Chapter 7 - Hierarchical dynamical spatio-temporal models

Odd Kolbjørnsen \& Geir Storvik

April 3. 2017

Last time-: Chapter 6:Focus process models

Spatio-temporal covariance functions (sec 6.1, 6.2)

- Stationarity: spatio-temporal, Spatial, temporal
- Spatio-temporal - Kriging
- Seperable correlation function
- Additive correlation functions = independent Additive models
- Multiplicative correlation functions

Last time-: Chapter 6:Focus process models

Stochastic differential/difference equations (sec 6.3)

- Integro-difference equation models
- Using (partial) differential equations (what is the correlation structure?)
- Diffusion-injection models (interpretation of terms)
- Blurring space: Hard in space-time Simple in Fourier domain
- The Matern correlation functions is given by a specific SPDE.
- Discretization

Last time-: Chapter 6:Focus process models

Time series of spatial processes (sec 6.4)

- $\operatorname{AR}(q)$ process in time
- Stationary transitions
- Stationary distributions
- Discretization in space as well gives Vector-AR

Today

Hierarchical Dynamical Spatio-Temporal Models

- Data in Process models
- Observation types
- Linear observations
- Kalman filter
- Kalman smoother
- nonlinear/non Gaussian

Bayesian approach: Also include model for parameters

Data models

$\left[\mathbf{Z} \mid \mathbf{Y} ; \boldsymbol{\theta}_{D}\right]=$?
Simplifying assumptions:

- $\left[\mathbf{Z} \mid \mathbf{Y} ; \boldsymbol{\theta}_{D}\right]=\prod_{t=1}^{T}\left[\mathbf{Z}_{t} \mid \mathbf{Y} ; \boldsymbol{\theta}_{D}\right]$ (same spatial locations for all times)
- $\left[\mathbf{Z}_{t} \mid \mathbf{Y}_{t} ; \boldsymbol{\theta}_{D}\right]=\prod_{i=1}^{m_{t}}\left[Z\left(\mathbf{s}_{i}, t\right) \mid \mathbf{Y} ; \boldsymbol{\theta}_{D}\right]$ (one time step alone)
- $\left[Z(\mathbf{s}, t) \mid \mathbf{Y}_{t} ; \boldsymbol{\theta}_{D}\right]=\left[Z(\mathbf{s} ; r) \mid\left\{Y(\mathbf{x} ; r): \mathbf{x} \in \mathcal{N}_{s}, r \in \mathcal{N}_{t}\right\}, \boldsymbol{\theta}_{D}\right]$ Here
- \mathcal{N}_{x} : Spatial neighborhood influencing observation $Z(\mathbf{x} ; r)$
- \mathcal{N}_{r} : Temporal neighborhood influencing observation $Z(\mathbf{x} ; r)$

Linear mappings with equal dimensions

$$
\begin{aligned}
Z(\mathbf{s} ; t) & =Y(\mathbf{s} ; t)+\varepsilon(\mathbf{s} ; t), \quad \varepsilon(\mathbf{s} ; t) \stackrel{\text { iid }}{\sim} N\left(0, \sigma_{\varepsilon}^{2}\right) \\
\mathcal{N}_{s} & =\{s\}, \mathcal{N}_{t}=\{t\}
\end{aligned}
$$

Vector/Matrix formulation

$$
\mathbf{Z}_{t}=\mathbf{Y}_{t}+\varepsilon_{t}, \quad \varepsilon_{t} \stackrel{i i d}{\sim} N\left(0, \sigma_{\varepsilon}^{2} \mathbf{I}\right)
$$

- Only one parameter σ_{ε}^{2}
- Reasonable model in many cases

Linear mappings with equal dimensions

$$
\begin{aligned}
Z(\mathbf{s} ; t) & =Y(\mathbf{s} ; t)+\varepsilon(\mathbf{s} ; t), \quad \varepsilon(\mathbf{s} ; t) \stackrel{i i d}{\sim} N\left(0, \sigma_{\varepsilon}^{2}\right) \\
\mathcal{N}_{s} & =\{s\}, \mathcal{N}_{t}=\{t\}
\end{aligned}
$$

Vector/Matrix formulation

$$
\mathbf{Z}_{t}=\mathbf{Y}_{t}+\varepsilon_{t}, \quad \varepsilon_{t} \stackrel{i i d}{\sim} N\left(0, \sigma_{\varepsilon}^{2} \mathbf{I}\right)
$$

- Only one parameter σ_{ε}^{2}
- Reasonable model in many cases

Extension

$$
\begin{aligned}
Z(\mathbf{s} ; t) & =a+h Y(\mathbf{s} ; t)+\varepsilon(\mathbf{s} ; t) \\
\mathbf{Z}_{t} & =a \mathbf{1}+\operatorname{diag}(\mathbf{h}) \mathbf{Y}_{t}+\varepsilon_{t}
\end{aligned}
$$

Further extensions

$$
\begin{aligned}
\mathbf{Z}_{t}= & \mathbf{a}_{t}+\operatorname{diag}\left(\mathbf{h}_{t}\right) \mathbf{Y}_{t}+\varepsilon_{t} \\
\mathbf{Z}_{t}= & \mathbf{a}_{t}+\mathbf{H}_{t} \mathbf{Y}_{t}+\varepsilon_{t} \\
& \mathcal{N}_{s}=\left\{\mathbf{x} ; H_{t ; \mathbf{s}, \mathbf{x}} \neq 0\right\}
\end{aligned}
$$

$$
\varepsilon_{t} \stackrel{i i d}{\sim} N\left(0, \mathbf{R}_{t}\right)
$$

Note: Can depend on t

Linear mappings with unequal dimensions

General case of linear observations:

$$
\mathbf{Z}_{t}=\mathbf{a}_{t}+\mathbf{H}_{t} \mathbf{Y}_{t}+\varepsilon_{t}, \quad \quad \varepsilon_{t} \stackrel{i i d}{\sim} N\left(0, \mathbf{R}_{t}\right)
$$

Here \mathbf{H}_{t} is an $m_{t} \times n$ matrix

Example: \mathbf{H}_{t} is then an incidence matrix

- Observed $Z_{t}\left(\mathbf{s}_{t, 1}\right), \ldots, Z_{t}\left(\mathbf{s}_{t, m_{t}}\right)$ at time t
- $h_{t ; i, j}=I\left(\mathbf{s}_{i}=\mathbf{s}_{t, j}\right)$

Multiple sources of data

Different observations $\mathbf{Z}_{t}^{(1)}$ and $\mathbf{Z}_{t}^{(2)}$.
Common assumption is conditional independence:

$$
\left[\mathbf{Z}_{t}^{(1)}, \mathbf{Z}_{t}^{(2)} \mid \mathbf{Y}_{t} ; \boldsymbol{\theta}_{D}\right]=\left[\mathbf{Z}_{t}^{(1)} \mid \mathbf{Y}_{t} ; \boldsymbol{\theta}_{D}^{(1)}\right] \times\left[\mathbf{Z}_{t}^{(2)} \mid \mathbf{Y}_{t} ; \boldsymbol{\theta}_{D}^{(2)}\right]
$$

Interpretation: The observation process leading to $\mathbf{Z}_{t}^{(1)}$ and $\mathbf{Z}_{t}^{(2)}$ are independent. The measurements are related to the same feature Note:

- You will typically see correlation between $\mathbf{Z}_{t}^{(1)}$ and $\mathbf{Z}_{t}^{(2)}$.
- Due to common dependence of \mathbf{Y}_{t}.

Examples

- Data from different satellites
- Satellite data combined with ground measurements
- Satellite data combined with output from numerical models

Change of support

Consider one dimension, $\mathbf{s}=i$.
Assume data

$$
\begin{array}{ll}
Z_{t, i}^{(1)}=Y_{t}(i)+\varepsilon_{t}^{(1)}(i), & i=1, \ldots, n \\
Z_{t, i}^{(2)}=\frac{1}{2}\left[Y_{t}(i)+Y_{t}(i+1)\right]+\varepsilon_{t}^{(2)}(i), & i=1,3,5, . ., n
\end{array}
$$

Gives

$$
\mathbf{H}_{t}=\left(\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & \cdots & 0 & 0 & 0 \\
\vdots & & & & & & & & \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

Two types of area support for data (Change of support)

Continuous space

$$
\begin{aligned}
& Z_{t}^{(1)}\left(\mathbf{s}_{j}\right)=Y\left(\mathbf{s}_{j}\right)+\varepsilon_{t}^{(1)}\left(\mathbf{s}_{j}\right) \\
& Z_{t}^{(2)}\left(\mathbf{s}_{k}\right)=\frac{1}{|R|} \int_{\mathbf{v} \in R} Y\left(\mathbf{s}_{k}+\mathbf{v}\right) d \mathbf{r}+\varepsilon_{t}^{(2)}\left(\mathbf{s}_{k}\right)
\end{aligned}
$$

where $\left\{\varepsilon^{(1))}\left(\mathbf{s}_{j}\right)\right\}$ and $\left\{\varepsilon^{(2)}\left(\mathbf{s}_{k}\right)\right\}$ are independent (i.e. conditional independence) We have for data type 1 (as we know from earlier):

$$
\begin{aligned}
\operatorname{cov}\left[Y_{t}(\mathbf{s}), Y_{r}\left(\mathbf{s}^{\prime}\right)\right] & =C_{Y}\left(\mathbf{s}-\mathbf{s}^{\prime} ; t-r\right) \\
\operatorname{cov}\left[Y_{t}(\mathbf{s}), Z_{r}^{(1)}\left(\mathbf{s}^{\prime}\right)\right] & =C_{Y}\left(\mathbf{s}-\mathbf{s}^{\prime} ; t-r\right) \\
\operatorname{cov}\left[Z_{t}^{(1)}(\mathbf{s}), Z_{r}^{(1)}\left(\mathbf{s}^{\prime}\right)\right] & =C_{Y}\left(\mathbf{s}-\mathbf{s}^{\prime} ; t-r\right)+\sigma_{\varepsilon_{t}^{(1)}}^{2} I\left(\mathbf{s}=\mathbf{s}^{\prime}, t=r\right)
\end{aligned}
$$

Correlation to data with change of support

We have for data type 2 (as we know from earlier):

$$
\begin{aligned}
\operatorname{cov}\left[Y_{t}(\mathbf{s}), Z_{r}^{(2)}\left(\mathbf{s}^{\prime}\right)\right]= & \frac{1}{|R|} \int_{\mathbf{v}^{\prime} \in R} \operatorname{cov}\left[Y_{t}(\mathbf{s}), Y_{r}\left(\mathbf{s}^{\prime}+\mathbf{v}^{\prime}\right)\right] d \mathbf{v}^{\prime} \\
= & \frac{1}{|R|} \int_{\mathbf{v}^{\prime} \in R} C_{Y}\left(\mathbf{s}-\mathbf{s}^{\prime}-\mathbf{v}^{\prime} ; t-r\right) d \mathbf{v}^{\prime} \\
= & \\
\operatorname{cov}\left[Z_{t}^{(2)}(\mathbf{s}), Z_{r}^{(2)}\left(\mathbf{s}^{\prime}\right)\right]= & \frac{1}{|R|^{2}} \int_{\mathbf{v} \in R} \int_{\mathbf{v}^{\prime} \in R} \operatorname{cov}\left[Y_{t}(\mathbf{s}+\mathbf{v}), Y_{r}\left(\mathbf{s}^{\prime}+\mathbf{v}^{\prime}\right)\right] d \mathbf{v} \\
& +\sigma_{\varepsilon_{t}^{(2)}}^{2} I\left(\mathbf{s}=\mathbf{s}^{\prime}, t=r\right) \\
= & \frac{1}{|R|^{2}} \int_{\mathbf{v} \in R} \int_{\mathbf{v}^{\prime} \in R} C_{Y}\left(\mathbf{s}-\mathbf{s}^{\prime}+\mathbf{v}-\mathbf{v}^{\prime} ; t-r\right) d \mathbf{v} d \mathbf{v}^{\prime} \\
& +\sigma_{\varepsilon_{t}^{(2)}}^{2} I\left(\mathbf{s}=\mathbf{s}^{\prime}, t=r\right)
\end{aligned}
$$

Change of support cont.

The three by three block matrix of correlations needed for Kriging consist of:
$\operatorname{cov}\left[Y_{t}(\mathbf{s}), Z_{r}^{(2)}\left(\mathbf{s}^{\prime}\right)\right], \operatorname{cov}\left[Y_{t}(\mathbf{s}), Z_{r}^{(1)}\left(\mathbf{s}^{\prime}\right)\right], \operatorname{cov}\left[Y_{t}(\mathbf{s}), Z_{r}^{(2)}\left(\mathbf{s}^{\prime}\right)\right]$,
$\operatorname{cov}\left[Z_{t}^{(2)}(\mathbf{s}), Z_{r}^{(2)}\left(\mathbf{s}^{\prime}\right)\right], \operatorname{cov}\left[Z_{t}^{(1)}(\mathbf{s}), Z_{r}^{(1)}\left(\mathbf{s}^{\prime}\right)\right], \operatorname{cov}\left[Z_{t}^{(1)}(\mathbf{s}), Z_{r}^{(2)}\left(\mathbf{s}^{\prime}\right)\right]$

The last one is the only "new".

$$
\begin{aligned}
\operatorname{cov}\left[Z_{t}^{(1)}(\mathbf{s}), Z_{r}^{(2)}\left(\mathbf{s}^{\prime}\right)\right] & =\frac{1}{|R|} \int_{\mathbf{v}^{\prime} \in R} \operatorname{cov}\left[Y_{t}(\mathbf{s}), Y_{r}\left(\mathbf{s}^{\prime}+\mathbf{v}^{\prime}\right)\right] d \mathbf{v}^{\prime} \\
& =\frac{1}{|R|} \int_{\mathbf{v}^{\prime} \in R} C_{Y}\left(\mathbf{s}-\mathbf{s}^{\prime}-\mathbf{v}^{\prime} ; t-r\right) d \mathbf{v}^{\prime}
\end{aligned}
$$

Kalman filtering, Note: slightly confusing notation

State space model

$$
\begin{array}{ll}
\mathbf{Y}_{t}=\mathbf{M}_{t} \mathbf{Y}_{t-1}+\boldsymbol{\delta}_{t}, & \\
\boldsymbol{\delta}_{t} \sim N\left(\mathbf{0}, \mathbf{Q}_{t}\right) \quad \text { NB: } \mathrm{Q} \text { is a covariance } \\
\mathbf{Z}_{t}=\mathbf{H}_{t} \mathbf{Y}_{t}+\varepsilon_{t}, & \\
\varepsilon_{t} \sim N\left(\mathbf{0}, \mathbf{R}_{t}\right)
\end{array}
$$

Notation:

$$
\begin{aligned}
& \mathbf{Y}_{t \mid s}=E\left[\mathbf{Y}_{t} \mid \mathbf{Z}_{1: s}\right] \quad \text { NB: } Y_{t \mid s} \text { is an expectation } \\
& \mathbf{P}_{t \mid s}=E\left[\left(\mathbf{Y}_{t}-\mathbf{Y}_{t \mid s}\right)\left(\mathbf{Y}_{t}-\mathbf{Y}_{t \mid s}\right)^{\prime} \mid \mathbf{Z}_{1: s}\right]
\end{aligned}
$$

Gaussian process model and linear Gaussian observations:
Forecast distribution:

$$
p\left(\mathbf{Y}_{t} \mid \mathbf{Z}_{1:(t-1)}\right)=N\left(\mathbf{Y}_{t \mid t-1}, \mathbf{P}_{t \mid t-1}\right)
$$

Filtering distribution:

$$
p\left(\mathbf{Y}_{t} \mid \mathbf{Z}_{1: t}\right)=N\left(\mathbf{Y}_{t \mid t}, \mathbf{P}_{t \mid t}\right)
$$

Kalman filtering sec 8.2. Linear Gaussin models

Kalman filter condition to data as they come in, and assimilate them in the distribution. This is done in a sequence of forecast- filter operations.

Given filter distribution at time ($\mathrm{t}-1$) forecast time t using the state space model, get the filter distribution by conditioning to data collected at time t . (Assimilate the data in the distribution) .

Forecast:

$$
\mathbf{P}_{t \mid t-1}=\mathbf{M}_{t} \mathbf{P}_{t-1 \mid t-1} \mathbf{M}_{t}^{\prime}+\mathbf{Q}_{t} \quad \mathbf{Y}_{t \mid t-1}=\mathbf{M}_{t} \mathbf{Y}_{t-1 \mid t-1}
$$

Filter:

$$
\begin{aligned}
\mathbf{S}_{t} & =\mathbf{H}_{t}^{\prime} \mathbf{P}_{t \mid t-1} \mathbf{H}_{t}+\mathbf{R}_{t} & & \mathbf{K}_{t}=\mathbf{P}_{t \mid t-1} \mathbf{H}_{t}^{\prime} \mathbf{S}_{t}^{-1} \quad(\text { Kalman gain }) \\
\mathbf{P}_{t \mid t} & =\left(\mathbf{I}-\mathbf{K}_{t} \mathbf{H}_{t}\right) \mathbf{P}_{t \mid t-1} & & \mathbf{Y}_{t \mid t}=\mathbf{Y}_{t \mid t-1}+\mathbf{K}_{t}\left(\mathbf{Z}_{t}-\mathbf{H}_{t} \mathbf{Y}_{t \mid t-1}\right)
\end{aligned}
$$

Dimension reduction

If computations are too heavy. Try dimension reduction:

$$
\begin{aligned}
\mathbf{Y}_{t} & =\boldsymbol{\Phi} \boldsymbol{\alpha}_{t}+\mathbf{v}_{t}, \\
\boldsymbol{\alpha}_{t} & =\mathbf{M}_{\alpha, t} \boldsymbol{\alpha}_{t-1}+\gamma_{t} \\
\mathbf{Z}_{t} & =\mathbf{H}_{t} \mathbf{Y}_{t}+\varepsilon_{t}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{v}_{t} & \sim N\left(\mathbf{0}, \mathbf{B}_{t}\right) \\
\gamma_{t} & \sim N\left(\mathbf{0}, \mathbf{Q}_{t}\right) \\
\varepsilon_{t} & \sim N\left(\mathbf{0}, \mathbf{R}_{t}\right)
\end{aligned}
$$

where $\operatorname{dim}\left(\boldsymbol{\alpha}_{t}\right) \ll \operatorname{dim}\left(\mathbf{Y}_{t}\right)$.
Can be rewritten as

$$
\begin{aligned}
\boldsymbol{\alpha}_{t} & =\mathbf{M}_{\alpha, t} \boldsymbol{\alpha}_{t-1}+\gamma_{t} \\
\mathbf{Z}_{t} & =\mathbf{H}_{t} \boldsymbol{\Phi}_{t} \boldsymbol{\alpha}_{t}+\mathbf{H}_{t} \mathbf{v}_{t}+\varepsilon_{t} \\
& =\widetilde{\mathbf{H}}_{t} \boldsymbol{\alpha}_{t}+\widetilde{\varepsilon}_{t}, \quad \widetilde{\varepsilon}_{t} \sim N\left(\mathbf{0}, \mathbf{H}_{t} \mathbf{B}_{t} \mathbf{H}_{t}^{\prime}+\mathbf{R}_{t}\right)
\end{aligned}
$$

Kalmanfiltering wrt $\boldsymbol{\alpha}_{t}$ instead Choise of $\boldsymbol{\Phi}$:

- Empirical orthogonal functions
- Linear/polynomial functions of spatial coordinates

Kalman filtering vs smoothing

Kalman filter updates the latest time step with all data up until this time, i.e. $p\left(\mathbf{Y}_{T} \mid \mathbf{Z}_{1: T}\right)$ Kalman filter does not compute $p\left(\mathbf{Y}_{t} \mid \mathbf{Z}_{1: T}\right)$, for $t<T$, i.e. the distribution of an earlier time given all data in its past present and future. This can be done with the Kalman Smoother.

$$
p\left(\mathbf{Y}_{t} \mid \mathbf{Z}_{1: T}\right)=N\left(\mathbf{Y}_{t \mid T}, \mathbf{P}_{t \mid T}\right)
$$

Recursive backward algorithm (given forward filter and forecast):

$$
\begin{aligned}
\mathbf{Y}_{t \mid T} & =\mathbf{Y}_{t \mid t}+\mathbf{J}_{t}\left(\mathbf{Y}_{t+1 \mid T}-\mathbf{Y}_{t+1 \mid t}\right) \\
\mathbf{P}_{t \mid T} & =\mathbf{P}_{t \mid t}+\mathbf{J}_{t}\left(\mathbf{P}_{t+1 \mid T}-\mathbf{P}_{t+1 \mid t}\right) \mathbf{J}_{t}^{\prime} \\
\mathbf{J}_{t} & =\mathbf{P}_{t \mid t} \mathbf{M}_{t+1}^{\prime} \mathbf{P}_{t+1 \mid t}^{-1}
\end{aligned}
$$

Nonlinear mappings/non-Gaussian data

In many problems (non linear observations)

$$
\mathbf{Z}(\mathbf{s}, i ; t)=h_{i, t}\left(\mathbf{Y}_{t}\right)+\varepsilon\left(\mathbf{s}_{i} ; t\right)
$$

- $h_{i, t}\left(\mathbf{Y}_{t}\right)$ known form but nonlinear (may depend on unknown parameter).

Alternatively (non Gaussian likelihood)

- $\left[\mathbf{Z}_{t} \mid \mathbf{Y}_{t}\right]=\operatorname{Poisson}\left(\exp \left(\mathbf{X}_{t} \boldsymbol{\beta}+\mathbf{Y}_{t}+\mathbf{v}_{t}\right)\right)$

Kalman filtering not possible to apply. Alternatives:

- Linear approximations, (Extended) Kalman filter
- Monte Carlo approximations, MCMC
- Ensemble Kalman filter
- Laplace approximations, INLA

