Chapter 5 - Exploratory methods for spatio-temporal data

Odd Kolbjørnsen and Geir Storvik

March 20. 2017

Last time: Point processes

- Point process (random locations, random count, random marks)
- Density of a point process (given the count)
- Poisson process
- Intensity
- Homogeneous/ In homogeneous
- Other processes
- Random intensity (Log Gaussian Cox Process)
- Clustering (Parent-child,e.g. Neyman-Scott)
- Repulsion (Markov point process, Strauss - Hard core process)
- Inference
- Kernel estimate of intensity
- L-function (K-function)
- Edge effects

Spatial part extra by Petter Abrahamsen today

Conditional simulation of Gaussian random fields.

- When is this useful?
- Conditioning to linear events using Kriging.
- Conditioning to nonlinear observations.

Marked Point processes

- Extensions of the Boolean model from the book.
- Complex marks

Spatio-temporal data

Types

- Observation networks
- Remote-sensing platforms
- Data-assimilation algorithms (output from computer models)

Characteristics

- Large data set
- Often repeated measurements in same spatial locations at new times
- Dependencies across a large range of spatial and temporal scales

Key challenge: Extract information
Important tool: Exploratory analysis

Visualization

Plotting data/ presenting results is an important part of job as a statistician. It helps you understand the data, and is essential in communication with other research disciplines.

Script Visualization SST_VIS.R on webpage

- Spatial maps over time
- Animations
- Space (1-D)/Time-plot
- Time-series plots of particular features
- Empirical covariance/correlation functions

Empirical orthogonal function (EOF) motivation

Recall K-L expansion (Karhunen-Loève)

$$
\begin{gathered}
Z(\mathbf{s})=\sum_{i=1}^{\infty} z_{i} \psi_{i}(\mathbf{s}), z_{i} \sim \text { independent, } N\left(0, \lambda_{i}^{2}\right) \\
C_{Z}(\mathbf{s}, \mathbf{r})=\sum_{i=1}^{\infty} \lambda_{i}^{2} \psi_{i}(\mathbf{s}) \psi_{i}(\mathbf{r})
\end{gathered}
$$

Add time dependency to the coefficients:(notation different from book)
$Z(\mathbf{s}, t)=\sum_{i=1}^{\infty} z_{i}(t) \psi_{i}(\mathbf{s}), z_{i}(t) \sim$ independent in index i , dependent in time,

$$
z_{i}(t) \sim N\left(0, \lambda_{i}^{2}\right), \operatorname{Cov}\left(z_{i}\left(t_{1}\right), z_{j}\left(t_{2}\right)\right)=I(i=j) C_{i}\left(t_{1}, t_{2}\right)
$$

Discrete version

Eigen vector expansion of process.

$$
Z=\sum_{i=1}^{m} z_{i} \psi_{i}, z_{i} \sim \text { independent, } N\left(0, \lambda_{i}^{2}\right)
$$

Eigenvector decomposition of covariance matrix.

$$
\mathbf{C}_{z}=\boldsymbol{\Psi} \boldsymbol{\Lambda}^{2} \boldsymbol{\Psi}^{\top}, \quad \boldsymbol{\Lambda}^{2}=\operatorname{diag}\left\{\lambda_{i}^{2}\right\} \boldsymbol{\Psi}=\left[\boldsymbol{\psi}_{i}, \ldots, \boldsymbol{\psi}_{m}\right]
$$

Under suitable conditions on the time series we can estimate the time lag zero spatial correlation function from the repeated time samples of the process.

Eigen vector decomposition

- Linear combination $a_{t}=\psi^{\prime} \mathbf{Z}_{t}$ describing most of the variability
- Scaling problem: Restrict $\boldsymbol{\psi}$ to $\boldsymbol{\psi}^{\prime} \boldsymbol{\psi}=1$
- Note: $\operatorname{var}\left[a_{t}\right]=\psi^{\prime} \mathbf{C} \psi$
- Mathematical formulation: Find $\max \psi^{\prime} \mathbf{C} \psi$ subject to $\psi^{\prime} \boldsymbol{\psi}=1$
- Mathematical solution: $\boldsymbol{\psi}$ is the eigenvector of \mathbf{C} corresponding to the largest eigenvalue, $\boldsymbol{\psi}_{1}$.
- Continue: Find $\max \boldsymbol{\psi}^{\prime} \mathbf{C} \boldsymbol{\psi}$ subject to $\boldsymbol{\psi}^{\prime} \boldsymbol{\psi}=1$ and $\boldsymbol{\psi}^{\prime} \boldsymbol{\psi}_{1}=0$
- Solution: $\boldsymbol{\psi}$ is the eigenvector of \mathbf{C} corresponding to the second largest eigenvalue, $\boldsymbol{\psi}_{2}$.
- ...

Empirical orthogonal function (EOF) in practice

- Data $\mathbf{Z}_{t}=\left(Z_{t}\left(\mathbf{s}_{1}\right), \ldots, Z_{t}\left(\mathbf{s}_{m}\right)\right)^{\prime}$
- Assume $\operatorname{Cov}\left[Z_{t}\left(\mathbf{s}_{i}\right), Z_{t}\left(\mathbf{s}_{j}\right)\right]=C_{i j}$, i.e. independent of time.
- Estimate covariance function:

$$
\begin{gathered}
\widehat{\mathbf{C}}=\frac{1}{T} \sum_{t=1}^{T}\left(\mathbf{Z}_{t}-\overline{\mathbf{Z}}\right)\left(\mathbf{Z}_{t}-\overline{\mathbf{Z}}\right)^{\prime} \\
\overline{\mathbf{Z}}=\frac{1}{T} \sum_{t=1}^{T} \mathbf{Z}_{t}
\end{gathered}
$$

- Compute eigen vectors of empirical time lag zero correlation.
- Principal components / EOF

EOF when $m>T$

- $\widehat{\mathbf{C}}=\frac{1}{T} \sum_{t}\left(\mathbf{Z}_{t}-\overline{\mathbf{Z}}\right)\left(\mathbf{Z}_{t}-\overline{\mathbf{Z}}\right)^{\prime}$ only have $T-1$ non-zero eigenvalues
- Calculation of eigenvectors numerically unstable
- Linear algebra: W $m \times T$ matrix. Then
- $\mathbf{W} \mathbf{W}^{\prime}(\operatorname{dim} m \times m)$ and $\mathbf{W}^{\prime} \mathbf{W}(\operatorname{dim} T \times T)$ have the same eigenvalues
- If $\boldsymbol{\xi}_{i}$ is ith eigenvector of $\mathbf{W} \mathbf{W}^{\prime}$, then $\boldsymbol{\psi}_{i}=\mathbf{W} \boldsymbol{\xi}_{i} / \sqrt{\boldsymbol{\xi}_{i}^{\prime} \mathbf{W}^{\prime} \mathbf{W} \boldsymbol{\xi}_{i}}$ is the i th eigenvector of $\mathbf{W}^{\prime} \mathbf{W}$
- Define

$$
\begin{aligned}
\widetilde{\mathbf{Z}_{t}} & =\mathbf{Z}_{t}-\overline{\mathbf{Z}} \\
\widetilde{\mathbf{Z}} & =\left(\widetilde{\mathbf{Z}}_{1}, \ldots, \widetilde{\mathbf{Z}}_{T}\right), \quad m \times T \text { matrix } \\
\widehat{\mathbf{C}} & =\frac{1}{T} \widehat{\mathbf{Z}} \widehat{\mathbf{Z}}^{\prime}, \quad m \times m \text { matrix } \\
\mathbf{A} & =\frac{1}{T} \widehat{\mathbf{Z}}^{\prime} \widehat{\mathbf{Z}}^{\prime}, \quad T \times T \text { matrix }
\end{aligned}
$$

- Calculate eigenvalues/vectors from \mathbf{A}

EOF-Temporal formulation

- Data $\mathbf{Z}\left(\mathbf{s}_{i}\right)=\left(Z_{1}\left(\mathbf{s}_{i}\right), \ldots, Z_{T}\left(\mathbf{s}_{i}\right)\right)^{\prime}$
- Assume $\operatorname{Cov}\left[Z_{t}\left(\mathbf{s}_{i}\right), Z_{v}\left(\mathbf{s}_{i}\right)\right]=\Gamma_{t v}$, i.e. independent of space.
- Linear combination $a\left(\mathbf{s}_{i}\right)=\boldsymbol{\psi}^{\prime} \mathbf{Z}\left(\mathbf{s}_{i}\right)$ describing most of the variability?
- Scaling problem: Restrict $\boldsymbol{\psi}$ to $\boldsymbol{\psi}^{\prime} \boldsymbol{\psi}=1$
- Note: $\operatorname{var}\left[a\left(\mathbf{s}_{i}\right)\right]=\boldsymbol{\psi}^{\prime} \boldsymbol{\Gamma} \psi$
- Solution: $\boldsymbol{\psi}$ is the eigenvector of $\boldsymbol{\Gamma}$ corresponding to the second largest eigenvalue, $\boldsymbol{\psi}_{2}$.
- In practice:

$$
\begin{aligned}
\widehat{\mathbf{C}} & =m^{-1} \sum_{i}\left(\mathbf{Z}\left(\mathbf{s}_{i}\right)-\overline{\mathbf{Z}}\right)\left(\mathbf{Z}\left(\mathbf{s}_{i}\right)-\overline{\mathbf{Z}}\right)^{\prime}, \\
\overline{\mathbf{Z}} & =m^{-1} \sum_{i} \mathbf{Z}\left(\mathbf{s}_{i}\right)
\end{aligned}
$$

- EOF/Principal components in time

Testing for spatio-temporal structure

Testing for spatial structure: Moran's I (sec 4.2):

$$
I \equiv \frac{\mathbf{Z}^{\prime} \mathbf{W} \mathbf{Z}}{\mathbf{Z}^{\prime} \mathbf{Z}}=\frac{\sum_{i j} w_{i j} Z\left(\mathbf{s}_{i}\right) Z\left(\mathbf{s}_{j}\right)}{\sum_{i} Z\left(\mathbf{s}_{i}\right)^{2}}
$$

Space-Time Index (STI):

$$
S T I \equiv \frac{\sum_{t=2}^{T} \sum_{i=1}^{m} \sum_{j=1}^{m} w_{i j, t-1} Z\left(\mathbf{s}_{i} ; t\right) Z\left(\mathbf{s}_{j} ; t-1\right)}{m(T-1)\left(\sum_{t=2}^{T} \sum_{i=1}^{m} \sum_{j=1}^{m} w_{i j, t-1}\right)\left(\sum_{t=1}^{T} \sum_{i=1}^{m} Z\left(\mathbf{s}_{i} ; t\right)^{2}\right)}
$$

Testing by permutation (page 303):

- Randomly permute the values of $\left\{Z\left(\mathbf{s}_{i} ; t\right)\right\}$ and calculate STI
- Compare STI from original data with simulated values

STI for SST-data

$$
w_{i j}= \begin{cases}1 / d_{i j} & d_{i j} \leq 4 \\ 0 & d_{i j}>4\end{cases}
$$

Histogram of SST.sim

