for more complex models
- Geostatistical model: $\mathbf{Y} \sim \text{Gau}(\boldsymbol{\mu}_{Y}, \boldsymbol{\Sigma}_{Y})$ $C_{Y}(\mathbf{s}_{j} - \mathbf{s}_{i}) \approx 0 (= 0), \text{ for } ||\mathbf{s}_{j} - \mathbf{s}_{i}|| \text{ "large"}$ $\boldsymbol{\Sigma}_{Y}$ "sparse"
- MRF: $c_{ij} \approx 0 (= 0)$ for $||\mathbf{s}_j \mathbf{s}_i||$ "large" $\boldsymbol{\Sigma}_{\mathbf{Y}}^{-1}$ "sparse"
- MRF to geostat: $\mathbf{\Sigma}_Y = (\mathbf{I} \mathbf{C})^{-1} \mathbf{M}$
- geostat to MRF: $\mathbf{M} = \text{Diag}(\mathbf{\Sigma}_{\gamma}^{-1}), \mathbf{C} = \mathbf{I} \mathbf{M}\mathbf{\Sigma}_{\gamma}^{-1}$
- Differ in "sparsity"
- Differ in how to define dependence, distance versus neighborhood
- Which operations are simple? Building model vs Conditioning model.

Model building: X,Y independent :
$$Z = X + Y$$

 $C_Z = C_X + C_Y$
 $Q_Z = Q_X - Q_X(Q_X + Q_Y)^{-1}Q_X$
 $= Q_Y - Q_Y(Q_X + Q_Y)^{-1}Q_Y$

Conditioning: X,Y independent : Z = X + Y $C_{Y|Z} = C_Y - C_Y (C_x + C_Y)^{-1} C_Y$ $Q_{Y|Z} = Q_Y + Q_X$ $Q_{X|Z} = Q_X + Q_Y$ Data: Aaverage doctor-prescription amounts per consultation in cantons of the Midi-Pyrenees Department in southwest France.

- 268 cantons (32 "missing cantons" with no data)
- Response
 - Z: Average prescription amount per consultation in 1999
- Several possible covariates
 - X: X-coordinate of the centroid (in meters according to NTF)
 - Y: Y-coordinate of the centroid (in meters according to NTF)
 - X2: percentage of patients 70 or older
 - X1: per-capita income
 - E: number of consultations in 1999 (1270-1784977)

Syntax for WCAR (Besag) model:

formula = log(Z) ~ X2+Y+f(NO,model="besag",graph=Canton.graph)

res = inla(formula,family="gaussian",data=dat)

Formula:

- Specifies log(Z) as response and X2 and Y as covariates
- f() specifies a random effect (δ in our spatial model). Can have different models. Here the Besag (WCAR) model is specified. Requires a neighborhood structure, given in the graph option
- The function inla requires
 - The formulae
 - A model for the response, given by family
 - The data
 - Several other options possible, default choices imply
 - a Bayesian approach
 - Default priors on hyperparameters

Spatial rates model

$$\begin{aligned} \Delta_{ii} &= M_i^{-1} \\ h_{ij} &= \begin{cases} (M_i/M_j)^{1/2}, & j \in N(\mathbf{s}_i) \\ 0, & \text{elsewhere} \end{cases} \\ \mathbf{Q} &= \frac{1}{\tau^2} \mathbf{\Delta}^{-1} [\mathbf{I} - \phi \mathbf{H}] \end{aligned}$$

Gives

$$\operatorname{var}(Y_i|Y_k, k \neq i) = M_i$$

 $\operatorname{cor}(Y_i, Y_j|Y_k, k \neq i, j) = \phi$ similar to ACAR

In application: $M_i = E(i)$ (number of consultations) Not directly available in INLA, but possible through transformation: $\widetilde{\delta} = \mathbf{\Delta}^{-1/2} \delta \sim \text{Gau}(\mathbf{0}, \tau^2 (\mathbf{I} - \phi \widetilde{\mathbf{H}})^{-1})$

$$ilde{h}_{ij} = egin{cases} M_i/M_j, & j \in \textit{N}(\mathbf{s}_i) \ 0, & ext{elsewhere} \end{cases}$$

STK4150 - Intro

INLA generic1 model: $\mathbf{Q} = \xi(\mathbf{I} - \frac{\phi}{\lambda_{max}}\widetilde{\mathbf{H}}), \phi \in (0, 1), \lambda_{max}$ maximum eigenvalue of $\widetilde{\mathbf{H}}.$ Our model:

$$egin{aligned} \mathsf{Z} =& \mathsf{X}eta + \delta + arepsilon \ =& \mathsf{X}eta + \mathbf{\Delta}^{1/2}\widetilde{\delta} + \epsilon \end{aligned}$$

Possible in INLA by

- specifying generic1 model for $\widetilde{\delta}$ and
- including $\mathbf{\Delta}^{1/2}$ as weights

Canton.R script

Model selection tools for Bayesian approaches:

• Marginal likelihood:

$$p(\mathbf{z}) = \int_{\boldsymbol{ heta}} \int_{\mathbf{y}} p(\mathbf{z}|\mathbf{y}, \boldsymbol{ heta}) p(\mathbf{y}|\boldsymbol{ heta}) p(\boldsymbol{ heta}) d\mathbf{y} d\boldsymbol{ heta}$$

Want it large!

Can be sensitive to $p(\theta)$.

In general difficult to compute, "easy" in INLA

- DIC: Bayesian alternative to AIC Want it large! Much used, but can give strange results
- Many other alternatives in the literature

Marginal likelihood

DIC

> cbind(res.ind\$dic,res.besag.b\$dic,res.sr\$dic)

	[,1]	[,2]	[,3]
dic	-298.1838	-317.3547	-297.5507
p.eff	3.878958	43.89627	4.195396
mean.deviance	-302.0628	-361.2509	-301.7461
deviance.mean	-305.9418	-405.1472	-305.9415

Spatial disease mapping

$$\begin{split} & Z_i | Y_i \overset{ind}{\sim} \mathsf{Poisson}(E_i \exp(Y_i)) \\ & Z_i = \mathsf{Observed} \text{ disease count} \\ & E_i = \mathsf{Expected count} (\mathsf{known}), \text{ and} \\ & Y_i = \mathbf{x}_i^T \boldsymbol{\beta} + \delta_i + \varepsilon_i \\ & \delta_i | \delta_{j \neq i} \sim \mathcal{N}(|\mathcal{N}_i|^{-1} \sum_{j \in \mathcal{N}_i} \delta_j, 1/(\tau_c |\mathcal{N}_i|)) \\ & \varepsilon_i \overset{ind}{\sim} \mathcal{N}(0, 1/\tau_{\varepsilon}) \end{split}$$
 WCAR/Besag model

Usually include $\sum_i \delta_i = 0$ to make model identifiable. Note: Often $Z_i | Y_i$ is Binomial $(N_i, p_i(Y_i))$ but large N_i and small p_i make Poisson distribution more convenient to use. Often: Considering *standardized mortality ratio* (*SMR*):

$$SMR_i \equiv Z_i/E_i$$

Scottish lip cancer data

$$\begin{split} & Z_i | Y_i \sim \text{Poisson}(E_i \exp(Y_i)) \\ & Y_i = & \beta_0 + \beta_1 x_i / 10 + \delta_i + \varepsilon_i \\ & x_i = \text{Percentage of population enganged in agriculture/fishing/forestry} \end{split}$$

Inla code:

- INLA: Possible for latent processes being linear and Gaussian
- Nonlinearity/non-Gaussian: Monte Carlo metods

Computation when INLA not is possible

Inla code:

- INLA: Possible for latent processes being linear and Gaussian
- Nonlinearity/non-Gaussian: Monte Carlo metods

Monte Carlo methods:

- Assume interest in $p(\mathbf{y}|\mathbf{z})$
- Assume possible to simulate $\mathbf{y}^1, ..., \mathbf{y}^S$ from $p(\mathbf{y}|\mathbf{z})$
- Can approximate $E[g(\mathbf{y})|\mathbf{Z} = \mathbf{z}]$ by $S^{-1}\sum_{s=1}^{S} g(\mathbf{y}^s)$
- Problem: Difficult to simulate from $p(\mathbf{y}|\mathbf{z})$ directly

Inla code:

- INLA: Possible for latent processes being linear and Gaussian
- Nonlinearity/non-Gaussian: Monte Carlo metods

Monte Carlo methods:

- Assume interest in $p(\mathbf{y}|\mathbf{z})$
- Assume possible to simulate $\mathbf{y}^1,...,\mathbf{y}^S$ from $p(\mathbf{y}|\mathbf{z})$
- Can approximate $E[g(\mathbf{y})|\mathbf{Z} = \mathbf{z}]$ by $S^{-1}\sum_{s=1}^{S} g(\mathbf{y}^s)$
- Problem: Difficult to simulate from $p(\mathbf{y}|\mathbf{z})$ directly

Markov chain Monte Carlo:

- $\mathbf{y}^{(s)}$ is generated only depending on $\mathbf{y}^{(s-1)}$ (Markov chain).
- As s increases, the distribution of $\mathbf{y}^{(s)}$ converges towards $p(\mathbf{y}|\mathbf{z})$
- Under some additional requirements, we also have that $(S-b)^{-1}\sum_{s=b+1}^{S} g(\mathbf{y}^{(s)})$ converges towards $E[g(\mathbf{Y})|\mathbf{Z}=\mathbf{z}]$.

Gibbs sampler

One of many many MCMC algorithms Easy to implement, not always very efficient in spatial settings

Assume
$$\mathbf{y} = (y_1, ..., y_n)$$

• For $s = 1, 2, 3, ..., B$
• simulate $y_1^s \sim p(y_1|y_2^{s-1}, ..., y_n^{s-1})$
• simulate $y_2^s \sim p(y_2|y_1^s, y_3^{s-1}, ..., y_n^{s-1})$
• \vdots
• simulate $y_n^s \sim p(y_n|y_1^s, y_2^s, ..., y_{n-1}^s)$

Note

- Often use a permutation of the ordering in the updates
- Only univariate updates
- Only need conditional distributions, will typically not require the global normalization constant.

Model defined on a discrete set of values $Y_i \in \{1, ..., K\}$. Defined trough the *Gibbs distribution* :

$$\Pr(\mathbf{Y} = \mathbf{y}) \propto \exp\{\sum_{i=1}^{n} \alpha_{i,y_i} + \frac{1}{2}\beta \sum_{i} \sum_{j \in N_i} I(y_i = y_j)\}$$

Conditional distribution:

$$\Pr(Y_i = k | Y_j = y_j, j \neq i) = \frac{\exp\{\alpha_{i,k} + \beta \sum_{j \in N_i} I(y_j = k)\}}{\sum_{l=1}^{K} \exp\{\alpha_{i,l} + \beta \sum_{j \in N_i} I(y_j = l)\}}$$

Simulations from Potts model, $\alpha_{i,k} = 0$, $\beta = 1$

3

100

200

0.4

0.0

0.0

MCMC: How many iterations

- Convergence often performed by eye (formal tests exist)
- Difficult to look at the whole process
- Usually considering summary statistics $g(\mathbf{y})$
- Potts model:

$$g_k(\mathbf{y}) = \sum_i I(y_i = k)$$
 $k = 1, ..., K$
 $g_{K+1}(\mathbf{y}) = \sum_{i \sim j} I(y_i = y_j)$ $i \sim j$ means i, j are neighboors

g-functions for Potts model, per iteration 1-100

Note: Want

- Convergence, curve stabilize
- Small auto-correlation

g-functions for Potts model, per iteration

Note: Want

- Convergence, curve stabilize
- Small auto-correlation

ACF of g-functions for Potts model

Series g[, 1]

Series g[, K + 1]

・ロト ・回 ト ・ヨト ・ヨー うへの

Variance of MCMC

Assume $\mathbf{y}^{(s)} \approx p(\mathbf{y}|\mathbf{z})$ $\hat{\theta} = S^{-1} \sum_{s=1}^{S} g(\mathbf{y}^{(s)})$ $\operatorname{Var}[\hat{\theta}] = S^{-2} \left[\sum_{1}^{S} \operatorname{Var}[g(\mathbf{y}^{(s)})] + 2\sum_{1}^{S-1} \sum_{1}^{S-h} \operatorname{Cov}[g(\mathbf{y}^{(s)}), g(\mathbf{y}^{(s+h)})]\right]$ $= S^{-2}[SVar[g(\mathbf{y}^{(s)})] + 2\sum_{j=1}^{S-1} (S-h)Cov[g(\mathbf{y}^{(s)}), g(\mathbf{y}^{(s+h)})]$ $= S^{-1} \mathsf{Var}[g(\mathbf{y}^{(s)})][1 + 2\sum_{s=1}^{S-1} (1 - \frac{h}{5})\mathsf{Cor}[g(\mathbf{y}^{(s)}), g(\mathbf{y}^{(s+h)})]]$

Note: Need $\sum_{s=1}^{S-1} (1 - \frac{h}{S}) \operatorname{Cor}[g(\mathbf{y}^{(s)}), g(\mathbf{y}^{(s+h)})] \xrightarrow{S \to \infty} \operatorname{Const}$