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Last time-: Chapter 6:Focus process models

Spatio-temporal covariance functions (sec 6.1, 6.2)
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e Stationarity: spatio-temporal, Spatial, temporal

@ Spatio-temporal - Kriging

@ Seperable correlation function

e Additive correlation functions = independent Additive models
°

Multiplicative correlation functions



Last time-: Chapter 6:Focus process models

Stochastic differential /difference equations (sec 6.3)
@ Integro-difference equation models

Using (partial) differential equations (what is the correlation
structure?)

Diffusion-injection models (interpretation of terms)
Blurring space: Hard in space-time Simple in Fourier domain

The Matern correlation functions is given by a specific SPDE.

e 6 6 o

Discretization
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Last time-: Chapter 6:Focus process models

Time series of spatial processes (sec 6.4)

AR(q) process in time
@ Stationary transitions
@ Stationary distributions
(]

Discretization in space as well gives Vector-AR
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Hierarchical Dynamical Spatio-Temporal Models

Bayesian approach: Also include model for parameters
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Data in Process models
Observation types
Linear observations
Kalman filter

Kalman smoother

nonlinear/non Gaussian



Data models

[Z|Y;0p] =7

Simplifying assumptions:
e [Z]Y;60p] = Hthl[Zt|Y; 0p] (same spatial locations for all times)
o [Z,|Y:; 0p] = [17,[Z(si, t)|Y; Op] (one time step alone )

° I[_|Z(s, Ye;0p] =[Z(s;n)|{Y(x;r) : x € N5, r € Ni},0p]

o N: Spatial neighborhood influencing observation Z(x; r)
o N;: Temporal neighborhood influencing observation Z(x; r)
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Linear mappings with equal dimensions

Z(sit) =Y(sit) +e(s;t), e(s;t) X N(O,0?)

Ns ={s}, Ne = {t}
Vector /Matrix formulation
Zt:Yt+€t7 EtLI\(jN(O,O'gI)
2

@ Only one parameter o7
@ Reasonable model in many cases
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Linear mappings with equal dimensions

Z(sit) =Y(sit) +e(s;t), e(s;t) X N(O,0?)

Ns ={s}, Ne = {t}
Vector /Matrix formulation
Zt:Yt+€t7 EtLI\(jN(O,O'gI)
@ Only one parameter o2
@ Reasonable model in many cases
Extension

Z(s;t) =a+ hY(s;t) +e(s; t)
Z, =al + diag(h)Y; + &;
Further extensions

Z, =a; +diag(h;)Y; + e

Z; =a; + H.Y; + &, €t %N(OaRt)
N = {x; Hps x # 0} Note: Can depend on t
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Linear mappings with unequal dimensions

General case of linear observations:
iid
Z, =a; +H.Y; + ¢, €t ~ N(O’ Rt)
Here H; is an m; X n matrix
Example: H; is then an incidence matrix

@ Observed Z;(s¢1), ..., Ze(St,m,) at time t
] ht;,',j = /(S,’ = Styj)
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Multiple sources of data

Different observations Zgl) and 252).
Common assumption is conditional independence:

[2",221Y:;60] = [28V|Y ;6] x (221 65)]

Interpretation: The observation process leading to Z(tl) and Z(tz) are
independent. The measurements are related to the same feature
Note:

@ You will typically see correlation between 251) and 252).
@ Due to common dependence of Y;.
Examples
o Data from different satellites
o Satellite data combined with ground measurements

@ Satellite data combined with output from numerical models
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Change of support

Consider one dimension, s = i.
Assume data

Z8) =vi(i) +00), i=1,..n
1., . . ,

Z8) =3[Vl + Vil + D] + 200, i=135 .n

Gives

1 00 00 00 0
01 000 00 0
11000 0 0 0
001 00 00 0
00010 00 0

Hi=10 o 1 L o 0 0 0
00000 01 0
000 0O 00 1
000 00 o L 1
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Two types of area support for data (Change of support)

Continuous space
Z(s) =Y (s1) + ()
1
ZP(si) == / Y (s + v)dr + 2 (si)
‘R| VER
where {W)(s;)} and {€P(sx)} are independent (i.e. conditional independence)
We have for data type 1 (as we know from earlier):

cov[Yi(s), V(s )] =Cy(s —s';t —r)
cov[Yi(s), ZM(s')] =Cy(s —s’;t — r)
cov[ZM(s), ZW(s)] =Cy(s— st —r) + (J‘i(l) Is=s,t=r)
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Correlation to data with change of support

We have for data type 2 (as we know from earlier):

cov[Yy(s), Z2 |R|/ cov[Ye(s), Yi(s' + v')]dVv’

=— Cy(s—s —V;t—r)dv
IR /V’ER

cov[Zt(2)(s) Z( |R|2 /GR/VGRCOV[Yt s+v), Y, (s +Vv')]dv

»l(s=¢,t=r)

1
:72/ / Cy(s—s +v—v;t—r)dvdv
[RI? Jver Jver

+0'§(2)/(S:S/,t: r)
t
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Change of support cont.

The three by three block matrix of correlations needed for Kriging consist
of:

cov[Yt(s),Z,(z)(s’)],cov[Yt() ZW(s)], cov[Ye(s), ZP(s)],
cov[Z{(s), ZP()], cov[Z(s), ZH(8")], cov[Z(s), ZP(s")]

The last one is the only "new”.

cov[Zt(l)(s) Z( |R| / cov[Ye(s), Y, (s' + v')]dv’

=— Cy(s—s —V;t—r)dv
I
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Kalman filtering, Note: slightly confusing notation

State space model

Y =M;Y;_1 + 8, d: ~ N(0,Q;) NB: Qs a covariance
Z, =H.Y; + &, Er ~ N(O,Rt)

Notation:

Yis =E[Y¢|Z1] NB: Yysis an expectation
Pt\s :E[(Yt - Yt\s)(Yt - Yt|s)/‘21:s]

Gaussian process model and linear Gaussian observations:
Forecast distribution:

P(Yt|zl:(t—1)) = N(Yt\t—la Pt|t—1)
Filtering distribution:

p(Yt|Zl:t) = N(Yt|t7 Pt|t)
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Kalman filtering sec 8.2. Linear Gaussin models

Kalman filter condition to data as they come in, and assimilate them in
the distribution. This is done in a sequence of forecast- filter operations.

Given filter distribution at time (t-1) forecast time t using the state space
model, get the filter distribution by conditioning to data collected at time
t. (Assimilate the data in the distribution) .

Forecast:
Pt\t—l :Mtpt—l\t—lM/t + Q: Yt|t—1 = Mth71|t71
Filter:
S: =H{P,;_1H: +R; K¢ =Py—1H;S;' (Kalman gain)
Pie =(1 = KiH)Pyey Yee = Yeeo1 + Ke(Ze — HeYeeoq)
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Dimension reduction

If computations are too heavy. Try dimension reduction:

Yl’ :‘Dat + Vt7 Vt [ad N(O7 Bt)
a; =M, ;a;1 +7, Y N(Ov Qt)
Zt :Hth+€t7 Er ~ N(O,Rt)

where dim(a;) < dim(Y,).
Can be rewritten as

(023 :Ma,tat—l + v
Zt :th)tat + Htvt + Et

:Fltathgt, Et ~ N(O,HtBtH2+Rt)

Kalmanfiltering wrt a; instead
Choise of ®:

@ Empirical orthogonal functions
o Linear/polynomial functions of spatial coordinates
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Kalman filtering vs smoothing

Kalman filter updates the latest time step with all data up until this time,
i.e. p(Y1|Z1.7) Kalman filter does not compute p(Y;|Z1.7), for t < T,
i.e. the distribution of an earlier time given all data in its past present
and future. This can be done with the Kalman Smoother.

p(Yt|Z1.7) = N(Yy7,Py7)
Recursive backward algorithm (given forward filter and forecast):

Yor =Yee +3e(Yeryr — Yeqape)
Pi1 =Pyt + Je(Peyry7 — Peyape) i
Je =Py:M 1P
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Nonlinear mappings/non-Gaussian data

In many problems (non linear observations)

Z(s,i;t) = hi(Y:) +e(si; t)

o h;+(Y:) known form but nonlinear (may depend on unknown
parameter).

Alternatively (non Gaussian likelihood)
o [Z:|Y] = Poisson(exp(X:3 + Y + v;))
Kalman filtering not possible to apply. Alternatives:
o Linear approximations, (Extended) Kalman filter
Monte Carlo approximations, MCMC
Ensemble Kalman filter

Laplace approximations, INLA
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