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Last time-: Chapter 6:Focus process models

Spatio-temporal covariance functions (sec 6.1, 6.2)

Stationarity: spatio-temporal, Spatial, temporal

Spatio-temporal - Kriging

Seperable correlation function

Additive correlation functions = independent Additive models

Multiplicative correlation functions
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Last time-: Chapter 6:Focus process models

Stochastic differential/difference equations (sec 6.3)

Integro-difference equation models

Using (partial) differential equations (what is the correlation
structure?)

Diffusion-injection models (interpretation of terms)

Blurring space: Hard in space-time Simple in Fourier domain

The Matern correlation functions is given by a specific SPDE.

Discretization
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Last time-: Chapter 6:Focus process models

Time series of spatial processes (sec 6.4)

AR(q) process in time

Stationary transitions

Stationary distributions

Discretization in space as well gives Vector-AR
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Today

Hierarchical Dynamical Spatio-Temporal Models

Data in Process models

Observation types

Linear observations

Kalman filter

Kalman smoother

nonlinear/non Gaussian

Bayesian approach: Also include model for parameters
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Data models

[Z|Y;θD ] =?

Simplifying assumptions:

[Z|Y;θD ] =
∏T

t=1[Zt |Y;θD ] (same spatial locations for all times)

[Zt |Yt ;θD ] =
∏mt

i=1[Z (si , t)|Y;θD ] (one time step alone )

[Z (s, t)|Yt ;θD ] = [Z (s; r)|{Y (x; r) : x ∈ Ns , r ∈ Nt},θD ]
Here

Nx : Spatial neighborhood influencing observation Z(x; r)
Nr : Temporal neighborhood influencing observation Z(x; r)
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Linear mappings with equal dimensions

Z (s; t) =Y (s; t) + ε(s; t), ε(s; t)
iid∼ N(0, σ2

ε)

Ns ={s},Nt = {t}
Vector/Matrix formulation

Zt = Yt + εt , εt
iid∼ N(0, σ2

εI)

Only one parameter σ2
ε

Reasonable model in many cases

Extension

Z (s; t) =a + hY (s; t) + ε(s; t)

Zt =a1 + diag(h)Yt + εt

Further extensions

Zt =at + diag(ht)Yt + εt

Zt =at + HtYt + εt , εt
iid∼ N(0,Rt)

Ns = {x;Ht;s,x 6= 0} Note: Can depend on t
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Linear mappings with unequal dimensions

General case of linear observations:

Zt =at + HtYt + εt , εt
iid∼ N(0,Rt)

Here Ht is an mt × n matrix

Example: Ht is then an incidence matrix

Observed Zt(st,1), ...,Zt(st,mt ) at time t

ht;i,j = I (si = st,j)
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Multiple sources of data

Different observations Z
(1)
t and Z

(2)
t .

Common assumption is conditional independence:

[Z
(1)
t ,Z

(2)
t |Yt ;θD ] = [Z

(1)
t |Yt ;θ

(1)
D ]× [Z

(2)
t |Yt ;θ

(2)
D ]

Interpretation: The observation process leading to Z
(1)
t and Z

(2)
t are

independent. The measurements are related to the same feature
Note:

You will typically see correlation between Z
(1)
t and Z

(2)
t .

Due to common dependence of Yt .

Examples

Data from different satellites

Satellite data combined with ground measurements

Satellite data combined with output from numerical models
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Change of support

Consider one dimension, s = i .
Assume data

Z
(1)
t,i =Yt(i) + ε

(1)
t (i), i = 1, ..., n

Z
(2)
t,i =

1

2
[Yt(i) + Yt(i + 1)] + ε

(2)
t (i), i = 1, 3, 5, .., n

Gives

Ht =



1 0 0 0 0 · · · 0 0 0
0 1 0 0 0 · · · 0 0 0
1
2

1
2

0 0 0 · · · 0 0 0
0 0 1 0 0 · · · 0 0 0
0 0 0 1 0 · · · 0 0 0
0 0 1

2
1
2

0 · · · 0 0 0
...
0 0 0 0 0 · · · 0 1 0
0 0 0 0 0 · · · 0 0 1
0 0 0 0 0 · · · 0 1

2
1
2


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Two types of area support for data (Change of support)

Continuous space

Z
(1)
t (sj) =Y (sj) + ε

(1)
t (sj)

Z
(2)
t (sk) =

1

|R|

∫
v∈R

Y (sk + v)dr + ε
(2)
t (sk)

where {ε(1))(sj)} and {ε(2)(sk)} are independent (i.e. conditional independence)
We have for data type 1 (as we know from earlier):

cov[Yt(s),Yr (s′)] =CY (s− s′; t − r)

cov[Yt(s),Z (1)
r (s′)] =CY (s− s′; t − r)

cov[Z
(1)
t (s),Z (1)

r (s′)] =CY (s− s′; t − r) + σ2

ε
(1)
t
I (s = s′, t = r)
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Correlation to data with change of support

We have for data type 2 (as we know from earlier):

cov[Yt(s),Z (2)
r (s′)] =

1

|R|

∫
v′∈R

cov[Yt(s),Yr (s′ + v′)]dv′

=
1

|R|

∫
v′∈R

CY (s− s′ − v′; t − r)dv′

=

cov[Z
(2)
t (s),Z (2)

r (s′)] =
1

|R|2

∫
v∈R

∫
v′∈R

cov[Yt(s + v),Yr (s′ + v′)]dv

+ σ2

ε
(2)
t

I (s = s′, t = r)

=
1

|R|2

∫
v∈R

∫
v′∈R

CY (s− s′ + v − v′; t − r)dvdv′

+ σ2

ε
(2)
t

I (s = s′, t = r)
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Change of support cont.

The three by three block matrix of correlations needed for Kriging consist
of:

cov[Yt(s),Z
(2)
r (s′)], cov[Yt(s),Z

(1)
r (s′)], cov[Yt(s),Z

(2)
r (s′)],

cov[Z
(2)
t (s),Z

(2)
r (s′)], cov[Z

(1)
t (s),Z

(1)
r (s′)], cov[Z

(1)
t (s),Z

(2)
r (s′)]

The last one is the only ”new”.

cov[Z
(1)
t (s),Z (2)

r (s′)] =
1

|R|

∫
v′∈R

cov[Yt(s),Yr (s′ + v′)]dv′

=
1

|R|

∫
v′∈R

CY (s− s′ − v′; t − r)dv′
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Kalman filtering, Note: slightly confusing notation

State space model

Yt =MtYt−1 + δt , δt ∼ N(0,Qt) NB: Q is a covariance

Zt =HtYt + εt , εt ∼ N(0,Rt)

Notation:

Yt|s =E [Yt |Z1:s ] NB: Yt|s is an expectation

Pt|s =E [(Yt − Yt|s)(Yt − Yt|s)′|Z1:s ]

Gaussian process model and linear Gaussian observations:
Forecast distribution:

p(Yt |Z1:(t−1)) = N(Yt|t−1,Pt|t−1)

Filtering distribution:

p(Yt |Z1:t) = N(Yt|t ,Pt|t)
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Kalman filtering sec 8.2. Linear Gaussin models

Kalman filter condition to data as they come in, and assimilate them in
the distribution. This is done in a sequence of forecast- filter operations.

Given filter distribution at time (t-1) forecast time t using the state space
model, get the filter distribution by conditioning to data collected at time
t. (Assimilate the data in the distribution) .

Forecast:

Pt|t−1 =MtPt−1|t−1M′t + Qt Yt|t−1 = MtYt−1|t−1

Filter:

St =H′tPt|t−1Ht + Rt Kt = Pt|t−1H′tS
−1
t (Kalman gain)

Pt|t =(I−KtHt)Pt|t−1 Yt|t = Yt|t−1 + Kt(Zt −HtYt|t−1)

STK4150 - Intro 16



Dimension reduction

If computations are too heavy. Try dimension reduction:

Yt =Φαt + vt , vt ∼ N(0,Bt)

αt =Mα,tαt−1 + γt γt ∼ N(0,Qt)

Zt =HtYt + εt , εt ∼ N(0,Rt)

where dim(αt)� dim(Yt).
Can be rewritten as

αt =Mα,tαt−1 + γt

Zt =HtΦtαt + Htvt + εt

=H̃tαt + ε̃t , ε̃t ∼ N(0,HtBtH
′
t + Rt)

Kalmanfiltering wrt αt instead
Choise of Φ:

Empirical orthogonal functions

Linear/polynomial functions of spatial coordinates
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Kalman filtering vs smoothing

Kalman filter updates the latest time step with all data up until this time,
i.e. p(YT |Z1:T ) Kalman filter does not compute p(Yt |Z1:T ), for t < T ,
i.e. the distribution of an earlier time given all data in its past present
and future. This can be done with the Kalman Smoother.

p(Yt |Z1:T ) = N(Yt|T ,Pt|T )

Recursive backward algorithm (given forward filter and forecast):

Yt|T =Yt|t + Jt(Yt+1|T − Yt+1|t)

Pt|T =Pt|t + Jt(Pt+1|T − Pt+1|t)J′t

Jt =Pt|tM
′
t+1P−1t+1|t
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Nonlinear mappings/non-Gaussian data

In many problems (non linear observations)

Z(s, i ; t) = hi,t(Yt) + ε(si ; t)

hi,t(Yt) known form but nonlinear (may depend on unknown
parameter).

Alternatively (non Gaussian likelihood)

[Zt |Yt ] = Poisson(exp(Xtβ + Yt + vt))

Kalman filtering not possible to apply. Alternatives:

Linear approximations, (Extended) Kalman filter

Monte Carlo approximations, MCMC

Ensemble Kalman filter

Laplace approximations, INLA
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